|
REFERENCES [1] I.-S. Chang, P. Le Clech, B. Jefferson, S. Judd, Membrane fouling in membrane bioreactors for wastewater treatment, Journal of environmental engineering, 128 (2002) 1018-1029. [2] S. Churchouse, D. Wildgoose, Membrane bioreactors hit the big time–from lad scale to full-scale application; MBR2–Proc. 2nd Intl, Mtg. membrane bioreactor for wastewater treatment, Cranfield University, UK, pp14, (1999). [3] S. Judd, The MBR book: Principles and applications of membrane bioreactors in water and wastewater treatment, S. Judd and C. Judd, eds., Elselvier, in, Oxford, UK, 2006. [4] J.A. Camargo, Á. Alonso, Ecological and toxicological effects of inorganic nitrogen pollution in aquatic ecosystems: a global assessment, Environment international, 32 (2006) 831-849. [5] U.D.O. Health, H. Services, Agency for toxic substances and disease registry, Toxicological Profile for Polycyclic Aromatic Hydrocarbons (PAHs),(update) PB/95/264370. Atlanta: US Department of Health and Human Services, (1995). [6] R. Cisneros, A. Bytnerowicz, D. Schweizer, S. Zhong, S. Traina, D.H. Bennett, Ozone, nitric acid, and ammonia air pollution is unhealthy for people and ecosystems in southern Sierra Nevada, California, Environmental Pollution, 158 (2010) 3261-3271. [7] E.R. Coats, D.L. Watkins, D. Kranenburg, A comparative environmental life-cycle analysis for removing phosphorus from wastewater: biological versus physical/chemical processes, Water Environment Research, 83 (2011) 750-760. [8] M. Henze, P. Harremoes, J. la Cour Jansen, E. Arvin, Wastewater treatment: biological and chemical processes, Springer Science & Business Media, 2001. [9] Metcalf, Eddy, F.L. Burton, H.D. Stensel, G. Tchobanoglous, Wastewater engineering: treatment and reuse, McGraw Hill, 2003. [10] I. Monje-Ramirez, M.O. De Velasquez, Removal and transformation of recalcitrant organic matter from stabilized saline landfill leachates by coagulation–ozonation coupling processes, Water research, 38 (2004) 2359-2367. [11] G. Daigger, A practitioner’s perspective on the uses and future developments for wastewater treatment modelling, Water Science and Technology, 63 (2011) 516-526. [12] H.-G. Kim, H.-N. Jang, H.-M. Kim, D.-S. Lee, T.-H. Chung, Effects of the sludge reduction system in MBR on the membrane permeability, Desalination, 250 (2010) 601-604. [13] Z. Wang, Z. Wu, J. Hua, X. Wang, X. Du, H. Hua, Application of flat-sheet membrane to thickening and digestion of waste activated sludge (WAS), Journal of hazardous materials, 154 (2008) 535-542. [14] C. Fux, M. Boehler, P. Huber, I. Brunner, H. Siegrist, Biological treatment of ammonium-rich wastewater by partial nitritation and subsequent anaerobic ammonium oxidation (anammox) in a pilot plant, Journal of biotechnology, 99 (2002) 295-306. [15] D. Wild, A. Kisliakova, H. Siegrist, Prediction of recycle phosphorus loads from anaerobic digestion, Water Research, 31 (1997) 2300-2308. [16] N.C. Nguyen, S.-S. Chen, H.-Y. Yang, N.T. Hau, Application of forward osmosis on dewatering of high nutrient sludge, Bioresource technology, 132 (2013) 224-229. [17] P. Le-Clech, V. Chen, T.A. Fane, Fouling in membrane bioreactors used in wastewater treatment, Journal of membrane science, 284 (2006) 17-53. [18] A. Drews, Membrane fouling in membrane bioreactors—characterisation, contradictions, cause and cures, Journal of membrane science, 363 (2010) 1-28. [19] F. Meng, S.-R. Chae, A. Drews, M. Kraume, H.-S. Shin, F. Yang, Recent advances in membrane bioreactors (MBRs): membrane fouling and membrane material, Water research, 43 (2009) 1489-1512. [20] N.S.A. Mutamim, Z.Z. Noor, M.A.A. Hassan, A. Yuniarto, G. Olsson, Membrane bioreactor: Applications and limitations in treating high strength industrial wastewater, Chemical engineering journal, 225 (2013) 109-119. [21] Z. Wang, Z. Wu, S. Mai, C. Yang, X. Wang, Y. An, Z. Zhou, Research and applications of membrane bioreactors in China: progress and prospect, Separation and Purification Technology, 62 (2008) 249-263. [22] J. Yang, Membrane Bioreactor for Wastewater Treatment-eBooks and textbooks from bookboon. com, in, bookboon. com, 2013. [23] S. Judd, The status of membrane bioreactor technology, Trends in biotechnology, 26 (2008) 109-116. [24] J. Srinivasan, MBR still growing in EU wastewater treatment market, Water and Waste International, 22 (2007) 43-44. [25] C. Visvanathan, R.B. Aim, K. Parameshwaran, Membrane separation bioreactors for wastewater treatment, Critical reviews in environmental science and technology, 30 (2000) 1-48. [26] T. Melin, B. Jefferson, D. Bixio, C. Thoeye, W. De Wilde, J. De Koning, J. Van der Graaf, T. Wintgens, Membrane bioreactor technology for wastewater treatment and reuse, Desalination, 187 (2006) 271-282. [27] J. Manem, R. Sanderson, Membrane Bioreactors in Water Treatment: Membrane Processes, AWWARF, and McGraw Hill: New York, (1996). [28] W. Guo, H.-H. Ngo, J. Li, A mini-review on membrane fouling, Bioresource technology, 122 (2012) 27-34. [29] N.P. Dan, Biological treatment of high salinity wastewater using yeast and bacterial systems, Asian Institute of Technology, School of Environment, Resources and Development, Thailand, (2001). [30] U. Metzger, P. Le-Clech, R.M. Stuetz, F.H. Frimmel, V. Chen, Characterisation of polymeric fouling in membrane bioreactors and the effect of different filtration modes, Journal of Membrane Science, 301 (2007) 180-189. [31] K. Kimura, N. Yamato, H. Yamamura, Y. Watanabe, Membrane fouling in pilot-scale membrane bioreactors (MBRs) treating municipal wastewater, Environmental science & technology, 39 (2005) 6293-6299. [32] F. Diagne, R. Malaisamy, V. Boddie, R.D. Holbrook, B. Eribo, K.L. Jones, Polyelectrolyte and silver nanoparticle modification of microfiltration membranes to mitigate organic and bacterial fouling, Environmental science & technology, 46 (2012) 4025-4033. [33] S. Ognier, C. Wisniewski, A. Grasmick, Characterisation and modelling of fouling in membrane bioreactors, Desalination, 146 (2002) 141-147. [34] S. Lyko, D. Al-Halbouni, T. Wintgens, A. Janot, J. Hollender, W. Dott, T. Melin, Polymeric compounds in activated sludge supernatant—characterisation and retention mechanisms at a full-scale municipal membrane bioreactor, Water Research, 41 (2007) 3894-3902. [35] H. You, C. Tseng, M. Peng, S. Chang, Y. Chen, S. Peng, A novel application of an anaerobic membrane process in wastewater treatment, Water science and technology, 51 (2005) 45-50. [36] A. Al-Amoudi, R.W. Lovitt, Fouling strategies and the cleaning system of NF membranes and factors affecting cleaning efficiency, Journal of Membrane Science, 303 (2007) 4-28. [37] S.S. Ghayeni, S. Madaeni, A. Fane, R. Schneider, Aspects of microfiltration and reverse osmosis in municipal wastewater reuse, Desalination, 106 (1996) 25-29. [38] G.-P. Sheng, H.-Q. Yu, X.-Y. Li, Extracellular polymeric substances (EPS) of microbial aggregates in biological wastewater treatment systems: a review, Biotechnology advances, 28 (2010) 882-894. [39] J. Li, F. Yang, Y. Liu, H. Song, D. Li, F. Cheng, Microbial community and biomass characteristics associated severe membrane fouling during start-up of a hybrid anoxic–oxic membrane bioreactor, Bioresource technology, 103 (2012) 43-47. [40] K. Zhang, H. Choi, D.D. Dionysiou, G.A. Sorial, D.B. Oerther, Identifying pioneer bacterial species responsible for biofouling membrane bioreactors, Environmental microbiology, 8 (2006) 433-440. [41] H. Ridgway, H. Flemming, Microbial adhesion and biofouling of reverse osmosis membranes, Reverse Osmosis Technology: Applications for High Purity Water Production, ed. by BS Pakekh and M. Dekker, (1988) 429-481. [42] H. Ridgway, A. Kelly, C. Justice, B. Olson, Microbial fouling of reverse-osmosis membranes used in advanced wastewater treatment technology: chemical, bacteriological, and ultrastructural analyses, Applied and environmental microbiology, 45 (1983) 1066-1084. [43] Z. Amjad, Reverse osmosis: membrane technology, water chemistry & industrial applications, Chapman & Hall, 1993. [44] J. Lee, W.-Y. Ahn, C.-H. Lee, Comparison of the filtration characteristics between attached and suspended growth microorganisms in submerged membrane bioreactor, Water Research, 35 (2001) 2435-2445. [45] D. Hughes, U.K. Tirlapur, R. Field, Z. Cui, In situ 3D characterization of membrane fouling by yeast suspensions using two-photon femtosecond near infrared non-linear optical imaging, Journal of Membrane Science, 280 (2006) 124-133. [46] Q. Li, M. Elimelech, Organic fouling and chemical cleaning of nanofiltration membranes: measurements and mechanisms, Environmental science & technology, 38 (2004) 4683-4693. [47] W. Koros, Y. Ma, T. Shimidzu, Terminology for membranes and membrane processes (IUPAC Recommendations 1996), Pure and Applied Chemistry, 68 (1996) 1479-1489. [48] A. Vargas, I. Moreno-Andrade, G. Buitrón, Controlled backwashing in a membrane sequencing batch reactor used for toxic wastewater treatment, Journal of membrane science, 320 (2008) 185-190. [49] X. Tu, S. Zhang, L. Xu, M. Zhang, J. Zhu, Performance and fouling characteristics in a membrane sequence batch reactor (MSBR) system coupled with aerobic granular sludge, Desalination, 261 (2010) 191-196. [50] F. Meng, H. Zhang, F. Yang, L. Liu, Characterization of cake layer in submerged membrane bioreactor, Environmental science & technology, 41 (2007) 4065-4070. [51] O.T. Iorhemen, R.A. Hamza, J.H. Tay, Membrane bioreactor (MBR) technology for wastewater treatment and reclamation: membrane fouling, Membranes, 6 (2016) 33. [52] S. Ognier, C. Wisniewski, A. Grasmick, Membrane bioreactor fouling in sub-critical filtration conditions: a local critical flux concept, Journal of Membrane Science, 229 (2004) 171-177. [53] B. Hofs, J. Ogier, D. Vries, E.F. Beerendonk, E.R. Cornelissen, Comparison of ceramic and polymeric membrane permeability and fouling using surface water, Separation and Purification Technology, 79 (2011) 365-374. [54] L. Jin, S.L. Ong, H.Y. Ng, Comparison of fouling characteristics in different pore-sized submerged ceramic membrane bioreactors, Water research, 44 (2010) 5907-5918. [55] P. Le-Clech, V. Chen, T.A.G. Fane, Fouling in membrane bioreactors used in wastewater treatment, Journal of Membrane Science, 284 (2006) 17-53. [56] S. Shirazi, C.-J. Lin, D. Chen, Inorganic fouling of pressure-driven membrane processes—a critical review, Desalination, 250 (2010) 236-248. [57] R. Van den Broeck, J. Van Dierdonck, P. Nijskens, C. Dotremont, P. Krzeminski, J. Van der Graaf, J. Van Lier, J. Van Impe, I. Smets, The influence of solids retention time on activated sludge bioflocculation and membrane fouling in a membrane bioreactor (MBR), Journal of membrane science, 401 (2012) 48-55. [58] J.-P. Nywening, H. Zhou, Influence of filtration conditions on membrane fouling and scouring aeration effectiveness in submerged membrane bioreactors to treat municipal wastewater, Water research, 43 (2009) 3548-3558. [59] R.S. Trussell, R.P. Merlo, S.W. Hermanowicz, D. Jenkins, The effect of organic loading on process performance and membrane fouling in a submerged membrane bioreactor treating municipal wastewater, Water research, 40 (2006) 2675-2683. [60] J. Zhang, J. Zhou, Y. Liu, A.G. Fane, A comparison of membrane fouling under constant and variable organic loadings in submerge membrane bioreactors, Water research, 44 (2010) 5407-5413. [61] M.A. Johir, S. Vigneswaran, A. Sathasivan, J. Kandasamy, C. Chang, Effect of organic loading rate on organic matter and foulant characteristics in membrane bio-reactor, Bioresource technology, 113 (2012) 154-160. [62] A. Bottino, G. Capannelli, A. Comite, R. Mangano, Critical flux in submerged membrane bioreactors for municipal wastewater treatment, Desalination, 245 (2009) 748-753. [63] J. Wu, X. Huang, Effect of mixed liquor properties on fouling propensity in membrane bioreactors, Journal of Membrane Science, 342 (2009) 88-96. [64] N. Yigit, I. Harman, G. Civelekoglu, H. Koseoglu, N. Cicek, M. Kitis, Membrane fouling in a pilot-scale submerged membrane bioreactor operated under various conditions, Desalination, 231 (2008) 124-132. [65] K.-K. Ng, C.-F. Lin, S.K. Lateef, S.C. Panchangam, P.-K.A. Hong, P.-Y. Yang, The effect of soluble microbial products on membrane fouling in a fixed carrier biological system, Separation and purification technology, 72 (2010) 98-104. [66] H. Lin, M. Zhang, F. Wang, F. Meng, B.-Q. Liao, H. Hong, J. Chen, W. Gao, A critical review of extracellular polymeric substances (EPSs) in membrane bioreactors: characteristics, roles in membrane fouling and control strategies, Journal of Membrane Science, 460 (2014) 110-125. [67] J.R. Pan, Y. Su, C. Huang, Characteristics of soluble microbial products in membrane bioreactor and its effect on membrane fouling, Desalination, 250 (2010) 778-780. [68] N. Jang, H. Shon, X. Ren, S. Vigneswaran, I.S. Kim, Characteristics of bio-foulants in the membrane bioreactor, Desalination, (2006). [69] Y. Zhang, M. Zhang, F. Wang, H. Hong, A. Wang, J. Wang, X. Weng, H. Lin, Membrane fouling in a submerged membrane bioreactor: effect of pH and its implications, Bioresource technology, 152 (2014) 7-14. [70] F. Meng, B. Liao, S. Liang, F. Yang, H. Zhang, L. Song, Morphological visualization, componential characterization and microbiological identification of membrane fouling in membrane bioreactors (MBRs), Journal of membrane science, 361 (2010) 1-14. [71] H.-Y. Yu, L.-Q. Liu, Z.-Q. Tang, M.-G. Yan, J.-S. Gu, X.-W. Wei, Mitigated membrane fouling in an SMBR by surface modification, Journal of Membrane Science, 310 (2008) 409-417. [72] H. Li, A. Fane, J. Zhang, A. Geng, Characteristics of membrane fouling by biological materials and optimal operating strategies for membrane bioreactors, IMSTEC03, Sydney, (2003). [73] S.-H. Yoon, J. Collins, D. Musale, S. Sundararajan, S.-P. Tsai, G. Hallsby, J. Kong, J. Koppes, P. Cachia, Effects of flux enhancing polymer on the characteristics of sludge in membrane bioreactor process, Water Science and Technology, 51 (2005) 151-157. [74] W. Guo, S. Vigneswaran, H. Ngo, T. Van Nguyen, R.B. Aim, Influence of bioreaction on a long-term operation of a submerged membrane adsorption hybrid system, Desalination, 191 (2006) 92-99. [75] S.-R. Chae, S. Wang, Z.D. Hendren, M.R. Wiesner, Y. Watanabe, C.K. Gunsch, Effects of fullerene nanoparticles on Escherichia coli K12 respiratory activity in aqueous suspension and potential use for membrane biofouling control, Journal of Membrane Science, 329 (2009) 68-74. [76] J. Fabrega, J.C. Renshaw, J.R. Lead, Interactions of silver nanoparticles with Pseudomonas putida biofilms, Environmental science & technology, 43 (2009) 9004-9009. [77] D.G. Davies, M.R. Parsek, J.P. Pearson, B.H. Iglewski, J.W. Costerton, E.P. Greenberg, The involvement of cell-to-cell signals in the development of a bacterial biofilm, Science, 280 (1998) 295-298. [78] K.-M. Yeon, W.-S. Cheong, H.-S. Oh, W.-N. Lee, B.-K. Hwang, C.-H. Lee, H. Beyenal, Z. Lewandowski, Quorum sensing: a new biofouling control paradigm in a membrane bioreactor for advanced wastewater treatment, Environmental science & technology, 43 (2008) 380-385. [79] S.-R. Kim, H.-S. Oh, S.-J. Jo, K.-M. Yeon, C.-H. Lee, D.-J. Lim, C.-H. Lee, J.-K. Lee, Biofouling control with bead-entrapped quorum quenching bacteria in membrane bioreactors: physical and biological effects, Environmental science & technology, 47 (2013) 836-842. [80] X.-F. Zhang, Z.-G. Liu, W. Shen, S. Gurunathan, Silver nanoparticles: synthesis, characterization, properties, applications, and therapeutic approaches, International journal of molecular sciences, 17 (2016) 1534. [81] V. Colvin, M. Schlamp, A.P. Alivisatos, Light-emitting diodes made from cadmium selenide nanocrystals and a semiconducting polymer, Nature, 370 (1994) 354. [82] S. Iravani, H. Korbekandi, S.V. Mirmohammadi, B. Zolfaghari, Synthesis of silver nanoparticles: chemical, physical and biological methods, Research in pharmaceutical sciences, 9 (2014) 385. [83] A.R. Gliga, S. Skoglund, I.O. Wallinder, B. Fadeel, H.L. Karlsson, Size-dependent cytotoxicity of silver nanoparticles in human lung cells: the role of cellular uptake, agglomeration and Ag release, Particle and fibre toxicology, 11 (2014) 11. [84] C.A. Dos Santos, M.M. Seckler, A.P. Ingle, I. Gupta, S. Galdiero, M. Galdiero, A. Gade, M. Rai, Silver nanoparticles: therapeutical uses, toxicity, and safety issues, Journal of pharmaceutical sciences, 103 (2014) 1931-1944. [85] V. Lazar, Quorum sensing in biofilms–how to destroy the bacterial citadels or their cohesion/power?, Anaerobe, 17 (2011) 280-285. [86] S. Periasamy, H.-S. Joo, A.C. Duong, T.-H.L. Bach, V.Y. Tan, S.S. Chatterjee, G.Y. Cheung, M. Otto, How Staphylococcus aureus biofilms develop their characteristic structure, Proceedings of the National Academy of Sciences, 109 (2012) 1281-1286. [87] B. Reidy, A. Haase, A. Luch, K.A. Dawson, I. Lynch, Mechanisms of silver nanoparticle release, transformation and toxicity: a critical review of current knowledge and recommendations for future studies and applications, Materials, 6 (2013) 2295-2350. [88] W.-R. Li, X.-B. Xie, Q.-S. Shi, H.-Y. Zeng, O.-Y. You-Sheng, Y.-B. Chen, Antibacterial activity and mechanism of silver nanoparticles on Escherichia coli, Applied microbiology and biotechnology, 85 (2010) 1115-1122. [89] J. Fabrega, S.N. Luoma, C.R. Tyler, T.S. Galloway, J.R. Lead, Silver nanoparticles: behaviour and effects in the aquatic environment, Environment international, 37 (2011) 517-531. [90] J. Yin, Y. Yang, Z. Hu, B. Deng, Attachment of silver nanoparticles (AgNPs) onto thin-film composite (TFC) membranes through covalent bonding to reduce membrane biofouling, Journal of membrane science, 441 (2013) 73-82. [91] J. Dolina, O. Dlask, T. Lederer, L. Dvořák, Mitigation of membrane biofouling through surface modification with different forms of nanosilver, Chemical Engineering Journal, 275 (2015) 125-133. [92] P. Gunawan, C. Guan, X. Song, Q. Zhang, S.S.J. Leong, C. Tang, Y. Chen, M.B. Chan-Park, M.W. Chang, K. Wang, Hollow fiber membrane decorated with Ag/MWNTs: toward effective water disinfection and biofouling control, Acs Nano, 5 (2011) 10033-10040. [93] K. Zodrow, L. Brunet, S. Mahendra, D. Li, A. Zhang, Q. Li, P.J. Alvarez, Polysulfone ultrafiltration membranes impregnated with silver nanoparticles show improved biofouling resistance and virus removal, Water research, 43 (2009) 715-723. [94] C. Sprick, S. Chede, V. Oyanedel-Craver, I.C. Escobar, Bio-inspired immobilization of casein-coated silver nanoparticles on cellulose acetate membranes for biofouling control, Journal of Environmental Chemical Engineering, 6 (2018) 2480-2491. [95] K. Mavani, M. Shah, Synthesis of silver nanoparticles by using sodium borohydride as a reducing agent, Int. J. Eng. Res. Technol, 2 (2013). [96] P. Mohanpuria, N.K. Rana, S.K. Yadav, Biosynthesis of nanoparticles: technological concepts and future applications, Journal of nanoparticle research, 10 (2008) 507-517. [97] V. Brião, C. Tavares, Pore blocking mechanism for the recovery of milk solids from dairy wastewater by ultrafiltration, Brazilian Journal of Chemical Engineering, 29 (2012) 393-407. [98] R.W. Field, D. Wu, J.A. Howell, B.B. Gupta, Critical flux concept for microfiltration fouling, Journal of membrane science, 100 (1995) 259-272. [99] F. Kok, I. Muhamad, C. Lee, F. Razali, N. Pae, S. Shaharuddin, Effects of pH and Temperature on the Growth and beta-Glucosidase Activity of Lactobacillus Rhamnosus NRRL 442 in Anaerobic Fermentation, International Review of Chemical Engineering, 4 (2012) 293-299. [100] E. Trouve, V. Urbain, J. Manem, Treatment of municipal wastewater by a membrane bioreactor: results of a semi-industrial pilot-scale study, Water Science and Technology, 30 (1994) 151-157. [101] W. Guo, H.-H. Ngo, Z. Wu, A.Y.-J. Hu, A. Listowski, Application of bioflocculant and nonwoven supporting media for better biological nutrient removal and fouling control in a submerged MBR, Environ. Res, 21 (2011) 53-58. [102] Y. Sun, Z. Qin, L. Zhao, Q. Chen, Q. Hou, H. Lin, L. Jiang, J. Liu, Z. Du, Membrane fouling mechanisms and permeate flux decline model in soy sauce microfiltration, Journal of Food Process Engineering, 41 (2018) e12599. [103] N.C. Nguyen, S.-S. Chen, H.T. Nguyen, S.S. Ray, H.H. Ngo, W. Guo, P.-H. Lin, Innovative sponge-based moving bed–osmotic membrane bioreactor hybrid system using a new class of draw solution for municipal wastewater treatment, Water research, 91 (2016) 305-313. [104] H.-G. Park, Y.-N. Kwon, Long-Term Stability of Low-Pressure Reverse Osmosis (RO) Membrane Operation—A Pilot Scale Study, Water, 10 (2018) 93. [105] C. Dreszer, H.-C. Flemming, A.D. Wexler, A. Zwijnenburg, J.C. Kruithof, J.S. Vrouwenvelder, Development and testing of a transparent membrane biofouling monitor, Desalination and Water Treatment, 52 (2014) 1807-1819. [106] A. Klimkiewicz, A.E. Cervera-Padrell, F. van den Berg, Modeling of the flux decline in a continuous ultrafiltration system with multiblock partial least squares, Industrial & Engineering Chemistry Research, 55 (2016) 10690-10698. [107] B. Mi, M. Elimelech, Gypsum scaling and cleaning in forward osmosis: measurements and mechanisms, Environmental science & technology, 44 (2010) 2022-2028. [108] J. Zhang, W.L.C. Loong, S. Chou, C. Tang, R. Wang, A.G. Fane, Membrane biofouling and scaling in forward osmosis membrane bioreactor, Journal of membrane science, 403 (2012) 8-14. [109] B. Stuart, Infrared spectroscopy: fundamentals and applications. JohnWiley & Sons, Ltd. ISBNs: 0-470-85427-8 (HB), in, 0-470-85428-6 (PB), 2004. [110] K. Calderón, B. Rodelas, N. Cabirol, J. González-López, A. Noyola, Analysis of microbial communities developed on the fouling layers of a membrane-coupled anaerobic bioreactor applied to wastewater treatment, Bioresource technology, 102 (2011) 4618-4627. [111] P. Le-Clech, B. Jefferson, S. Judd, Impact of aeration, solids concentration and membrane characteristics on the hydraulic performance of a membrane bioreactor, Journal of Membrane Science, 218 (2003) 117-129.
|