跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.110) 您好!臺灣時間:2025/09/29 02:40
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:Alieu Sowe
研究生(外文):Alieu Sowe
論文名稱:奈米銀生物反應器減輕膜污染之研究
論文名稱(外文):Application of Nanosilver Coated Membrane Bioreactor for Mitigating Membrane Biofouling
指導教授:陳孝行陳孝行引用關係
指導教授(外文):Shiao-Shing Chen
口試委員:徐宏德Annamalai Senthil Kumar陳孝行
口試委員(外文):Hung-Te HsuAnnamalai Senthil KumarShiao-Shing Chen
口試日期:2018-06-26
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:環境工程與管理研究所
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2018
畢業學年度:106
語文別:英文
論文頁數:105
中文關鍵詞:膜生物污損緩解/控制膜改性抗菌性銀納米粒子(AgNPs)微濾膜生物反應器(MF-MBR)
外文關鍵詞:Membrane biofouling mitigation/controlMembrane modificationAntibacterial propertiesSilver nanoparticles (AgNPs)Microfiltration membrane bioreactor (MF-MBR)
相關次數:
  • 被引用被引用:0
  • 點閱點閱:217
  • 評分評分:
  • 下載下載:15
  • 收藏至我的研究室書目清單書目收藏:0
在新型微濾膜生物反應器(MF-MBR)系統中應用銀納米粒子(AgNPs)來減輕膜生物污染,用於廢水處理,再利用,同時減少膜生物污損,實現高水質和低能耗。膜生物污損已成為限制膜技術的更廣泛傳播和應用的嚴重缺點。膜生物反應器是一種廢水處理技術,將活性污泥工藝與微濾和超濾相結合,由於穩定的操作性能,高產品水質,減少剩餘污泥產量,被廣泛認為是市政和工業水處理和再利用的有效工具。 ,減少物質風險,廢水再利用和低佔地面積。膜生物反應器技術提供了優於傳統廢水處理系統的競爭優勢,然而,MBR技術的障礙是膜污染問題的高速率因此導致生產率降低和更高的膜更換和操作成本。因此,本研究旨在確定主要污垢和主要污垢機制,如濃差極化,無機沉澱,孔隙阻塞,有機吸附,蛋糕形成和生物污染。該研究還旨在研究在MBR系統中用於廢水處理的膜應用過程中膜污染的不同現象。該研究使用銀納米顆粒(AgNPs,納米銀)來減輕膜生物污損潛力,其中使用微濾(MF)膜。通過在膜表面上使用AgNP的表面塗層,用納米銀修改MF膜組件,以通過新的化學還原方法將銀納米顆粒固定在膜上。研究了用於抗微生物性質,滲透性和銀浸出的任何改變的改性膜。膜生物反應器在良好條件下操作以確保適合細菌生長的環境。該體系的MLSS和MLVSS分別為14860 mg MLSS / L和11345 mg MLVSS / L,最適pH範圍為6.5~8。該體系的COD,PO43 - P和NH4 + -N去除率約為99.7。在兩個操作膜組件的組合中,每天收集的滲透物體積分別為%,97.8%和99.4%,每天收集的滲透物體積接近6L / d,M-AgNPs和M-平膜的平均水通量為5.33L / m2 h和5.15 L / m2 h。通過水通量變化測試,SEM和EDS分析,壓力變化測試以及ABT和VST分析進行結果分析以確定納米銀塗層膜對生物污垢的緩解,其中所有證明使用銀納米顆粒均為陽性。 ,在緩解膜生物污損方面具有很好的抗菌作用。結果表明,納米銀改性膜的滲透性略高於未改性膜。該研究的結果還證實,根據所進行的批次測試的ICP分析,銀修飾膜中的銀浸出最小且不顯著,這低於廢水和水中銀的最大污染物限制(MCL)的國際標準。治療應用由美國環境保護署(USEPA)和世界衛生組織(WHO)建立,濃度為0.1 mg / L,相容且可接受。實驗結果也成功地揭示了AgNPs修飾膜具有很好的抗菌性能,從而減輕了膜的生物污染。
The application of silver nanoparticles (AgNPs) for mitigating membrane biofouling in a novel microfiltration membrane bioreactor (MF-MBR) system was proposed for wastewater treatment, and reuse and to simultaneously reduce membrane biofouling, achieve high water quality, and less energy consumption. Membrane biofouling has become a serious drawback limiting the wider spread and application of the membrane technology. Membrane bioreactor is a wastewater treatment technology that combine the activated sludge process with micro- and ultrafiltration and is widely regarded as an effective tool for municipal and industrial water treatment and reuse due to stable operation performance, high product water quality, reduction in excess sludge production, reduction of risk of substances, effluent reuse, and low footprint. Membrane bioreactors technology offers a competitive advantage over conventional wastewater treatment systems however, the impediment of the MBR technology is the high rate of membrane fouling problems consequently resulting to reduction in productivity and higher membrane replacement and operating cost. Hence, this study aims to identify the major foulants and the principal fouling mechanisms such as concentration polarization, inorganic precipitation, pore blocking, organic adsorption, cake formation and biological fouling. The study is also aimed at investigating the different phenomena of membrane fouling during the membrane application in the MBR system for wastewater treatment. This study used silver nanoparticles (AgNPs, nanosilver) to mitigate membrane biofouling potentials in which a microfiltration (MF) membrane was used. The MF membrane modules were modified with nanosilver through the use of surface coating of the AgNPs on the surface of the membrane, to fix the silver nanoparticles on the membrane by a novel chemical reduction approach. The modified membranes for any alterations in antimicrobial properties, permeability, and silver leaching were examined. The membrane bioreactor was operated in good conditions to ensure a suitable environment for the bacterial growth. The MLSS and MLVSS of the system were 14860 mg MLSS/L and 11345 mg MLVSS/L respectively, with an optimum pH range of 6.5 to 8. The system had an approximate COD, PO43--P and NH4+-N removal percentage of 99.7%, 97.8% and 99.4% respectively and the volume of permeate collected per day approximates to 6 L/d in combination of the two operating membrane modules, the M-AgNPs and the M-plain membranes had an average water flux of 5.33 L/m2 h and 5.15 L/m2 h respectively. The results analysis to determine the mitigation of biofouling by the nanosilver coated membrane was performed with the water flux variation test, the SEM and EDS analysis, pressure variation test, and the ABT and VST analysis, in which all proofed positive for using the silver nanoparticles, having great antimicrobial effects in mitigating membrane biofouling. The results revealed that the nanosilver modified membrane showed slightly higher permeability than the unmodified membrane. The results from this study also confirmed that silver leaching from the silver modified membrane was minimal and insignificant according the ICP analysis from the batch tests conducted, which was lower than the international standard for the maximum contaminant limit (MCL) of silver in wastewater and water treatment applications, established by the United States Environmental Protection Agency (USEPA) and the World Health Organization (WHO) at 0.1 mg/L which was compatible and acceptable. The results from the experiment also successfully revealed that the modified membrane with AgNPs displayed great antimicrobial properties thus, mitigated membrane biofouling.
TABLE OF CONTENTS

ABSTRACT i
ACKNOWLEDGEMENT iii
TABLE OF CONTENTS iv
LIST OF FIGURES viii
LIST OF TABLES x

CHAPTER 1: INTRODUCTION 1
1.1 Research Background and Motivation. 1
1.2 Objectives and Scope of the Research 2
1.3 Brief Outline of the Thesis 4

CHAPTER 2: LITERATURE REVIEW 5
2.1 Municipal wastewater and its impacts on the environment 5
2.2 Wastewater characteristics and discharge standards 7
2.3 Conventional biological treatment process versus membrane bioreactors (MBR) 9
2.3.1 Conventional biological treatment process (CASP) 9
2.3.2 Membrane bioreactor (MBR) 11
2.3.3 The merits of MBR over conventional biological process (CBP) 14
2.4 Introduction of membrane 15
2.4.1 Membrane types 15
2.4.2 Microfiltration membrane (MF) 16
2.5 Membrane fouling and mitigation mechanisms 18
2.5.1 Types of membrane fouling 20
2.5.1.1 Organic fouling 20
2.5.1.2 Inorganic fouling 22
2.5.1.3 Biofouling 24
2.5.1.3.1 Effects of biofouling on performance of MF membrane units 26
2.5.1.3.2 Identification of biofouling 28
2.5.1.3.3 Monitoring of membrane biofouling. 28
2.5.2 Classification of membrane fouling. 30
2.5.2.1 Removable and irremovable fouling (Reversible fouling) 30
2.5.2.2 Irreversible membrane fouling 32
2.5.3 Classification of membrane foulants. 32
2.5.4 Mechanisms of membrane fouling. 33
2.5.5 Factors affecting membrane fouling 35
2.5.5.1 Membrane characteristics 35
2.5.5.1.1 Membrane material 35
2.5.5.1.2 Water affinity 36
2.5 .5.1.3 Membrane pore size 36
2.5.5.2 Operating conditions 37
2.5.5.2.1 Aeration rate 37
2.5.5.2.2 Solids Retention Time (SRT) 37
2.5.5.2.3 Food-Microorganisms (F/M) Ratio. 38
2.5.5.2.4 Organic Loading Rate (OLR). 38
2.5.5.3 Feed and biomass characteristics 39
2.5.5.3.1. Mixed Liquor Suspended Solids (MLSS) 39
2.5.5.3.2. Extracellular Polymeric Substances (EPS) 39
2.5.5.3.3. Alkalinity and pH. 40
2.5.6 Membrane biofouling control/mitigation 43
2.5.6.1. Feedback control 43
2.5.6.2. Addition of flux enhancers 43
2.5.6.3 Addition of nanomaterials (e.g. silver nanoparticles) 44
2.5.6.4 Quorum quenching (inhibition of quorum sensing) 45
2.6 Silver nanoparticles (nanosilver) 46
2.6.1. Properties and characteristics behavior of AgNPs 46
2.6.2. Potentials of silver nanoparticles as an antimicrobial/antibacterial foulant 47
2.6.3. Mechanisms of silver nanoparticles action in bacteria and potential for bacterial resistance. 47
2.6.4. Applications of silver nanoparticles (AgNPs) 49
2.6.5 Environmental impacts of using silver nanoparticles (negative effects of AgNPs) 50

CHAPTER 3: MATERIALS AND METHODS 53
3.1 Experimental design 53
3.2 Materials and experimental equipment 55
3.2.1 Membrane material 55
3.2.2 Experiment equipment/apparatus 56
3.3 Synthesis and preparation of silver nanoparticles (AgNPs) 57
3.3.1 Synthesis of silver nanoparticles (nanosilver). 57
3.3.2 Detection and analysis of silver nanoparticles 60
3.4 Preparation of the microfiltration (MF-membrane) modules. 61
3.4.1 Preparation of the membrane material and membrane module. 61
3.4.2 Attachment/fixing and analysis of the silver nanoparticles onto the MF- membrane 62
3.4.3 Silver nanoparticles concentration analysis on the membrane surface 64
3.5 Measurement and analytical methods 65
3.5.1 Water flux and pressure variation analysis 65
3.5.2 Membrane fouling analysis. 66
3.5.3 Phosphate analysis 67
3.5.4 Nitrogen analysis 67
3.5.5 Silver nanoparticles (AgNPs) analysis (Stability analysis). 67
3.6 Activated sludge source and feed solution preparation for the MF-MBR system. 68
3.6.1 Activated sludge source 68
3.6.2 Feed solution preparation for the MF-MBR system. 68
3.6.3 Preparation of chemicals and reagents 69

CHAPTER 4: RESULTS AND DISCUSSION 70
4.1 Bioreactor treatment results 70
4.1.1 pH and temperature variation in the bioreactor 70
4.1.2 COD variation and removal efficiency 71
4.1.3 MLSS and MLVSS variation in the bioreactor 72
4.1.4 Nutrients variation and removal efficiency in the system 74
4.2 Silver nanoparticles characteristics 75
4.2.1 Transmission electron microscopy (TEM) analysis of the AgNPs 75
4.2.2 UV-vis analysis of the silver nanoparticles (AgNPs) 75
4.3 Membrane properties and characterization 76
4.4 Stability of AgNPs containing membrane and silver leaching analysis 78
4.4.1 Stability of the silver containing membrane (M-AgNPs) 78
4.4.2 Silver leaching analysis of the silver coated membrane (M-AgNPs) 79
4.5 Membrane fouling (biofouling) analysis 80
4.5.1 Membrane performance for water filtration (water flux variation) 80
4.5.2 Pressure variation test analysis (working pressure test) 82
4.5.3 Specific flux and specific flux decline analysis by linear model. 84
4.5.4 SEM and EDS biofouling analysis of the membranes after the experiment 86
4.5.5 Fourier-transform infrared spectroscopy (FTIR) analysis 90
4.5.6 Attached biomass test (ABT) and volatile solid test (VST) analysis 91

CHAPTER 5: CONCLUSION AND RECOMMENDATIONS 96
5.1 Conclusion 96
5.2 Recommendations 97
REFERENCES 98
APPENDIX 1: NOMENCLATURE AND ABBREVIATION 105
REFERENCES
[1] I.-S. Chang, P. Le Clech, B. Jefferson, S. Judd, Membrane fouling in membrane bioreactors for wastewater treatment, Journal of environmental engineering, 128 (2002) 1018-1029.
[2] S. Churchouse, D. Wildgoose, Membrane bioreactors hit the big time–from lad scale to full-scale application; MBR2–Proc. 2nd Intl, Mtg. membrane bioreactor for wastewater treatment, Cranfield University, UK, pp14, (1999).
[3] S. Judd, The MBR book: Principles and applications of membrane bioreactors in water and wastewater treatment, S. Judd and C. Judd, eds., Elselvier, in, Oxford, UK, 2006.
[4] J.A. Camargo, Á. Alonso, Ecological and toxicological effects of inorganic nitrogen pollution in aquatic ecosystems: a global assessment, Environment international, 32 (2006) 831-849.
[5] U.D.O. Health, H. Services, Agency for toxic substances and disease registry, Toxicological Profile for Polycyclic Aromatic Hydrocarbons (PAHs),(update) PB/95/264370. Atlanta: US Department of Health and Human Services, (1995).
[6] R. Cisneros, A. Bytnerowicz, D. Schweizer, S. Zhong, S. Traina, D.H. Bennett, Ozone, nitric acid, and ammonia air pollution is unhealthy for people and ecosystems in southern Sierra Nevada, California, Environmental Pollution, 158 (2010) 3261-3271.
[7] E.R. Coats, D.L. Watkins, D. Kranenburg, A comparative environmental life-cycle analysis for removing phosphorus from wastewater: biological versus physical/chemical processes, Water Environment Research, 83 (2011) 750-760.
[8] M. Henze, P. Harremoes, J. la Cour Jansen, E. Arvin, Wastewater treatment: biological and chemical processes, Springer Science & Business Media, 2001.
[9] Metcalf, Eddy, F.L. Burton, H.D. Stensel, G. Tchobanoglous, Wastewater engineering: treatment and reuse, McGraw Hill, 2003.
[10] I. Monje-Ramirez, M.O. De Velasquez, Removal and transformation of recalcitrant organic matter from stabilized saline landfill leachates by coagulation–ozonation coupling processes, Water research, 38 (2004) 2359-2367.
[11] G. Daigger, A practitioner’s perspective on the uses and future developments for wastewater treatment modelling, Water Science and Technology, 63 (2011) 516-526.
[12] H.-G. Kim, H.-N. Jang, H.-M. Kim, D.-S. Lee, T.-H. Chung, Effects of the sludge reduction system in MBR on the membrane permeability, Desalination, 250 (2010) 601-604.
[13] Z. Wang, Z. Wu, J. Hua, X. Wang, X. Du, H. Hua, Application of flat-sheet membrane to thickening and digestion of waste activated sludge (WAS), Journal of hazardous materials, 154 (2008) 535-542.
[14] C. Fux, M. Boehler, P. Huber, I. Brunner, H. Siegrist, Biological treatment of ammonium-rich wastewater by partial nitritation and subsequent anaerobic ammonium oxidation (anammox) in a pilot plant, Journal of biotechnology, 99 (2002) 295-306.
[15] D. Wild, A. Kisliakova, H. Siegrist, Prediction of recycle phosphorus loads from anaerobic digestion, Water Research, 31 (1997) 2300-2308.
[16] N.C. Nguyen, S.-S. Chen, H.-Y. Yang, N.T. Hau, Application of forward osmosis on dewatering of high nutrient sludge, Bioresource technology, 132 (2013) 224-229.
[17] P. Le-Clech, V. Chen, T.A. Fane, Fouling in membrane bioreactors used in wastewater treatment, Journal of membrane science, 284 (2006) 17-53.
[18] A. Drews, Membrane fouling in membrane bioreactors—characterisation, contradictions, cause and cures, Journal of membrane science, 363 (2010) 1-28.
[19] F. Meng, S.-R. Chae, A. Drews, M. Kraume, H.-S. Shin, F. Yang, Recent advances in membrane bioreactors (MBRs): membrane fouling and membrane material, Water research, 43 (2009) 1489-1512.
[20] N.S.A. Mutamim, Z.Z. Noor, M.A.A. Hassan, A. Yuniarto, G. Olsson, Membrane bioreactor: Applications and limitations in treating high strength industrial wastewater, Chemical engineering journal, 225 (2013) 109-119.
[21] Z. Wang, Z. Wu, S. Mai, C. Yang, X. Wang, Y. An, Z. Zhou, Research and applications of membrane bioreactors in China: progress and prospect, Separation and Purification Technology, 62 (2008) 249-263.
[22] J. Yang, Membrane Bioreactor for Wastewater Treatment-eBooks and textbooks from bookboon. com, in, bookboon. com, 2013.
[23] S. Judd, The status of membrane bioreactor technology, Trends in biotechnology, 26 (2008) 109-116.
[24] J. Srinivasan, MBR still growing in EU wastewater treatment market, Water and Waste International, 22 (2007) 43-44.
[25] C. Visvanathan, R.B. Aim, K. Parameshwaran, Membrane separation bioreactors for wastewater treatment, Critical reviews in environmental science and technology, 30 (2000) 1-48.
[26] T. Melin, B. Jefferson, D. Bixio, C. Thoeye, W. De Wilde, J. De Koning, J. Van der Graaf, T. Wintgens, Membrane bioreactor technology for wastewater treatment and reuse, Desalination, 187 (2006) 271-282.
[27] J. Manem, R. Sanderson, Membrane Bioreactors in Water Treatment: Membrane Processes, AWWARF, and McGraw Hill: New York, (1996).
[28] W. Guo, H.-H. Ngo, J. Li, A mini-review on membrane fouling, Bioresource technology, 122 (2012) 27-34.
[29] N.P. Dan, Biological treatment of high salinity wastewater using yeast and bacterial systems, Asian Institute of Technology, School of Environment, Resources and Development, Thailand, (2001).
[30] U. Metzger, P. Le-Clech, R.M. Stuetz, F.H. Frimmel, V. Chen, Characterisation of polymeric fouling in membrane bioreactors and the effect of different filtration modes, Journal of Membrane Science, 301 (2007) 180-189.
[31] K. Kimura, N. Yamato, H. Yamamura, Y. Watanabe, Membrane fouling in pilot-scale membrane bioreactors (MBRs) treating municipal wastewater, Environmental science & technology, 39 (2005) 6293-6299.
[32] F. Diagne, R. Malaisamy, V. Boddie, R.D. Holbrook, B. Eribo, K.L. Jones, Polyelectrolyte and silver nanoparticle modification of microfiltration membranes to mitigate organic and bacterial fouling, Environmental science & technology, 46 (2012) 4025-4033.
[33] S. Ognier, C. Wisniewski, A. Grasmick, Characterisation and modelling of fouling in membrane bioreactors, Desalination, 146 (2002) 141-147.
[34] S. Lyko, D. Al-Halbouni, T. Wintgens, A. Janot, J. Hollender, W. Dott, T. Melin, Polymeric compounds in activated sludge supernatant—characterisation and retention mechanisms at a full-scale municipal membrane bioreactor, Water Research, 41 (2007) 3894-3902.
[35] H. You, C. Tseng, M. Peng, S. Chang, Y. Chen, S. Peng, A novel application of an anaerobic membrane process in wastewater treatment, Water science and technology, 51 (2005) 45-50.
[36] A. Al-Amoudi, R.W. Lovitt, Fouling strategies and the cleaning system of NF membranes and factors affecting cleaning efficiency, Journal of Membrane Science, 303 (2007) 4-28.
[37] S.S. Ghayeni, S. Madaeni, A. Fane, R. Schneider, Aspects of microfiltration and reverse osmosis in municipal wastewater reuse, Desalination, 106 (1996) 25-29.
[38] G.-P. Sheng, H.-Q. Yu, X.-Y. Li, Extracellular polymeric substances (EPS) of microbial aggregates in biological wastewater treatment systems: a review, Biotechnology advances, 28 (2010) 882-894.
[39] J. Li, F. Yang, Y. Liu, H. Song, D. Li, F. Cheng, Microbial community and biomass characteristics associated severe membrane fouling during start-up of a hybrid anoxic–oxic membrane bioreactor, Bioresource technology, 103 (2012) 43-47.
[40] K. Zhang, H. Choi, D.D. Dionysiou, G.A. Sorial, D.B. Oerther, Identifying pioneer bacterial species responsible for biofouling membrane bioreactors, Environmental microbiology, 8 (2006) 433-440.
[41] H. Ridgway, H. Flemming, Microbial adhesion and biofouling of reverse osmosis membranes, Reverse Osmosis Technology: Applications for High Purity Water Production, ed. by BS Pakekh and M. Dekker, (1988) 429-481.
[42] H. Ridgway, A. Kelly, C. Justice, B. Olson, Microbial fouling of reverse-osmosis membranes used in advanced wastewater treatment technology: chemical, bacteriological, and ultrastructural analyses, Applied and environmental microbiology, 45 (1983) 1066-1084.
[43] Z. Amjad, Reverse osmosis: membrane technology, water chemistry & industrial applications, Chapman & Hall, 1993.
[44] J. Lee, W.-Y. Ahn, C.-H. Lee, Comparison of the filtration characteristics between attached and suspended growth microorganisms in submerged membrane bioreactor, Water Research, 35 (2001) 2435-2445.
[45] D. Hughes, U.K. Tirlapur, R. Field, Z. Cui, In situ 3D characterization of membrane fouling by yeast suspensions using two-photon femtosecond near infrared non-linear optical imaging, Journal of Membrane Science, 280 (2006) 124-133.
[46] Q. Li, M. Elimelech, Organic fouling and chemical cleaning of nanofiltration membranes: measurements and mechanisms, Environmental science & technology, 38 (2004) 4683-4693.
[47] W. Koros, Y. Ma, T. Shimidzu, Terminology for membranes and membrane processes (IUPAC Recommendations 1996), Pure and Applied Chemistry, 68 (1996) 1479-1489.
[48] A. Vargas, I. Moreno-Andrade, G. Buitrón, Controlled backwashing in a membrane sequencing batch reactor used for toxic wastewater treatment, Journal of membrane science, 320 (2008) 185-190.
[49] X. Tu, S. Zhang, L. Xu, M. Zhang, J. Zhu, Performance and fouling characteristics in a membrane sequence batch reactor (MSBR) system coupled with aerobic granular sludge, Desalination, 261 (2010) 191-196.
[50] F. Meng, H. Zhang, F. Yang, L. Liu, Characterization of cake layer in submerged membrane bioreactor, Environmental science & technology, 41 (2007) 4065-4070.
[51] O.T. Iorhemen, R.A. Hamza, J.H. Tay, Membrane bioreactor (MBR) technology for wastewater treatment and reclamation: membrane fouling, Membranes, 6 (2016) 33.
[52] S. Ognier, C. Wisniewski, A. Grasmick, Membrane bioreactor fouling in sub-critical filtration conditions: a local critical flux concept, Journal of Membrane Science, 229 (2004) 171-177.
[53] B. Hofs, J. Ogier, D. Vries, E.F. Beerendonk, E.R. Cornelissen, Comparison of ceramic and polymeric membrane permeability and fouling using surface water, Separation and Purification Technology, 79 (2011) 365-374.
[54] L. Jin, S.L. Ong, H.Y. Ng, Comparison of fouling characteristics in different pore-sized submerged ceramic membrane bioreactors, Water research, 44 (2010) 5907-5918.
[55] P. Le-Clech, V. Chen, T.A.G. Fane, Fouling in membrane bioreactors used in wastewater treatment, Journal of Membrane Science, 284 (2006) 17-53.
[56] S. Shirazi, C.-J. Lin, D. Chen, Inorganic fouling of pressure-driven membrane processes—a critical review, Desalination, 250 (2010) 236-248.
[57] R. Van den Broeck, J. Van Dierdonck, P. Nijskens, C. Dotremont, P. Krzeminski, J. Van der Graaf, J. Van Lier, J. Van Impe, I. Smets, The influence of solids retention time on activated sludge bioflocculation and membrane fouling in a membrane bioreactor (MBR), Journal of membrane science, 401 (2012) 48-55.
[58] J.-P. Nywening, H. Zhou, Influence of filtration conditions on membrane fouling and scouring aeration effectiveness in submerged membrane bioreactors to treat municipal wastewater, Water research, 43 (2009) 3548-3558.
[59] R.S. Trussell, R.P. Merlo, S.W. Hermanowicz, D. Jenkins, The effect of organic loading on process performance and membrane fouling in a submerged membrane bioreactor treating municipal wastewater, Water research, 40 (2006) 2675-2683.
[60] J. Zhang, J. Zhou, Y. Liu, A.G. Fane, A comparison of membrane fouling under constant and variable organic loadings in submerge membrane bioreactors, Water research, 44 (2010) 5407-5413.
[61] M.A. Johir, S. Vigneswaran, A. Sathasivan, J. Kandasamy, C. Chang, Effect of organic loading rate on organic matter and foulant characteristics in membrane bio-reactor, Bioresource technology, 113 (2012) 154-160.
[62] A. Bottino, G. Capannelli, A. Comite, R. Mangano, Critical flux in submerged membrane bioreactors for municipal wastewater treatment, Desalination, 245 (2009) 748-753.
[63] J. Wu, X. Huang, Effect of mixed liquor properties on fouling propensity in membrane bioreactors, Journal of Membrane Science, 342 (2009) 88-96.
[64] N. Yigit, I. Harman, G. Civelekoglu, H. Koseoglu, N. Cicek, M. Kitis, Membrane fouling in a pilot-scale submerged membrane bioreactor operated under various conditions, Desalination, 231 (2008) 124-132.
[65] K.-K. Ng, C.-F. Lin, S.K. Lateef, S.C. Panchangam, P.-K.A. Hong, P.-Y. Yang, The effect of soluble microbial products on membrane fouling in a fixed carrier biological system, Separation and purification technology, 72 (2010) 98-104.
[66] H. Lin, M. Zhang, F. Wang, F. Meng, B.-Q. Liao, H. Hong, J. Chen, W. Gao, A critical review of extracellular polymeric substances (EPSs) in membrane bioreactors: characteristics, roles in membrane fouling and control strategies, Journal of Membrane Science, 460 (2014) 110-125.
[67] J.R. Pan, Y. Su, C. Huang, Characteristics of soluble microbial products in membrane bioreactor and its effect on membrane fouling, Desalination, 250 (2010) 778-780.
[68] N. Jang, H. Shon, X. Ren, S. Vigneswaran, I.S. Kim, Characteristics of bio-foulants in the membrane bioreactor, Desalination, (2006).
[69] Y. Zhang, M. Zhang, F. Wang, H. Hong, A. Wang, J. Wang, X. Weng, H. Lin, Membrane fouling in a submerged membrane bioreactor: effect of pH and its implications, Bioresource technology, 152 (2014) 7-14.
[70] F. Meng, B. Liao, S. Liang, F. Yang, H. Zhang, L. Song, Morphological visualization, componential characterization and microbiological identification of membrane fouling in membrane bioreactors (MBRs), Journal of membrane science, 361 (2010) 1-14.
[71] H.-Y. Yu, L.-Q. Liu, Z.-Q. Tang, M.-G. Yan, J.-S. Gu, X.-W. Wei, Mitigated membrane fouling in an SMBR by surface modification, Journal of Membrane Science, 310 (2008) 409-417.
[72] H. Li, A. Fane, J. Zhang, A. Geng, Characteristics of membrane fouling by biological materials and optimal operating strategies for membrane bioreactors, IMSTEC03, Sydney, (2003).
[73] S.-H. Yoon, J. Collins, D. Musale, S. Sundararajan, S.-P. Tsai, G. Hallsby, J. Kong, J. Koppes, P. Cachia, Effects of flux enhancing polymer on the characteristics of sludge in membrane bioreactor process, Water Science and Technology, 51 (2005) 151-157.
[74] W. Guo, S. Vigneswaran, H. Ngo, T. Van Nguyen, R.B. Aim, Influence of bioreaction on a long-term operation of a submerged membrane adsorption hybrid system, Desalination, 191 (2006) 92-99.
[75] S.-R. Chae, S. Wang, Z.D. Hendren, M.R. Wiesner, Y. Watanabe, C.K. Gunsch, Effects of fullerene nanoparticles on Escherichia coli K12 respiratory activity in aqueous suspension and potential use for membrane biofouling control, Journal of Membrane Science, 329 (2009) 68-74.
[76] J. Fabrega, J.C. Renshaw, J.R. Lead, Interactions of silver nanoparticles with Pseudomonas putida biofilms, Environmental science & technology, 43 (2009) 9004-9009.
[77] D.G. Davies, M.R. Parsek, J.P. Pearson, B.H. Iglewski, J.W. Costerton, E.P. Greenberg, The involvement of cell-to-cell signals in the development of a bacterial biofilm, Science, 280 (1998) 295-298.
[78] K.-M. Yeon, W.-S. Cheong, H.-S. Oh, W.-N. Lee, B.-K. Hwang, C.-H. Lee, H. Beyenal, Z. Lewandowski, Quorum sensing: a new biofouling control paradigm in a membrane bioreactor for advanced wastewater treatment, Environmental science & technology, 43 (2008) 380-385.
[79] S.-R. Kim, H.-S. Oh, S.-J. Jo, K.-M. Yeon, C.-H. Lee, D.-J. Lim, C.-H. Lee, J.-K. Lee, Biofouling control with bead-entrapped quorum quenching bacteria in membrane bioreactors: physical and biological effects, Environmental science & technology, 47 (2013) 836-842.
[80] X.-F. Zhang, Z.-G. Liu, W. Shen, S. Gurunathan, Silver nanoparticles: synthesis, characterization, properties, applications, and therapeutic approaches, International journal of molecular sciences, 17 (2016) 1534.
[81] V. Colvin, M. Schlamp, A.P. Alivisatos, Light-emitting diodes made from cadmium selenide nanocrystals and a semiconducting polymer, Nature, 370 (1994) 354.
[82] S. Iravani, H. Korbekandi, S.V. Mirmohammadi, B. Zolfaghari, Synthesis of silver nanoparticles: chemical, physical and biological methods, Research in pharmaceutical sciences, 9 (2014) 385.
[83] A.R. Gliga, S. Skoglund, I.O. Wallinder, B. Fadeel, H.L. Karlsson, Size-dependent cytotoxicity of silver nanoparticles in human lung cells: the role of cellular uptake, agglomeration and Ag release, Particle and fibre toxicology, 11 (2014) 11.
[84] C.A. Dos Santos, M.M. Seckler, A.P. Ingle, I. Gupta, S. Galdiero, M. Galdiero, A. Gade, M. Rai, Silver nanoparticles: therapeutical uses, toxicity, and safety issues, Journal of pharmaceutical sciences, 103 (2014) 1931-1944.
[85] V. Lazar, Quorum sensing in biofilms–how to destroy the bacterial citadels or their cohesion/power?, Anaerobe, 17 (2011) 280-285.
[86] S. Periasamy, H.-S. Joo, A.C. Duong, T.-H.L. Bach, V.Y. Tan, S.S. Chatterjee, G.Y. Cheung, M. Otto, How Staphylococcus aureus biofilms develop their characteristic structure, Proceedings of the National Academy of Sciences, 109 (2012) 1281-1286.
[87] B. Reidy, A. Haase, A. Luch, K.A. Dawson, I. Lynch, Mechanisms of silver nanoparticle release, transformation and toxicity: a critical review of current knowledge and recommendations for future studies and applications, Materials, 6 (2013) 2295-2350.
[88] W.-R. Li, X.-B. Xie, Q.-S. Shi, H.-Y. Zeng, O.-Y. You-Sheng, Y.-B. Chen, Antibacterial activity and mechanism of silver nanoparticles on Escherichia coli, Applied microbiology and biotechnology, 85 (2010) 1115-1122.
[89] J. Fabrega, S.N. Luoma, C.R. Tyler, T.S. Galloway, J.R. Lead, Silver nanoparticles: behaviour and effects in the aquatic environment, Environment international, 37 (2011) 517-531.
[90] J. Yin, Y. Yang, Z. Hu, B. Deng, Attachment of silver nanoparticles (AgNPs) onto thin-film composite (TFC) membranes through covalent bonding to reduce membrane biofouling, Journal of membrane science, 441 (2013) 73-82.
[91] J. Dolina, O. Dlask, T. Lederer, L. Dvořák, Mitigation of membrane biofouling through surface modification with different forms of nanosilver, Chemical Engineering Journal, 275 (2015) 125-133.
[92] P. Gunawan, C. Guan, X. Song, Q. Zhang, S.S.J. Leong, C. Tang, Y. Chen, M.B. Chan-Park, M.W. Chang, K. Wang, Hollow fiber membrane decorated with Ag/MWNTs: toward effective water disinfection and biofouling control, Acs Nano, 5 (2011) 10033-10040.
[93] K. Zodrow, L. Brunet, S. Mahendra, D. Li, A. Zhang, Q. Li, P.J. Alvarez, Polysulfone ultrafiltration membranes impregnated with silver nanoparticles show improved biofouling resistance and virus removal, Water research, 43 (2009) 715-723.
[94] C. Sprick, S. Chede, V. Oyanedel-Craver, I.C. Escobar, Bio-inspired immobilization of casein-coated silver nanoparticles on cellulose acetate membranes for biofouling control, Journal of Environmental Chemical Engineering, 6 (2018) 2480-2491.
[95] K. Mavani, M. Shah, Synthesis of silver nanoparticles by using sodium borohydride as a reducing agent, Int. J. Eng. Res. Technol, 2 (2013).
[96] P. Mohanpuria, N.K. Rana, S.K. Yadav, Biosynthesis of nanoparticles: technological concepts and future applications, Journal of nanoparticle research, 10 (2008) 507-517.
[97] V. Brião, C. Tavares, Pore blocking mechanism for the recovery of milk solids from dairy wastewater by ultrafiltration, Brazilian Journal of Chemical Engineering, 29 (2012) 393-407.
[98] R.W. Field, D. Wu, J.A. Howell, B.B. Gupta, Critical flux concept for microfiltration fouling, Journal of membrane science, 100 (1995) 259-272.
[99] F. Kok, I. Muhamad, C. Lee, F. Razali, N. Pae, S. Shaharuddin, Effects of pH and Temperature on the Growth and beta-Glucosidase Activity of Lactobacillus Rhamnosus NRRL 442 in Anaerobic Fermentation, International Review of Chemical Engineering, 4 (2012) 293-299.
[100] E. Trouve, V. Urbain, J. Manem, Treatment of municipal wastewater by a membrane bioreactor: results of a semi-industrial pilot-scale study, Water Science and Technology, 30 (1994) 151-157.
[101] W. Guo, H.-H. Ngo, Z. Wu, A.Y.-J. Hu, A. Listowski, Application of bioflocculant and nonwoven supporting media for better biological nutrient removal and fouling control in a submerged MBR, Environ. Res, 21 (2011) 53-58.
[102] Y. Sun, Z. Qin, L. Zhao, Q. Chen, Q. Hou, H. Lin, L. Jiang, J. Liu, Z. Du, Membrane fouling mechanisms and permeate flux decline model in soy sauce microfiltration, Journal of Food Process Engineering, 41 (2018) e12599.
[103] N.C. Nguyen, S.-S. Chen, H.T. Nguyen, S.S. Ray, H.H. Ngo, W. Guo, P.-H. Lin, Innovative sponge-based moving bed–osmotic membrane bioreactor hybrid system using a new class of draw solution for municipal wastewater treatment, Water research, 91 (2016) 305-313.
[104] H.-G. Park, Y.-N. Kwon, Long-Term Stability of Low-Pressure Reverse Osmosis (RO) Membrane Operation—A Pilot Scale Study, Water, 10 (2018) 93.
[105] C. Dreszer, H.-C. Flemming, A.D. Wexler, A. Zwijnenburg, J.C. Kruithof, J.S. Vrouwenvelder, Development and testing of a transparent membrane biofouling monitor, Desalination and Water Treatment, 52 (2014) 1807-1819.
[106] A. Klimkiewicz, A.E. Cervera-Padrell, F. van den Berg, Modeling of the flux decline in a continuous ultrafiltration system with multiblock partial least squares, Industrial & Engineering Chemistry Research, 55 (2016) 10690-10698.
[107] B. Mi, M. Elimelech, Gypsum scaling and cleaning in forward osmosis: measurements and mechanisms, Environmental science & technology, 44 (2010) 2022-2028.
[108] J. Zhang, W.L.C. Loong, S. Chou, C. Tang, R. Wang, A.G. Fane, Membrane biofouling and scaling in forward osmosis membrane bioreactor, Journal of membrane science, 403 (2012) 8-14.
[109] B. Stuart, Infrared spectroscopy: fundamentals and applications. JohnWiley & Sons, Ltd. ISBNs: 0-470-85427-8 (HB), in, 0-470-85428-6 (PB), 2004.
[110] K. Calderón, B. Rodelas, N. Cabirol, J. González-López, A. Noyola, Analysis of microbial communities developed on the fouling layers of a membrane-coupled anaerobic bioreactor applied to wastewater treatment, Bioresource technology, 102 (2011) 4618-4627.
[111] P. Le-Clech, B. Jefferson, S. Judd, Impact of aeration, solids concentration and membrane characteristics on the hydraulic performance of a membrane bioreactor, Journal of Membrane Science, 218 (2003) 117-129.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top