跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.138) 您好!臺灣時間:2025/12/07 17:54
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:王士豪
研究生(外文):Wang, Shih-Hao
論文名稱:含氧化鉿薄膜之電阻式記憶體特性研究
論文名稱(外文):A study of resistive memory device containing HfO2 thin film
指導教授:謝宗雍
指導教授(外文):Hsieh, Tsung-Eong
學位類別:碩士
校院名稱:國立交通大學
系所名稱:材料科學與工程學系所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:75
中文關鍵詞:氧化鉿電阻式記憶體退火
外文關鍵詞:hafnium oxideRRAManneal
相關次數:
  • 被引用被引用:2
  • 點閱點閱:399
  • 評分評分:
  • 下載下載:43
  • 收藏至我的研究室書目清單書目收藏:0
電阻式記憶體(Resistive Random Access Memory,RRAM)被視為取代快閃記憶體的次世代記憶體之一。本研究利用濺鍍法製作以鋁(Al)為上電極、鉑(Pt)為下電極、含氧化鉿(HfO2)之RRAM,探討其電阻轉換(Resistive Switching)性質及改善方法。研究發現HfO2薄膜厚度會影響了Forming電壓(Forming Voltage,VForm),過大的VForm會導致元件的永久性破壞,較薄的HfO2薄膜則因為之後的熱處理使表面粗糙化,而造成電性劣化;電極的面積大小不會影響低電阻態(Low Resistance State,LRS)之電阻,但高電阻態(High Resistance State,HRS)電阻會因電極面積減小而增加。
將HfO2薄膜在大氣氣氛下做300C、500C、700C熱處理30分鐘,以X光電子能譜儀(X-ray Photoelectron Spectroscopy,XPS)及原子力顯微鏡(Atomic Force Microscopy,AFM)分析熱處理對HfO2薄膜的補氧效果及表面粗糙度,並以掃描式電子顯微鏡(Scanning Electron Microscopy, SEM)確認元件的結構。大氣氣氛、500C以下之退火處理對RRAM元件的電性質影響不大,700°C的熱處理則使RRAM之HRS電阻及Vset趨向穩定,且有較佳的循環壽命(Endurance)及資料保存能力(Retention); X光繞射(X-ray Diffraction,XRD)分析顯示700C退火處理使HfO2從非晶態(Amorphous)轉換為單斜(Monoclinic)複晶結構,推論應為晶界(Grain Boundary)提供穩定的導電細絲(Conduction Filament)形成路徑所致;但退火亦減小HfO2薄膜和電極金屬界面的缺陷,造成不穩定且偏高之操作初始HRS電阻。

Resistive random access memory (RRAM) has been widely recognized as the next-generation nonvolatile memory to replace conventional flash memory. This study investigates the resistive switching properties of RRAM containing aluminum (Al) as the top electrode, platinum (Pt) as the bottom electrode and hafnium oxide (HfO2) as the insulator layer prepared by sputtering deposition. Electrical measurement indicated that the thickness of HfO2 layer affects Forming voltage (VForm) of RRAM and too large VForm would permanently damage the device. As to the devices containing thin HfO2 layers, subsequent annealing treatment caused the rough surface and degraded the electrical performance. The area of electrode negligibly affected the resistance of low resistance state (LRS) whereas the resistance of high resistance state (HRS) increase with the decrement of electrode’s area.
For the HfO2 layers annealed at 300C, 500C, and 700C for 30 min in the atmospheric ambient, the effect of heat treatment on the remedy of the oxygen deficiency in HfO2 layer and surface roughness were analyzed by using x-ray photoelectron spectroscopy and atomic force microscopy, and the structure of devices were confirmed by using scanning electron microscopy. Moreover, the annealing treatments at temperatures less than 500°C insignificantly affected the electrical performance of samples. When annealing temperature was raised to 700C, the sample exhibited stable resistance of HRS and VSet as well as improved endurance and retention properties. In such a sample, amorphous HfO2 transformed to polycrystalline monoclinic structure as revealed by x-ray diffraction analysis. The improvement of electrical performance was hence ascribed to the presence of grain boundaries which provide stable formation routes of conduction filament in HfO2. However, annealing treatment seemed to reduce the interface traps at the interface of HfO2 and electrode, leading to high and unstable resistance of HRS at the initial stage of operation.

摘 要.........................................................................................................i
Abstract.....................................................................................................ii
誌 謝.......................................................................................................iv
目 錄........................................................................................................v
圖目錄.....................................................................................................viii
表目錄......................................................................................................xii
符號表.....................................................................................................xiii
第一章 緒 論......................................................................................1
第二章 文獻回顧....................................................................................3
2-1、記憶體簡介.....................................................................................................3
2-1-1、FeRAM簡介......................................................................................3
2-1-2、MRAM簡介......................................................................................4
2-1-3、PCRAM簡介.....................................................................................5
2-1-4、RRAM簡介.......................................................................................5
2-2、RRAM...........................................................................................................7
2-2-1、電阻轉換現象....................................................................................7
2-2-2、材料簡介............................................................................................9
2-2-2-1、鈣鈦礦結構材料.....................................................................9
2-2-2-2、有機材料...............................................................................10
2-2-2-3、過渡金屬氧化物...................................................................10
2-2-2-4、含HfO2之RRAM的回顧..................................................12
2-2-3、介電層導電機制..............................................................................17
2-2-4、電容-電壓(C-V)特性曲線...........................................................19
2-2-5、電阻轉換機制..................................................................................20
2-2-5-1、導電細絲機制.......................................................................20
(a)金屬離子的電化學效應.....................................................22
(b)價電子轉換效應.................................................................23
(c)熱化學效應.........................................................................26
2-2-5-2、蕭基能障調變機制...............................................................27
2-2-5-3、電荷捕捉及釋放機制...........................................................28
2-3、研究動機.....................................................................................................29
第三章 實驗方法及步驟......................................................................31
3-1、實驗流程.....................................................................................................31
3-2、試片製備.....................................................................................................32
3-3、HfO2薄膜基本特性及結構........................................................................34
3-3-1、XRD分析........................................................................................34
3-3-2、SEM分析........................................................................................34
3-3-3、AFM分析........................................................................................34
3-3-4、XPS分析.........................................................................................34
3-4、電性量測.....................................................................................................34
3-4-1、C-V Curve.........................................................................................34
3-4-2、電壓掃描量測(I-V Sweep).........................................................35
3-4-3、元件可靠度量測..............................................................................36
第四章 結果與討論..............................................................................37
4-1、HfO2厚度對RRAM特性的影響..............................................................37
4-1-1、I-V特性............................................................................................37
4-1-2、電阻比值..........................................................................................39
4-1-3、操作電壓..........................................................................................39
4-2、電極面積對RRAM特性的影響...............................................................42
4-3、退火溫度對RRAM特性的影響...............................................................42
4-3-1、晶體結構..........................................................................................43
4-3-2、SEM微觀結構.................................................................................44
4-3-3、XPS分析.........................................................................................44
4-3-4、AFM分析........................................................................................47
4-3-5、電性分析..........................................................................................48
4-3-5-1、RRAM元件操作比較..........................................................48
4-3-5-2、C-V分析...............................................................................51
4-3-5-3、J-E曲線配湊........................................................................54
4-3-5-4、可靠度分析..........................................................................54
4-3-6、電阻轉換模型..................................................................................59
第五章 結 論....................................................................................62
第六章 未來研究與展望......................................................................64
參考文獻..................................................................................................65

[1] 簡昭欣、呂正傑、陳志遠、張茂男、許世祿、趙天生,《先進記憶體簡介》,國研科技,2004年,第01期,31-36頁。
[2] 葉林秀、李佳謀、徐明豐、吳德和,《磁阻式隨機存取記憶體技術的發展—現在與未來》,物理雙月刊,2004年,第04期,607-619頁。
[3] W.Y. Chang, “Characteristics of (Pr,Ca)MnO3 Thin Films on LaNiO3-electrodized Si Substrate for Nonvolatile Resistance Random Access Memory Application”, Master Thesis, National Tsing Hua University, (2006).
[4] G. Muller, T. Happ, M. Kund, G. Y. Lee, N. Nagel and R. Sezi, “Status and Outlook of Emerging Nonvolatile Memory Technologies”, IEDM Technical Digest., December 13-15, (2004), San Francisco, CA, p.567-570.
[5] S. Seo, M.J. Lee, D.H. Seo, E.J. Jeoung, D.S. Suh, Y.S. Joung, I.K. Yoo, I.R. Hwang, S.H. Kim, I.S. Byun, J.S. Kim, J.S. Choi and B.H. Park, “Reproducible Resistance Switching in Polycrystalline NiO Films”, Appl. Phys. Lett., 85(2004), p.5655-5657.
[6] I.G. Baek, M.S. Lee, S. Seo, M.J. Lee, D.H. Seo, D.S. Suh, J.C. Park, S.O. Park, H.S. Kim, I.K. Yoo, U.I. Chung and J.T. Moon, “Highly Scalable Non-volatile Resisitive Memory Using Simply Binary Oxide Driven by Asymmetric Unipolar Voltage Pulses”, IEDM Tech. Dig., December 13-15, (2004), San Francisco, CA, p.587-590.
[7] S.Q. Liu, N.J. Wu and A. Ignatiev, “Electric-pulse-induced Reversible Resistance Change Effect in Magneto Resistive Films”, Appl. Phys. Lett., 76(2000), p.2749-2751.
[8] A. Sawa, T. Fujii, M. Kawasaki and Y. Tokura, “Hysteretic Current-voltage Characteristics and Resistance Switching at a Rectifying Ti/Pr0.7Ca0.3MnO3 Interface”, Appl. Phys. Lett., 85(2004), p.4073-4075.
[9] L. Ma, J. Liu, S. Pyo and Y. Yang, “Organic Bistable Light-emitting Devices”, Appl. Phys. Lett., 80(2002), p.362-364.
[10] L.P. Ma, J. Liu and Y. Yang, “Organic Electrical Bistable Devices and Rewritable Memory Cells”, Appl. Phys. Lett., 80(2002), p.2997-2999.
[11] U. Russo, D. Ielmini, C. Cagli and A.L. Lacaita, “Filament Conduction and Reset Mechanism in NiO-Based Resistive-Switching Memory (RRAM) Devices”, IEEE Trans. Electron. Dev., 56(2009), p.186-192.
[12] K.M. Kim, B.J. Choi, Y.C. Shin, S. Choi and C.S. Hwang, “Anode-interface Localized Filamentary Mechanism in Resistive Switching of TiO2 Thin Films”, Appl. Phys. Lett., 91(2007), 012907.
[13] Y. Li, S. Long, M. Zhang, Q. Liu, L. Shao, S. Zhang, Y. Wang, Q. Zuo, S. Liu and M. Liu, “Resistive Switching Properties of Au/ZrO2/Ag Structure for Low-Voltage Nonvolatile Memory Applications”, IEEE Electron Dev. Lett., 31(2010), p.117-119.
[14] A. Chen, S. Haddad, Y. C. Wu, T. N. Fang, S. Kaza and Z. Lan, “Erasing Characteristics of Cu2O Metal-insulator-metal Resistive Switching Memory”, Appl. Phys. Lett., 92(2008), 013503.
[15] T. Tsuruoka, K. Terabe, T. Hasegawa and M. Aono, “Temperature Effects on the Switching Kinetics of a Cu-Ta2O5-based Atomic Switch”, Nanotechnology, 22(2011), 254013.
[16] H.Y. Lee, P.S. Chen, T.Y. Wu, Y.S. Chen, C.C. Wang, P.J. Tzeng, C.H. Lin, F. Chen, C.H. Lien and M.J. Tsai, “Low Power and High Speed Bipolar Switching With a Thin Reactive Ti Buffer Layer in Robust HfO2 Based RRAM”, IEDM Tech. Dig., December 15-27, (2008), San Francisco, CA, p.1-4.
[17] Z. Fang, H.Y. Yu, W.J. Liu, Z.R. Wang, X.A. Tran, B. Gao and J.F. Kang, “Temperature Instability of Resistive Switching on HfOx-based RRAM Devices”, IEEE Electron Device Lett., 31(2010), p.476-478.
[18] H.Y. Lee, P.S. Chen, C.C. Wang, S. Maikap, P.J. Tzeng, C.H. Lin, L.S. Lee and M. J. Tsai, “Low-Power Switching of Nonvolatile Resistive Memory Using Hafnium Oxide”, Jpn. J. Appl. Phys., 46(2007), p.2175-2179.
[19] C. Walczyk, C. Wenger, R. Sohal, M. Lukosius, A. Fox, J.D. browski, D. Wolansky, B. Tillack, H.J. Mussig and T. Schroeder, “Pulse-induced Low-power Resistive Switching in HfO2 Metal-insulator-metal Diodes for Nonvolatile Memory Applications”, J. Appl. Phys., 105(2009), 114103.
[20] C. Rohde, B.J. Choi, D.S. Jeong, S. Choi, J.S. Zhao and C.S. Hwang, “Identification of a Determining Parameter for Resistive Switching of TiO2 Thin Films”, Appl. Phys. Lett., 86 (2005), 262907.
[21] S. Kim, I. Byun, I. Hwang, J. Kim, J. Choi, B.H. Park, S. Seo, M.J. Lee, D.H. Seo, D.S. Suh, Y.S. Joung and I.K. Yoo, “Giant and Stable Conductivity Switching Behaviors in ZrO2 Films Deposited by Pulsed Laser Depositions”, Jpn. J. Appl. Phys., 44(2005), p.L345-L347.
[22] H.B. Lv, M. Yin, Y.L. Song, X.F. Fu, L. Tang, P. Zhou, C.H. Zhao, T.A. Tang, B.A. Chen and Y.Y. Lin, “Forming Process Investigation of CuxO Memory Films”, IEEE Electron Device Lett., 29(2008), p.47-79.
[23] Z. Wei, Y. Kanzawa, K. Arita, Y. Katoh, K. Kawai, S. Muraoka, S. Mitani, S. Fujii, K. Katayama, M. Iijima, T. Mikawa, T. Ninomiya, R. Miyanaga, Y. Kawashima, K. Tsuji, A. Himeno, T. Okada, R. Azuma, K. Shimakawa, H. Sugaya, T. Takagi, R. Yasuhara, K. Horiba, H. Kumigashira and M. Oshima, “Highly Reliable TaOx ReRAM and Direct Evidence of Redox Reaction Mechanism”, IEDM Tech. Dig., December 15-27, (2008), San Francisco, CA, p.293-296.
[24] I.G. Baek, D.C. Kim, M.J. Lee, H.J. Kim, E.K. Yim, M.S. Lee, J.E. Lee, S.E. Ahn, S. Seo, J.H. Lee, J.C. Park, Y.K. Cha, S.O. Park, H.S. Kim, I.K. Yoo, U.I. Chung, J.T. Moon and B.I. Ryu, “Multi-layer Cross-point Binary Oxide Resistive Memory (OxRRAM) for Post-NAND Storage Application”, IEDM Tech. Dig., December 4-7, (2005), Washington DC, MA, p.750-753.
[25] H. Akinaga and H. Shima, “Resistive Random Access Memory (ReRAM) Based on Metal Oxides”, Proceedings of the IEEE, 98(2010), p.2237-2251.
[26] H. Huang, W. Shih and C. La, “Nonpolar Resistive Switch in the Pt/MgO/Pt Nonvolatile Memory Device”, Appl. Phys. Lett., 96(2010), 193505.
[27] A. Beck, J.G. Bednorz, C. Gerber, C. Rossel and D. Widmer, “Reproducible Switching Effect in Thin Oxide Films for Memory Applications”, Appl. Phys. Lett., 77(2000), p.139-141.
[28] R. Yang, X.M. Li, W.D. Yu, X.D. Gao, D.S. Shang, X.J. Liu, X. Cao, Q. Wang and L.D. Chen, “The Polarity Origin of the Bipolar Resistance Switching Behaviors in Metal/La0.7 Ca0.3 MnO3 /Pt Junctions”, Appl. Phys. Lett., 95(2009), 072105.
[29] C.Y. Lin, D.Y. Lee, S.Y. Wang, C.C. Lin and T.Y. Tseng, “Effect of Thermal Treatment on Resistive Switching Characteristics in Pt/Ti/Al2O3/Pt Devices”, Surf. Coat. Technol., 203(2008), p.628-631.
[30] Y. Bernard, V.T. Renard, P. Gonon and V. Jousseaume, “Back-end-of-line Compatible Conductive Bridging RAM Based on Cu and SiO2”, Microelectron. Eng., 88(2011), p.814–816.
[31] W.Y. Chang, Y.C. Lai, T.B. Wu, S.F. Wang, F. Chen and M.J. Tsai, “Unipolar Resistive Switching Characteristics of ZnO Thin Films for Nonvolatile Memory Applications”, Appl. Phys. Lett., 92(2008), 022110.
[32] N. Xu, L.F. Liu, X. Sun, C. Chen, Y. Wang, D.D. Han, Y. Liu, R.Q. Han, J.F. Kang and B. Yu, “Bipolar Switching Behavior in TiN/ZnO/Pt Resistive Nonvolatile Memory with Fast Switching and Long Retention”, Semicond. Sci. Technol, 23(2008), 075019.
[33] J.S. Choi, J.S. Kim, I.R. Hwang, S.H. Hong, S.H. Jeon, S.O. Kang, B.H. Park, D.C. Kim, M.J. Lee and S. Seo, “Different Resistance Switching Behaviors of NiO Thin Films Deposited on Pt and SrRuO3 Electrodes”, Appl. Phys. Lett., 95(2009), 022109.
[34] C. Yoshida, K. Tsunoda, H. Noshiro and Y. Sugiyama, “High Speed Resistive Switching in Pt/TiO2/TiN Film for Nonvolatile Memory Application”, Appl. Phys. Lett., 91(2007), 223510.
[35] C.Y. Lin, C.Y. Wu, C.Y. Wu, T.C. Lee, F.L. Yang, C. Hu and T.Y. Tseng, “Effect of Top Electrode Material on Resistive Switching Properties of ZrO2 Film Memory Devices”, IEEE Electron Device Lett., 28(2007), p.366-368.
[36] Y.M. Kim and J.S. Lee, “Reproducible Resistance Switching Characteristics of Hafnium Oxide-based Nonvolatile Memory Devices”, J. Appl. Phys., 104(2008), 114115.
[37] L. Goux, Y.Y. Chen, L. Pantisano, X.P. Wang, G. Groeseneken, M. Jurczak and D.J. Wouters, “On the Gradual Unipolar and Bipolar Resistive Switching of TiN\HfO2\Pt memory Systems”, Electrochem. Solid State Lett., 13(2010), p.G54-G56.
[38] K.M. Kim, B.J. Choi, B.W. Koo, S. Choi, D.S. Jeong and C.S. Hwang, “Resistive Switching in Pt/Al2O3/TiO2/Ru Stacked Structures”, Electrochem. Solid State Lett., 9(2006), p.G343-G346.
[39] J.F. Gibbons and W.E. Beadle, “Switching Properties of Thin NiO Films”, Solid-State Electronics, 7(1964), p.785-790.
[40] D.H. Kwon, K.M. Kim, J.H. Jang, J.M. Jeon, M.H. Lee, G.H. Kim, X.S. Li, G.S. Park, B. Lee, S. Han, M. Kim and C.S. Hwang, “Atomic Structure of Conducting Nanofilaments in TiO2 Resistive Switching Memory”, Nat. Nano., 5(2010), p.148-153.
[41] Y. Wu, B. Lee and H.P. Wong, “Al(2)O(3)-based RRAM Using Atomic Layer Deposition (ALD) with 1-A RESET Current”, IEEE Electron Device Lett., 31(2010), p.1449-1451.
[42] W. Kim, S.I. Park, Z. Zhang, Y.L. Young, D. Sekar, H.P. Wong and S.S. Wong, “Forming-free Nitrogen-doped AlOx RRAM with Sub-A Programming Current”, VLSI Tech. Dig., June 14-16, (2011), Kyoto, Japan, p.22-23.
[43] Y.S. Chen, H.Y. Lee, P.S. Chen, P.Y. Gu, C.W. Chen, W.P. Lin, W.H. Liu, Y.Y. Hsu, S.S. Sheu, P.C. Chiang, W.S. Chen, F.T. Chen, C.H. Lien and M.J. Tsai, “Highly Scalable Hafnium Oxide Memory with Improvements of Resistive Distribution and Read Disturb Immunity”, IEDM Tech. Dig., December 7-9, (2009), Washington DC, MA, p.95-98.
[44] Z. Wei, T. Takagi, Y. Kanzawa, Y. Katoh, T. Ninomiya, K. Kawai, S. Muraoka, S. Mitani, K. Katayama, S. Fujii, R. Miyanaga, Y. Kawashima, T. Mikawa, K. Shimakawa and K. Aono, “Demonstration of High-density ReRAM Ensuring 10-year Retention at 85°C Based on a Newly Developed Reliability Model”, IEDM Tech. Dig., Washington, DC, (2011), p.721-724.
[45] Y.H. Do, J.S. Kwak, Y.C. Bae, K. Jung, H. Im and J.P. Hong, “Hysteretic Bipolar Resistive Switching Characteristics in TiO2/TiO2-x Multilayer Homojunctions”, Appl. Phys. Lett., 95(2009), 093507.
[46] C.Y. Lin, C.Y. Wu, C.Y. Wu, C.C. Lin and T.Y. Tseng, “Memory Effect of RF Sputtered ZrO2 Thin Films”, Thin Solid Films, 516(2007), p.444-448.
[47] B. Sun, Y.X. Liu, L.F. Liu, N. Xu, Y. Wang, X.Y. Liu, R.Q. Han and J.F. Kang, “Highly Uniform Resistive Switching Characteristics of TiN/ZrO2/Pt Memory Devices”, J. Appl. Phys, 105(2009), 061630.
[48] P. Zhou, H.J. Wan, Y.L. Song, M. Yin, H.B. Lv, Y.Y. Lin, S. Song, R. Huang, J.G. Wu and M.H. Chi, “A Systematic Investigation of TiN/CuxO/Cu RRAM with Long Retention and Excellent Thermal Stability”, IEEE IMW, May 10-14, (2009), Monterey, CA, p.1-2.
[49] H.B. Lv, M. Yin, P. Zhou, T.A. Tang, B.A. Chen, Y.Y. Lin, A. Bao and M.H. Chi, “Improvement of Endurance and Switching Stability of Forming-free CuxO RRAM”, NVSMW and ICMTD, May 18-22, (2008), Opio, France, 4531821.
[50] T. Lee, J. Ahn, J. Oh and Y. Kim, “Characterization of Ultra-Thin HfO2 Gate Oxide Prepared by Using Atomic Layer Deposition”, J. Korean Phys. Soc., 42(2003), p.272-275.
[51] B.H. Lee, L. Kang, W.J. Qi, R. Nieh, Y. Jeon, K. Onishi and J.C. Lee, “Ultrathin Hafnium Oxide with Low Leakage and Excellent Reliability for Alternative Gated Dielectric Application”, IEDM Tech. Dig., December 5-8, (1999), Washington, DC, p.133-136.
[52] M. Balog, M. Schieber, M. Michman and S. Patai, “Chemical Vapor Deposition and Characterization of HfO2 Films from Organo-Hafnium Compounds”, Thin Solid Films, 41(1977), p.247-259.
[53] A.S. Foster, F.L. Gejo, A.L. Shluger and R.M. Nieminen, “Vacancy and Interstitial Defects in Hafnia”, Phys. Rev. B, 65(2002), 174117.
[54] P.G. Shewmon, Diffusion in Solid, McGraw-Hill, New York, (1963), Chap. 5.
[55] L. Goux, P. Czarnecki, Y.Y. Chen, L. Pantisano, X.P. Wang, R. Degraeve, B. Govoreanu, M. Jurczak, D.J. Wouters and L. Altimime, “Evidences of Oxygen-mediated Resistive-switching Mechanism in TiN\HfO2\Pt Cells”, Appl. Phys. Lett., 97(2010), 243509.
[56] D. Shin, R. Arroyave and Z.-K. Liu, “Thermadynamic Modeling of the Hf-Si-O System”, CALPHAD, 30(2006), p.375-386.
[57] K.L. Lin, T.H. Hou, J. Shieh, J.H. Lin and C.T. Chou, “Electrode Dependence of Filament Formation in HfO2 Resistive-switching Memory”, J. Appl. Phys., 109(2011), 084104.
[58] J. Lee, J. Shin, D. Lee, W. Lee, S. Jung, M. Jo, J. Park, K.P. Biju, S. Kim, S. Park and H. Hwang, “Diode-less Nano-scale ZrOx/HfOx RRAM Device with Excellent Switching Uniformity and Reliability for High-density Cross-point Memory Applications ”, IEDM Tech. Dig., December 6-8, (2010), San Francisco, CA, p.452-455.
[59] H. Zhang, L. Liu, B. Gao, Y. Qiu, X. Liu, J. Lu, R. Han, J. Kang and B. Yu, “Gd-doping Effect on Performance of HfO2 Based Resistive Switching Memory Devices Using Implantation Approach”, Appl. Phys. Lett., 98(2011), 042105.
[60] M. Lanza, K. Zhang, M. Porti, M. Nafría and Z.Y. Shen, “Grain Boundaries as Preferential Sites for Resistive Switching in the HfO2 Resistive Random Access Memory Structures”, Appl. Phys. Lett, 100(2012), 123508.
[61] S. Yu, Y. Wu, Y. Chai, J. Provine and H.S.P. Wong, “Characterization of Switching Parameters and Multilevel Capability in HfOx/AlOx Bi-layer RRAM Devices”, VLSI-TSA, April 25-27, (2011), Hsinchu, Taiwan, p.1-2.
[62] H.B. Lv, H. Wan and T. Tang, “Improvement of Resistive Switching Uniformity by Introducing a Thin GST Interface Layer”, IEEE Electron Device Lett., 31(2010), p.978-980.
[63] S.M. Sze and K.K. Ng, Physics of Semiconductor Devices, 3rd Edition, Wiley-Interscience, New Jersey, (2007), p.227-228.
[64] K.S. Tan, S. Kiriake, M.D. Wit, J.W. Fattaruso, C.Y. Tsay, W.E. Matthews and R.K. Hester, “Error Correction Techniques for High-performance Differential A/D Converters”, IEEE J. Solid-State Circuits, 25(1990), p.1318-1327.
[65] C.H. Ng and S.F. Chu, “Effect of the Nitrous Oxide Plasma Treatment on the MIM Capacitor”, IEEE Electron Device Lett., 23(2002), p.529-531.
[66] S. Blonkowski, M. Regache and A. Halimaoui, “Investigate and Modeling of the Electrical Properties of Metal-oxide-metal Structures Formed from Chemical Vapor Deposited Ta2O5 films”, J. Appl. Phys., 90(2001), p.1501-1508.
[67] X. Yu, C. Zhu, H. Hu, A. Chin, M.F. Li, B.J. Cho, D.L. Kwong, P.D. Foo and M.B. Yu, “A High Density MIM Capacitor (13 fF/um2) Using ALD HfO2 Dielectrics”, IEEE Electron Device Lett., 24(2003), p.63-65.
[68] J.A. Babcock, S.G. Balstr, A. Pinto, C. Dirnecker, P. Steinmann, R. Jumpertz and B.E. Kareh, “Analog Characteristics of Metal-Insulator-Metal Capacitors Using PECVD Nitride Dielectrics”, IEEE electron Device Lett., 22(2001), p.230-232.
[69] A. Sawa, “Resistive Switching in Transition Metal Oxides”, Mater. Today, 11(2008), p.28-36.
[70] X. Guo and C. Schindler, “Understanding the Switching-off Mechanism in Ag+ Migration Based Resistively Switching Model Systems”, Appl. Phys. Lett., 91(2007), 133513.
[71] R. Waser, R. Dittmann, G. Straikov and K. Szot, “Redox-Based Resistive Switching Memories-Nanoionic Mechanisms, Prospects, and Challenges”, Adv. Mater., 21(2009), p.2632-2663.
[72] C.Y. Lin, C.Y. Wu, C.Y. Wu, C. Hu and T.Y. Tseng, “Bistable Resistive Switching in Al2O3 Memory Thin Films”, J. Electrochem. Soc., 154(2007), p.G189-G192.
[73] K.M. Kim, D.S. Jeong and C.S. Hwang, “Nanofilamentary Resistive Switching in Binary Oxide System; a Review on the Present Status and Outlook”, Nanotechnology, 22(2011), 254002.
[74] M. Fujimoto, H. Koyama, M. Konagai,Y. Hosoi, K. Ishihara, S. Ohnishi and N. Awaya, “TiO2 Anatase Nanolayer on TiN Thin Film Exhibiting High-speed Bipolar Resistive Switching”, Appl. Phys. Lett, 89(2006), 223509.
[75] N. Xu, B. Gao, L.F. Liu, B. Sun, X.Y. Liu, R.Q. Han, J.F. Kang, and B. Yu, “A Unified Physical Model of Switching Behavior in Oxide-Based RRAM”, VLSI Tech. Dig., June 17-19, (2008), Honolulu, Hawaii, p.100-101.
[76] B.J. Choi, D.S. Jeong and S.K. Kim, “Resistive Switching Mechanism of TiO2 Thin Films Grown by Atomic-layer Deposition”, J. Appl. Phys., 98(2005), 033715.
[77] U. Russo, D. Ielmini, C. Cagli, A.L. Lacaita, S. Spiga, C. Wiemer, M. Perego and M. Fanciulli, “Conductive-filament Switching Analysis and Self-accelerated Thermal Dissolution Model for Reset in NiO-based RRAM”, IEDM Tech. Dig., December 10-12, (2007), Washington, DC, p.775-778.
[78] A. Baikalov, Y.Q. Wang, B. Shen, B. Lorenz, S. Tsui, Y.Y. Sun, Y.Y. Xue and C.W. Chu, “Field-driven Hysteretic and Reversible Resistive Switch at the Ag-Pr0.7 Ca0.3MnO3 Interface”, Appl. Phys. Lett., 83(2003), p.957-959.
[79] S. Tsui, A. Baikalov, J. Cmaidalka, Y.Y. Sun, Y.Q. Wang, Y.Y. Xue, C.W. Chu, L. Chen and A.J. Jacobson, “Field-induced Resistive Switching in Metal-oxide Interfaces”, Appl. Phys. Lett., 85(2004), p.317-319.
[80] X. Chen, N.J. Wu, J. Strozier and A. Ignatiev, “Direct Resistance Profile for an Electrical Pulse Induced Resistance Change Device”, Appl. Phys. Lett., 87(2005), 233506.
[81] T. Fujii, M. Kawasaki, A. Sawa, H. Akoh, Y. Kawazoe and Y. Tokura, “Hysteretic Current–voltage Characteristics and Resistance Switching at an Epitaxial Oxide Schottky Junction SrRuO3∕SrTi0.99Nb0.01O3”, Appl. Phys. Lett., 86(2005), 012107.
[82] R. Fors, S. Khartsev and A. Grishin, “Giant Resistance Switching in Metal-insulator-manganite Junctions: Evidence for Mott Transition”, Phys. Rev. B, 71(2005), p.1-10.
[83] M.J. Rozenberg, I.H. Inoue and M.J. Sánchez, “Strong Electron Correlation Effects in Nonvolatile Electronic Memory Devices”, Appl. Phys. Lett., 88(2006), 033510.
[84] C.Y. Lin, C.Y. Wu, C.Y. Wu, T.Y. Tseng and C. Hu, “Modified Resistive Switching Behavior of ZrO2 Memory Films Based on the Interface Layer Formed by Using Ti Top Electrode”, J. Appl. Phys., 102(2007), 094101.
[85] D.S. Jeong, H. Schroeder and R. Waser, “Coexistence of Bipolar and Unipolar Resistive Switching Behaviors in a Pt/TiO2/Pt Stack”, Electrochem. Solid-State Lett., 10(2007), p.G51-G53.
[86] K.M. Kim, B.J. Choi, D.S. Jeong, C.S. Hwang and S. Han, “Influence of Carrier Injection on Resistive Switching of TiO2 Thin Films with Pt Electrodes”, Appl. Phys. Lett., 89(2006), 162912.
[87] H.Y. Jeong, S.K Kim, J.Y. Lee and S.Y. Choi, “Role of Interface Reaction on Resistive Switching of Metal/Amorphous TiO2/Al RRAM Devices”, J. Electrochem. Soc., 158(2011), p.H979-H982.
[88] C.C. Lin, Y.P. Chang, H.B. Lin and C. H. Lin, “Effect of Non-lattice Oxygen on ZrO2-based Resistive Switching Memory”, Nanoscale Res. Lett., 7(2012), 187.
[89] A. Grill, W. Kane, J. Viggiano, M. Brady and R. Laibowitz, “Base Electrodes for High Dielectric Constant Oxide Materials in Silicon Technology”, J. Mater. Res., 7(1992), p.3260-3265.
[90] D.R. Lide, Handbook of Chemistry and Physics, 84th Edition, CRC Press, Boca Raton, FL, (2000), p.8-25.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top