[1]馮榮豐、陳錫添,奈米工程概論(第四版),全華科技圖書股份有限公司,2010。
[2]蔡信行、孫光中,奈米科技導論:基本原理及應用(二版),新文京開發出版股份有限公司,2009。
[3]廖婉茹,奈米科技與生活,五南圖書出版股份有限公司,2008。
[4]龍文安,半導體奈米技術,五南圖書出版股份有限公司,2010。
[5]施爾畏、陳之戰、元如林,水热结晶学,科学出版社,2004。
[6]H. Xiao著,羅正忠、張鼎張譯,半導體製程技術導論Introduction to semiconductor manufacturing technology,台灣培生教育出版股份有限公司,2009。
[7]C. Jagadish, S. Pearton, Zinc Oxide Bulk, Thin Films And Nanostructures, Elsevier, 2006.
[8]L. Vayssieres, K. Keis, S. Lindquist, A. Hagfeldt, “Purpose-built anisotropic metal oxide material: 3D highly oriented microrod array of ZnO.” Journal of Physics Chemistry B, 2001, 105, pp.3550-3352.
[9]Y. Chen, D. Bagnall, T. Yao, “ZnO as the novel photonic material for the UV region.” Material Science and Engineering:B, 2000, 75, pp.190-198.
[10]C. D. Lokhande, P. M. Gondkar, R. S. Mane, V. R. Shinde, S. H. Han, “CBD grown-ZnO-based gas sensors and dye-sensitized solar cells.” Journal of Alloys and Compounds, 2009, 475, pp.304-311.
[11]A. A. Hajry, A. Umar, Y. B. Hahn, D. H. Kim, “Growth, properties and dye- sensitized solar cells-applications of ZnO nanorods grown by low-temperture solution process.” Superlattices and Microstructures, 2009, 45, pp.529-534.
[12]C. W. Nahm, “Electrical properties and stability of praseodymium oxide-based ZnO Varistor ceramic doped with Er2O3.” Journal of the European Ceramic Society, 2003, 23, pp.1345-1353.
[13]J. X. Wang, X. W. Sun, Y. Yang, H. Huang, Y. C. Lee, O. K. Tan, and L. Vayssieres, “Hydrothermally grown oriented ZnO nanorod arrays for gas sensing applications.” Nanotechnology, 2006, 17, pp.4995-4998.
[14]H. J. Ko, Y. F. Chen, S. K. Hong, H. Wenisch, T. Yao, D. C. Look, “Ga-doped ZnO films grown on GaN templates by plasma–assisted molecular-beam epitaxy.” Applied Physics Letters, 2000, 77, pp.3761-3763.
[15]K. J. Kim, Y. R. Park, “Large and abrupt optical band gap variation in In-doped ZnO.” Applied Physics Letters, 2000, 78, pp.475-477.
[16]E. Frackowiak, “Carbon materials for supercapacitor application.” Physical Chemistry Chemical Physics, 2007, 9, pp.1774-1785.
[17]張正偉,傳感器原理與應用,中央廣播電视大學出版社,1991。
[18]吳朗,感測器原理與應用,全華科技圖書股份有限公司,1990。
[19]U. Yogeswaran, S. M. Chen, “A Review on the Electrochemical Sensors and Biosensors Composed of Nanowires as Sensing Material.” Sensors, 2008, 8, pp.290-313.
[20]吳宗桓,應用於生化感測器之可攜帶循環伏安式恆電位儀設計與實現,碩士論文,國立臺南大學通訊工程研究所,臺南,2009。[21]陳志宏,頻譜分析技術於幾丁寡醣修飾性葡萄糖生物感測器之應用,碩士論文,國立雲林科技大學化學工程研究所,雲林,2005。[22]陳詩喆,電流式葡萄糖生物感測器之製備及測試,碩士論文,國立臺灣科技大學化學工程研究所,臺北,2009。[23]林正立,溶膠-凝膠修飾電極和電流式乳酸生物感測器,博士論文,國立中正大學化學研究所,嘉義,2005。[24]李坤易,高感度葡萄糖生物感測器之研究,碩士論文,國立雲林科技大學化學工程研究所,雲林,2006。[25]莊旻傑,電化學式氯乙烯氣體及蛋白質感測器之研究,博士論文,國立成功大學化學工程研究所,臺南,2003。[26]田福助,電化學基本原理與應用,五洲出版有限公司,2004。
[27]萬其超,電化學之原理與應用,徐氏文教基金會,1993。
[28]張富昌,電化學分析儀器,徐氏文教基金會,1985。
[29]張志弘,可攜式恆電位儀與電化學生物感測器之整合研究,碩士論文,崑山科技大學電子工程研究所,臺南,2006。[30]呂剛劦,奈米金修式壓電晶體生物感測器之研究,碩士論文,國立雲林科技大學工業化學與災害防治研究所,2003。
[31]闕山仲、方嘉德、徐照程、陳秀珍,分析化學,藝軒圖書出版社,1993。
[32]賀孝雍、陶雨台,分析化學基本原理,曉園出版社有限公司,1989。
[33]鄭信民、林麗娟,X光繞射應用簡介,工業材料雜誌,第181期,2002。[34]許樹恩、吳泰伯,X光繞射原理與材料結構分析,民全行政院國家科學委員會精密儀器發展中心,1993。
[35]M. Fischetti,張雨青,掃描式電顯的奈米世界,科學人,第18期,2003。
[36]鮑忠興、劉思謙,近代穿透式電子顯微鏡實務,滄海書局‧鼎隆圖書股份有限公司,2008。
[37]施正雄,儀器分析原理與應用,五南圖書出版公司,2012。
[38]P. K. Samanta, S. K. Patra, A. Ghosh, P. R. Chaudhuri, “Visible Emission from ZnO Nanorods Synthesized by a Simple Wet Chemical Method.” International Journal of NanoScience and Nanotechnology, 2009, 1, pp.81-90.
[39]C. L. Sun, W. L. Cheng, T. K. Hsu, C. W. Chang, J. L. Chang, J. M. Zen, “Ultrasensitive and highly stable nonenzymatic glucose sensor by a CuO/graphene-modified screen-printed carbon electrode integrated with flow-injection analysis.” Electrochemistry Communications, 2013, 30, pp.91-94.
[40]P. K. Samanta, A. K. Bandyopadhyay, “Chemical growth of hexagonal zinc oxide nanorods and their optical properties.” Applied Nanoscience, 2012, 2, pp.111-117.
[41]蔡淑惠,拉曼光譜在奈米碳管檢測上之應用,奈米通訊,2005。
[42]T. Kavitha, A. I. Gopalan, K. P. Lee, S. Y. Park, “Glucose sensing, photocatalytic and antibacterial properties of graphene–ZnO nanoparticle hybrids.” Carbon, 2012, 50, pp.2994-3000.
[43]Y. W. Hsu, T. K. Hsu, C. L. Sun, Y. T. Nien, N. W. Pu, M. D. Ger, “Synthesis of CuO/graphene nanocomposites for nonenzymatic electrochemical glucose biosensor applications.” Electrochimica Acta, 2012, 82, pp.152-157.
[44]J. Wu, F. Yin, “Easy Fabrication of a Sensitive Non-Enzymatic Glucose Sensor Based on Electrospinning CuO-ZnO Nanocomposites.” Integrated Ferroelectrics: An International Journal, 2013, 147, pp.47-58.
[45]S. S. Yoon, A. Ramadoss, B. Saravanakumar, S. J. Kim, “Novel Cu/CuO/ZnO hybrid hierarchical nanostructures for non-enzymatic glucose sensor application.” Journal of Electroanalytical Chemistry, 2014, 717-718, pp.90-95.