跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.41) 您好!臺灣時間:2026/01/13 09:33
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:黃奕綸
研究生(外文):HUANG, YI-LUN
論文名稱:直接自適應模糊小腦模型滑模控制器應用於壓電運動系統
論文名稱(外文):Direct Adaptive Fuzzy CMAC Sliding Mode Controller Design for Piezoelectric Motion System
指導教授:毛偉龍毛偉龍引用關係
指導教授(外文):MAO, WEI-LUNG
口試委員:蘇國嵐陳柏宏
口試委員(外文):SU, KUO-LANCHEN, PO-HUNG
口試日期:2019-01-18
學位類別:碩士
校院名稱:國立雲林科技大學
系所名稱:電機工程系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:86
中文關鍵詞:壓電系統自適應控制Non-Uniform Rational B-Spline(NURBS)曲線模糊小腦關節模型
外文關鍵詞:piezoelectric motion systemNon-Uniform Rational B-Spline(NURBS) curveAdaptive controlfuzzy cerebellar model articulation controller (FCMAC)
相關次數:
  • 被引用被引用:1
  • 點閱點閱:158
  • 評分評分:
  • 下載下載:2
  • 收藏至我的研究室書目清單書目收藏:0
由於近年來自動化的趨勢越來越受到關注,使得精密平台也開始被廣泛的應用,而如何使精密平台能有好的控制及軌跡追隨,則必須要有好的控制方法來控制平台,所以控制方法的研究非常值得我們去探討的。在本論文中,提出了雙軸壓電平台系統的高精度軌跡以及追蹤控制的直接自適應模糊小腦模型滑膜控制器,將傳統的小腦模型加入高斯函數作為基底函數成為模糊小腦模型。自適應分為直接和間接兩種方式,直接小腦模型控制的理論可以對於參數的不確定性和外界負載干擾進行推導並分析這兩個因素對於系統的穩定性分析。我們利用Lyapunov穩定性定理用來證明對於整個系統的漸進穩定性和所有不確定的參數在閉迴路的系統。在模擬的情況,可以依照提出的非線性壓電馬達數學方法和方法來做模擬壓電平台的軌跡測試,經過模擬再以實際平台做測試,我們依照提出的方法以壓電平台做軌跡的運行。在模擬和實作的情形所使用系統皆為MATALB的方式,使用 MATLAB的Simulink Embedded function的方式。所做的軌跡測試則是Non-Uniform Rational B-Spline(NURBS)曲線方法設計圖形,有設計的四種圖形分別為圓形、蝴蝶結、心形和星形,以這四種圖形進行模擬以及實測的軌跡追蹤。在結果來看,模擬以及壓電平台實驗都呈現不錯的軌跡追蹤,最後透過計算追隨平均誤差和追隨誤差之標準差,實驗結果顯示所提出的方法均優於比較方法,模糊小腦模型能夠有效的降低誤差並有更好的軌跡追隨呈現。
As the trend of automation has been paid more and more attention in recent years, the precision platform has begun to be widely used. Nevertheless, it is important to make the precision platform have good control and trajectory tracking. It is necessary to have a good control method to control the platform, so the study of control methods is very worthy of our discussion. In this thesis, adaptive fuzzy cerebellar model articulation controller (FCMAC) sliding mode controller is designed and proposed for high-precision trajectory control of X-Y axis piezoelectric motion system. Adding the traditional cerebellar model to the Gaussian function as the basis function becomes the fuzzy cerebellar model. The proposed FCMAC control structures can be used to compensate the parameter uncertainty and external load disturbance. The Lyapunov stability theorem is used to prove the asymptotic stability of the entire system and all uncertain parameters are in closed loop systems. Trajectory planning is based on Non-Uniform Rational B-Spline (NURBS) curve design graphics. The X-Y piezoelectric motion system is experimentally and simulation investigated with four typical contours, namely, circle, bowknot, heart and star reference contours. The experimental results show that the proposed method is superior to the comparison method, and the fuzzy cerebellar model can effectively reduce the error and have better trajectory tracking.
摘要 i
Abstract ii
誌謝 iii
目錄 iv
表目錄 vii
圖目錄 viii
第一章 緒論 1
1.1 前言 1
1.2 研究動機與目的 1
1.3 文獻探討 2
1.4 研究方法 4
1.5 論文內容架構 5
第二章 運動控制平台系統架構 6
2.1系統架構 6
2.2運動控制卡 6
2.2.1 運動控制卡 PCI-1240U 6
2.2.2數位轉類比卡 PCI-1716 7
2.2.3專用端子版ADAM-3952 8
2.3光學尺 9
2.3.1 LIA線性系列光學尺 9
2.3.2光學尺帶 9
2.3.3光學尺原理 10
2.3.4編碼器 10
2.4馬達驅動器 11
2.5馬達 12
2.6電源供應器 14
2.7壓電平台數學模型 15
2.8數學模擬工具Matlab 17
2.8.1 MATLAB環境介紹 17
2.8.2 Real-Time-Workshop(RTW)工具箱 17
2.8.3 S-function 18
第三章 控制方法 19
3.1 CMAC小腦模型 19
3.1.1 CMAC基本架構 19
3.1.2 一維CMAC 20
3.1.3 二維CMAC 23
3.1.4 模糊CMAC 25
3.2 自適應控制 27
3.3 直接自適應模糊小腦模型滑模方法 27
3.3.1 系統描述 27
3.3.2直接自適應滑模控制器設計 28
3.4 NURBS曲線軌跡規劃 31
3.4.1NURBS基本介紹 31
3.4.2 圓形軌跡規劃 33
3.4.3 蝴蝶結軌跡規劃 34
3.4.4 心形軌跡規劃 35
3.4.5 星形軌跡規劃 36
第四章 實驗結果 37
4.1 實驗方式 37
4.2 模擬結果 42
4.2.1 模擬的參數 42
4.2.2 模擬的軌跡 43
4.2.3 模擬的數據統計 53
4.3 實驗結果 56
4.3.1 實驗的參數 56
4.3.2 實驗的軌跡 56
4.3.3 實驗的數據統計 67
第五章 結論與未來展望 69
5.1 結論 69
5.2 未來展望 69
參考文獻 70




[1]T. C. Lin, “Based on interval type-2 fuzzy-neural network direct adaptive sliding mode control for SISO nonlinear systems”, Commun Nonlinear Sci Numer Simulat, vol. 15, pp. 4084-4099, 2010.
[2]T.-F. Wu ; P.-S. Tsai ; F.-R. Chang ; L.-S. Wang “Adaptive fuzzy CMAC control for a class of nonlinear systems with smooth compensation”, IEEE Journal of Proc.-Control Theory vol. 153, no. 6, pp. 647-657, 2006
[3]J.-Y. Chen, P.-S. Tsai and C.-C. Wong “Adaptive design of a fuzzy cerebellar model arithmetic controller neural network”, IEEE Journal of Proc.-Control Theory Appl vol. 152, no. 2, pp. 133-137, 2005
[4]何書安,“小腦模型演算控制器解析及其應用於適應性控制之研究”,碩士論文,國立台灣科技大學電機工程系,2006。
[5]劉君舫,“小腦模型控制器(CMAC)學習方法之研究”,碩士論文,台灣科技大學電機工程所,2002。
[6]楊清雲,“針對未知非線性系統之強健參數小腦模型控制器設計”,碩士論文,大同大學電機工程所,2007。
[7]C. T. Chiang and C. S. Lin, “CMAC with General Basis Functions”, Neural Networks, Vol.9,No.7, pp.1199-1211, 1996
[8]Zhiyong Tang, Xiang’an Yan, “Fuzzy CMAC Model Predictive Control”, Fourth International Conference on Fuzzy Systems and Knowledge Discovery, Haikou, China, 2007
[9]J. S. Albus, “A New Approach to Manipulator Control: The Cerebellar Model Articulation Controller (CMAC) ”, September 1975.
[10]J. S. Albus, “Data Storage in the Cerebellar Model Articulation Controller (CMAC)”, September 1975.
[11]T. W. Miller, F. H. Glanz and L. G. Kraft, “Application of a General Learning Algorithm to the Control of Robotics Manipulators ”, Vol.6, No.2, pp.84-98, 1987.
[12]P. C. Parks and J. Militizer, “A Comparison of Five Algorithm for the Training of CMAC Memories for Learning Control Systems”, Vol.28, No.5, pp.1027-1035, 1992.
[13]Y. F. Wong and A. Sideris, “Learning Convergence in the Model Articulation Controller”, IEEE Transactions on Neural Network,Vol.3, No.1, pp.115-121, 1992.
[14]C. S. Lin and H. Kim, “CMAC-Based Adaptive Critic Self-Learning Control”, IEEE Transactions on Neural Network, Vol.2, No.5, pp.530-535, 1991
[15]C. S. Lin and H. Kim, “Selection of Learning Parameters for CMAC-Based Adaptive Critic Learning”,IEEE Transactions on Neural Network, Vol.6, No.3, pp.642-647, 1996.
[16]張志鴻,“應用CMAC 於非線性控制問題”,碩士論文,國立交通大學控制工程研究所,1994.
[17]Piegl L, Tiller W., “The NURBS Books. 2nd ed.,” Berlin, Heidelberg:Springer, 1997.
[18]劉金琨,“滑模變結構控制MATLAB仿真”,清華大學出版社,北京,2005。
[19]S.Y. Chen, Y.H. Lai, H.T. Lu, “Contours Planning and Visual Servo Control of XXY Positioning System Using NURBS Interpolation Approach,” IJRTEM., Volume 1 Issue 4, pp. 16-23, June. 2016.
[20]H.T. Yau, M.T. Lin, M.S. Tsai, “Real-Time NURBS Interpolation Using FPGA for High Speed Motion Control,” Computer-Aided Design, vol. 38, no. 10, pp. 1123-1133, 2006.
[21]M. Gopi, S. Manohar, “A Unified Architecture for the Computation of B-Spline Curves and Surfaces,” IEEE Trans. Parallel Distrib. Syst., vol. 8, no. 12, pp. 1275-1287, Dec. 1997.
[22]L. X. Wang, “A course in Fuzzy System and Control”, Pearson, 2010.
[23]Y. T. Kim, Z. Z. Bien, “Robust adaptive fuzzy control in the presence of external disturbance and approximation error”, Fuzzy Sets and System, Vol. 148, Iss. 3, PP. 377-393, 2004.
[24]F.J. Lin, Y.S. Kung, S.Y. Chen, Y.H. Liu, “Recurrent Wavelet-Based Elman Neural Network Control for Multi-Axis Motion Control Stage Using Linear Ultrasonic Motors,” IET Electr. Power Appl., pp. 314-332, 2010)
[25]Y. T. Kim, Z. Bien, “Robust self-learning fuzzy logic controller”,IEEE International Conference on Robotics and Automation, pp. 1172-1177, 1995.
[26]Y. T. Kim, Z. Bien, “Robust self-learning fuzzy logic controller design for a class of nonlinear MIMO system”, Fuzzy Sets and Systems, Vol. 111, pp.117-1357, 2000.
[27]S. C. Lin, Y. Y. Chen, “Design of adaptive fuzzy sliding mode for nonlinear system control”, The third IEEE Conference on Computational Intelligence, pp. 35-39, 1994.
[28]Y. S. Lu, J. S. Chen, “A self-organizing fuzzy sliding-mode controller design for a class of nonlinear servo systems”,IEEE Transaction. Industrial Electronics, Vol. 41, pp. 492-502, 1994.
[29]C. Y. Su, Y. Stepanenko, “Adaptive controller of a class of nonlinear systems with fuzzy logic”, IEEE Transaction. Fuzzy Systems Vol. 2, pp. 285-294, 1994.
[30]L. X. Wang, “Stable adaptive fuzzy control of nonlinear systems”, IEEE Trans. Fuzzy Systems, Vol. 1, pp. 146-155, 1993.
[31]L. X. Wang, “Adaptive Fuzzy Systems and Control: Design and Stability”, Prentice-Hall, Englewood Cliffs, NJ, 1994.
[32]Faa-Jeng Lin, Hsin-Jang Shieh, Po-Kai Huang, Po-Huang Shieh, “An Adaptive Recurrent Radial Basis Function Network Tracking Controller for a Two-Dimensional Piezo-Positioning Stage”,vol.55,no,1,2008.
[33]Faa-Jeng Lin, Hsin-Jang Shieh, Po-Kai Huang, “Adaptive Wavelet Neural Network Control with Hystersis Estimation for Piezo-Postioning Mechanism”,vol.17.no2,2006
[34]C. C. de Wit, H. Olsson, K. J. Åström, and P. Lischinsky, “A new model for control of systems with friction,” IEEE Trans. Automatic Control, vol. 40, no. 3, pp. 419-425, 1995.
[35]H. Olsson, K. J. Astrom, C. Canudas de, P. Lischinsky, “Friction Models and Friction Compensation”,1998.
[36]ENSIEG-INPG,ST.Martin d’Heres,FRANCE, “Dynamic Tire Frition Models for Vehicle Traction Control”,1999.
[37]KARL JOHAN ASTROM,CARLOS CANDAS-DE-WIT, “Revisiting the LuGre Friction Model”,2008.
[38]孫義欽,“MATLAB與嵌入式控制器之整合控制應用”, 碩士論文, 國立中山大學機械與機電工程研究所,2004
[39]F. C. Teng, “Real-time control using Matlab Simulink”,IEEE International Conference on Systems, Man, and Cybernetics, Vol. 4, pp. 2697–2702, 2000.
[40]P. S. Shiakolas, D. Piyabongkarn, “On the development of a real-time digital control systemusing xPC-Target and a magnetic levitation device,” Proceedings of the 40th IEEE Conference on Decision and Co1ntrol, Vol. 2, pp. 1348 –1353, 2001
[41]李書維,“以FPGA為基礎發展簡易型CPU及在XYZ平台適應性模糊控制器之應用”碩士論文,南台科技大學電機工程系,2009。
[42]D. Hanafi, M. Tordon and J. Katupitiya, “An Active Axis Control System for a Conventional CNC Machine”, Advanced Intelligent Mechatronics, 2003. AIM 2003.
[43]F. J. Lin, H. J. Shieh, P. H. Shieh and P. H. Shen, “An Adaptive Recurrent-Neural-Network Motion Controller for X–Y Table in CNC Machine”, IEEE Transactions on Systems, Man, And Cybernetics-Part B: Cybernetics, Vol. 36, No. 2, April 2006.
[44]L. Gang, J. Youngmin, G. Rong and L. Hao, “Notice of Retraction Trajectory dynamic control for CNC machining based on velocity”, Information Management and Engineering (ICIME), 2010 The 2nd IEEE International Conference, pp276 – 280, 16-18 April 2010.
[45]E. C. Park, H. Lim, and C. H. Choi, “Position Control of X–Y Table at Velocity Reversal Using Presliding Friction Characteristics”,IEEE Transactions on Control Systems Technology, Vol. 11, No. 1, January 2003.
[46]Z. H. Jiang, S. Nie and T. Ishita, “A Neural Network and Linear Feedback Based Trajectory Control Method for Robot Manipulators”, Intelligent Control and Automation, 2008. WCICA 2008. 7th World Congress, pp. 1603-1608, 25-27 June 2008.
[47]PCI-1710 series User’s Manual,Advantech Co,Ltd
[48]PCI-1240U User Manual
[49]ADAM-3952PMA_DS
[50]Simulink Model-Based and System-Based Design,Version 5,The MathWorks..
[51]精密機械概論–光學尺篇(X)
[52]Slot-type Photomicrosensor (Non-modulated)EE-SX47/67, OMRON Corporation Industrial Automation Company
[53]F. J. Lin, R. J. Wai, and P.K. Huang, “Two-axis motion control system using wavelet neural network for ultrasonic motor drives,” IEE Proc. Electric Power Applications, vol. 151, no. 5, pp. 613-621, 2004.
[54]H. J. Shieh, F. J. Lin, P. K. Huang, and L. T. Teng, “Adaptive tracking control soley using displacement feedback for a piezo-position in mechanism,” IEE Proc. Control Theory Applications, vol. 151, no. 5,pp. 653-660, 2004.
[55]F. J. Lin, D. H. Wang, and P. K. Huang, “FPGA-based fuzzy slidingmode control for linear induction motor drive,” IEE Proc. Electric Power Applications, vol. 152, no. 5, pp. 1137-1148, 2005.
[56]林煊育, “適應性小腦模型控制在XY壓電平台應用,” 碩士論文, 國立雲林科技大,2017。
[57]林庭煥, “自適應模糊滑模PI控制在XY平台軌跡應用,” 碩士論文, 國立雲林科技大,2017。
[58]劉冠佑, “自適應性區間第二型模糊PI滑模控制器設計應用於XY平台軌跡控制,” 碩士論文, 國立雲林科技大,2018

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊