跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.138) 您好!臺灣時間:2025/12/07 17:54
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:張晉榤
研究生(外文):JHANG,JIN-JIE
論文名稱:嵌入式全數位溫度感測器之低供應電壓敏感度電路設計
論文名稱(外文):Low Power Supply Sensitivity All Digital Temperature Sensor IC Design For Embedded System
指導教授:楊博惠
指導教授(外文):YANG,PO-HUI
口試委員:王義明黃崇勛
口試委員(外文):WANG,YI-MINGHUANG,CHUNG-HSUN
口試日期:2018-07-05
學位類別:碩士
校院名稱:國立雲林科技大學
系所名稱:電子工程系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2018
畢業學年度:106
語文別:中文
論文頁數:72
中文關鍵詞:電壓變動補償電壓敏感度環型振盪器溫度感測器
外文關鍵詞:Voltage variation compensationpower supply sensitivityring oscillatortemperature sensor
相關次數:
  • 被引用被引用:0
  • 點閱點閱:272
  • 評分評分:
  • 下載下載:16
  • 收藏至我的研究室書目清單書目收藏:1
近年來積體電路製程的進步,電晶體不斷地縮小,使單位面積電晶體密度
增加,且操作速度不斷地提升,使得系統晶片在操作時的功率密度越來越高,
衍生出晶片工作溫度上升等問題。一般而言,積體電路晶片在高溫的環境下容
易導致誤動作或者燒毀等後果。解決的方法除了有效的散熱之外,越來越多嵌
入式溫度感測電路在系統晶片內,即時感測溫度以及監控溫度,配合過熱保護
電路的操作達成晶片正常工作的目的。因此本論文著眼於晶片溫度感測問題,
研究嵌入式感測電路。嵌入式溫度感測器從文獻中分析,可依電路型式分成類
比式與數位式。而類比式溫度感測器,雖然它有很好的溫度感測響應及好的解
析度,但類比電路在製程移植不易,且類比溫度感測電路要整合到數位系統也
會有些困難。因此,本論文也朝數位系統應用上更直接的全數位式溫度感測器
進行研究。數位式溫度感測器的文獻,可分成延遲式與環型振盪式溫度感測
器。而從文獻研究得知,以環型振盪器當溫度感測器的元件,會比較簡單且面
積小,適合應用於數位嵌入式晶片設計。但環型振盪式溫度感測器非常容易受
到供應電壓變動影響,使溫度感測的誤差增大。
就環型振盪式溫度感測器易受供應電壓影響的問題,本論文提出一具有供
應電壓變動負迴授補償之全數位差動延遲細胞元電路,來即時補償電壓微幅變
化時振盪,讓提出的環型振盪式溫度感測器,只有當溫度改變時,輸出振盪頻
率才會有反應。本論文提出的延遲細胞元接成環型振盪器時,溫度可由量化的
振盪頻率感測溫度的變化。本文電路於 0.18μm CMOS 之製程進行模擬,量測
溫度範圍為 0◦C ∼ 100◦C,溫度解析度為 0.148◦C,以供應電壓 1.8V±10%之電
壓變動敏感度最低可達 0.046MHz/mV ,相較於傳統差動式環型振盪器,電壓
敏感度改善程度可達 93%。
In recent years, advances in integrated circuit manufacturing processes have led to the continuous shrinkage of transistors, which has increased the density of MOS transistor per unit area, and the operating speed has continuously increased. As a result, the power density of the system chip has become higher and higher, and the operating temperature of the chip has increased. In general, an integrated circuit chip easily causes malfunction or crash in a high-temperature environment. In addition to effective heat dissipation, more and more embedded temperature sensing circuits are used in the system chip to sense the temperature and monitor the temperature in real time, and the overheat protection circuit is used to achieve the normal operation of the chip. Therefore, this thesis focuses on the issue of chip temperature sensing and studies the embedded sensing circuit. Embedded temperature sensors are analyzed from the literature the imbedded temperature sensors classified as analog and digital types depending on the circuit style. The analog temperature sensor, although it has a good temperature sensing response and excellent resolution, the analog circuit is not easy to migrate in a different process, and the analog temperature sensing circuit integrated into the digital system will also have some difficulties. Therefore, this thesis also studies the simpler all-digital temperature sensor applied to the digital system. The literature on digital temperature sensors can be divided into delay type and ring type temperature sensors. From the literature study, it is known that ring oscillators are simple and small in the area when used as temperature sensor components, and are suitable for digital embedded system chip designs. However, ring-oscillating temperature sensors are very susceptible to fluctuations in the supply voltage and increase the error in temperature sensing.
The ring-oscillating temperature sensor is susceptible to the supply voltage. This thesis proposes an all-digit differential delay cell circuit with supply voltage variation and negative feedback compensation to instantly compensate for the slight change in voltage. The proposed ring-oscillating temperature sensor only reacts to the output oscillation frequency when the temperature changes. In this thesis, when the delayed cell element connected to a ring oscillator, the temperature can sense temperature changes by quantifying the oscillation frequency. This circuit simulated in a 0.18μm CMOS process. The temperature range is 0°C~100°C, and the temperature resolution is 0.1°C. The supply voltage is 1.8V±10%, and the voltage variation sensitivity is as low as 0.016MHz. /mV, compared to the traditional differential ring oscillator, the voltage sensitivity can be improved by up to 90%.
目錄
摘要 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i
Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii
誌謝 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv
目錄 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v
表目錄 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii
圖目錄 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii
一、緒論 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 研究動機與目的 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 研究方法與流程圖 . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 論文架構 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
二、嵌入式溫度感測器 . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1 絕對溫度正比式溫度感測器 . . . . . . . . . . . . . . . . . . . . . 5
2.2 延遲線式溫度感測器 . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3 環型振盪式溫度感測器 . . . . . . . . . . . . . . . . . . . . . . . . 10
2.4 嵌入式溫度感測器之分析比較 . . . . . . . . . . . . . . . . . . . . 11
2.5 供應電壓變動敏感度與溫度敏感度 . . . . . . . . . . . . . . . . . 12
2.5.1 供應電壓變動敏感度 . . . . . . . . . . . . . . . . . . . . . 12
2.5.2 溫度敏感度與環型振盪器級數分析 . . . . . . . . . . . . . 14
三、環型振盪電路之供應電壓變動分析 . . . . . . . . . . . . . . . . 16
v3.1 一般單端環型振盪電路 . . . . . . . . . . . . . . . . . . . . . . . . 16
3.2 傳統差動式環型振盪電路 . . . . . . . . . . . . . . . . . . . . . . 19
3.3 NMOS栓鎖差動式環型振盪電路 . . . . . . . . . . . . . . . . . . 22
3.4 反相器栓鎖差動式環型振盪電路 . . . . . . . . . . . . . . . . . . . 25
3.5 具供應電壓變動補償差動環型振盪電路 . . . . . . . . . . . . . . . 28
3.6 環型振盪電路之供應電壓變動分析比較 . . . . . . . . . . . . . . . 36
四、具供應電壓變動補償之溫度感測系統設計 . . . . . . . . . . . 37
4.1 溫度感測器 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.1.1 溫度感測器架構 . . . . . . . . . . . . . . . . . . . . . . . . 37
4.1.2 具供應電壓補償之環型振盪器 . . . . . . . . . . . . . . . . 39
4.1.3 D 型正反器 . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.1.4 上數計數器 . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.2 時間至數位轉換器 . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.3 暫存器 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.4 多工器 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.5 溫度感測系統架構 . . . . . . . . . . . . . . . . . . . . . . . . . . 45
五、硬體實現及模擬結果 . . . . . . . . . . . . . . . . . . . . . . . . . 47
5.1 硬體實現 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
5.2 模擬結果 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
六、結論 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
參考文獻 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
[1] S. Tewari; K. Singh, \Intuitive design of PTAT and CTAT circuits for MOSFET based temperature sensor using Inversion Coefficient based approach,"
in Proc. IEEE 19th VLSI-DAT, June 2015, pp. 1-6.
[2] S. Chaparro; J. J. Carrillo; H. Alarcon, \ high-slope PTAT temperature
sensor for frequency compensation of an RTC oscillator," in Proc. IEEE 7th
LASCAS, March 2016, pp. 111-114.
[3] C. C. Hung; H. C. Chu, \A Current-Mode Dual-Slope CMOS Temperature
Sensor," IEEE Sensors J., vol. 16, no. 7, pp. 1898-1907, 2016.
[4] F. Chen; J. Yang; Z. Li, \Modeling of an Uncooled CMOS THz Thermal
Detector With Frequency-Selective Dipole Antenna and PTAT Temperature
Sensor," IEEE Sensors J., vol. 18, no. 4, pp. 1483-1492, 2018.
[5] Y. J. An; D. H. Jung; K. Ryu; S. H. Woo; S. O. Jung, \Design of 0.35 um
CMOS Temperature Sensor for Automatic Refresh Cycle in DRAM Memory
Cell," IEEE Trans. VLSI Syst., vol. 23, no. 8, pp. 1508-1517, 2015.
[6] S. Ann; J. Yu; J. Park; Y. Kim; N. Kim, \On-chip jitter measurement architecture using a delay-locked loop withvernier delay line, to the order of giga
hertz," in Proc. IEEE EMS, Oct. 2015, pp. 446-449.
[7] A. Princewill; O. Ayodeji; A. Kayode,\A field programmable gate array-based
digital temperature sensor’s response to supply voltage variation," in Proc.
IEEE 4th MECO, June 2015, pp. 64-67.
[8] H. W. Kim; S. H. Ann; N. S. Kim,\CMOS Integrated Time-Mode Temperature Sensor for Self-Refresh Control in DRAM Memory Cell," IEEE Sensors
J., vol. 16, no. 17, pp. 6687-6693, 2016.
55[9] Y. L. Lo; Y. T. Chiu,\A High-Accuracy, High-Resolution, and Low-Cost AllDigital Temperature Sensor Using a Voltage Compensation Ring Oscillator,"
IEEE Sensors J., vol. 16, no. 1, pp. 43-52, Jan. 2016.
[10] T. Anand; K. A. A. Makinwa; P. K. Hanumolu, \A VCO Based Highly
Digital Temperature Sensor With 0.034 ◦C/mV Supply Sensitivity," IEEE
J. Solid-State Circuits, vol. 51, no. 11, pp. 2651-2663, Nov. 2016.
[11] Q. Huang; H. Joo; J. Kim; C. Zhan; J. Burm, \An Energy-Efficient
Frequency-Domain CMOS Temperature Sensor With Switched Vernier TimetoDigital Conversion," IEEE Sensors J., vol. 17, no. 10, pp. 3001-3011, May.
2017.
[12] M. Cochet; B. Keller; S. Clerc; F. Abouzeid; A. Cathelin; J. L. Autran;
P. Roche; B. Nikolic, \A 225 μm2 Probe Single-Point Calibration Digital
Temperature Sensor Using Body-Bias Adjustment in 28 nm FDSOI CMOS,"
IEEE L-SSC, vol. 1, no. 1, pp. 14-17, Jan. 2018.
[13] Z. Tang; N. N. Tan; Z. Shi; X. P. Yu, \A 1.2V Self-Referenced Temperature
Sensor With a Time-Domain Readout and a Two-Step Improvement on Output Dynamic Range," IEEE Sensors J., vol. 18, no. 5, pp. 1849-1858, Mar.
2018.
[14] Y. Wang; P. K. Chan; K. H. Li, \A Compact CMOS Ring Oscillator with
Temperature and Supply Compensation for Sensor Applications," in Proc.
IEEE ISVLSI, July 2014, pp. 267-272.
[15] X. Tang; W. T. Ng; K. P. Pun, \A Resistor-Based Sub-1-V CMOS Smart
Temperature Sensor for VLSI Thermal Management," IEEE Trans. VLSI
Syst., vol. 23, no. 9, pp. 1651-1660, Sep. 2015.
[16] S. K. Maddikatla; S. Jandhyala, \An Accurate All CMOS Temperature Sensor for IoT Applications," in Proc. IEEE ISVLSI, July 2016, pp. 349-354.
56[17] X. Wang; P. H. P. Wang; Y. Cao; P. P. Mercier, \A 0.6V 75nW All-CMOS
Temperature Sensor With 1.67m◦C/mV Supply Sensitivity," IEEE Trans.
Circuits Syst. I, Reg. Papers, vol. 64, no. 9, pp. 2274-2283, Sep. 2017.
[18] Z. Tang; N. N. Tan; Z. Shi; X. P. Yu, \A 1.2V Self-Referenced Temperature
Sensor With a Time-Domain Readout and a Two-Step Improvement on Output Dynamic Range," IEEE Sensors J., vol. 18, no. 5, pp. 1849-1858, Mar.
2018.
[19] A. C. Demartions; A. Tsimpos; S. Vlassis; S. Sgourenas; G. Souliotis, \A
3GHz VCO suitable for MIPI M-PHY serial interface," in Proc. IEEE 10th
DTIS, April 2015, PP. 1-6
[20] H. Zhang; H. g. Yang; F. Liu; Y. f. Wei; J. Zhang, "Start-up analysis for
differential ring oscillator with even number of stages," in Proc. IEEE 2010
APCCAS, Dec. 2010, pp. 636-639.
[21] K. Uming and P. T Balsara, "High-performance energy-efficient D-flip-flop
circuits," IEEE Trans. VLSI Syst., vol.8, pp. 94-98, Feb. 2000.
[22] 江鎮宏,中華民國一百零一年六月\Cell-Base Embedded Temperature Sensor
with Voltage Fluctuation Compensation,"國立雲林科技大學電子工程系研
究所碩士論文.
[23] 邱育安,中華民國一百零四年六月\Pico-second level vernier delay line for
register metastability measured technology and chip design,"國立雲林科技
大學電子工程系研究所碩士論文.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top