跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.44) 您好!臺灣時間:2025/12/31 20:47
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:吳康琪
研究生(外文):WU, KANG-CHI
論文名稱:陽離子抗菌胜肽Q4-15a-1對多重抗藥性腸毒素型大腸桿菌之抗菌效力
論文名稱(外文):Antibacterial Efficacy of Cationic Antimicrobial Peptide Q4-15a-1 against Multidrug-Resistant Enterotoxigenic Escherichia coli
指導教授:陳威戎陳威戎引用關係
指導教授(外文):CHEN, WEI-JUNG
口試委員:林景堉潘婕玉許惠貞
口試委員(外文):LIN, CHING-YUPAN,CHIEH-YUHSU, HUI-CHEN
口試日期:2019-07-18
學位類別:碩士
校院名稱:國立宜蘭大學
系所名稱:生物技術與動物科學系生物技術碩士班
學門:農業科學學門
學類:畜牧學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:50
中文關鍵詞:抗菌胜肽多重抗藥性腸毒素型大腸桿菌
外文關鍵詞:antimicrobial peptidesmultidrug-resistantEnterotoxigenic Escherichia coli
相關次數:
  • 被引用被引用:1
  • 點閱點閱:297
  • 評分評分:
  • 下載下載:6
  • 收藏至我的研究室書目清單書目收藏:0
仔豬在離乳初期因消化系統尚未發展健全、離乳造成的生理緊迫及衛生條件不良而易感染病原菌,常見的病原菌為腸毒素型大腸桿菌 (enterotoxigenic Escherichia coli, ETEC),其會引發仔豬下痢導致脫水,嚴重時甚至會死亡。然而在過去數十年間,由於抗生素的濫用進而加速多重抗藥性 (multidrug-resistant, MDR) 病原菌產生,因此找尋抗生素的替代藥物是重要的議題。許多研究皆指出抗菌胜肽 (antimicrobial peptides, AMPs) 能夠在短時間內殺死細菌且具有高選擇性毒殺能力,因此 AMPs 具有成為抗生素替代物的潛力。先前研究顯示本實驗室設計之AMP GW-Q4 及其截短與優化衍生物對革蘭氏陰性菌具有良好的抗菌效果,而在本篇研究中我們測試這些AMPs對MDR ETEC之抗菌活性,由最小抑菌濃度 (minimum inhibition concentrations, MIC) 測定結果顯示其皆具有良好的抗菌效果,MIC介於2~32 μg/mL之間,而其中又以AMP Q4-15a-1對MDR ETEC具有次佳抗菌活性 (MIC = 4 μg/mL) 及最低溶血活性 (hemolytic concentration, MHC= 256 μg/mL),使其對MDR ETEC具有最佳的選擇性 (MHC/MIC = 64),因此我們選用Q4-15a-1進行後續試驗。在與抗生素及天然AMPs組合試驗中,Q4-15a-1與Cephalothin、Pleurocidin、Pleurocidin-a、Magainin及Magainin-a組合使用皆具有加成 (additive) 效果,可有效降低抗生素與AMPs使用劑量。而在時間殺菌曲線 (time-kill curve) 實驗中,隨著 Q4-15a-1濃度提高,其抑制MDR ETEC的效力也隨之提升,因此Q4-15a-1對MDR ETEC的殺菌效果具有劑量依賴性。而在生物膜清除濃度 (minimum biofilm eradication concentration, MBEC) 試驗中,Q4-15a-1僅以4x MIC (16 μg/mL) 即能對MDR ETEC展現出良好的抗生物膜效力。而從兩項以螢光試驗分析Q4-15a-1處理MDR ETEC後在細菌的座落位置與對細胞膜完整性的實驗結果中可得知,Q4-15a-1能在短時間內與MDR ETEC作用,先出現於表面接著進入細菌,並在過程中造成其細胞膜受損。此外,我們也建立MDR ETEC 感染 IPEC-1細胞的感染模式,透過此感染模型發現Q4-15a-1能以32 μg/mL完全抑制MDR ETEC 感染IPEC-1細胞。綜上所述,這些實驗結果顯示 Q4-15a-1 具潛力作為治療受MDR ETEC感染之離乳仔豬的新穎抗菌製劑。
Post-weaning diarrhea due to enterotoxigenic Escherichia coli (ETEC) is a common disease of piglets and causes economic loss for swine industry. However, over the past decades, decreasing effectiveness of conventional antibiotics has caused serious problems because of the rapid emergence of multidrug-resistant (MDR) pathogens. Various researches indicated that antimicrobial peptides (AMPs) have potential to serve as an alternative to antibiotics owing to rapid killing action and high selective toxicity. Moreover, our previous studies have shown that AMP GW-Q4 and its derivatives possess effective antibacterial activities against the Gram-negative bacteria. Hence, in this research, we evaluate the antibacterial efficacy of GW-Q4 and its derivatives against MDR ETEC and their minimal inhibition concentration (MIC) values were determined to be around 2~32 μg/mL. Among them, AMP Q4-15a-1 with the second lowest MIC (4 μg/mL) and the highest hemolytic concentration (MHC= 256 μg/mL), thus showing the greatest selectivity (MHC/MIC = 64) was selected for further investigations. The combinations of Q4-15a-1 with cephalothin, Pleurocidin, Pleurocidin-a, Magainin and Magainin-a showed additive effect against MDR ETEC and improved antibacterial activity of conventional antibiotics and AMPs. Moreover, Q4-15a-1 showed dose-dependent activity against MDR ETEC in time-kill curve assays. According to the cellular localization and membrane integrity analyses using fluorescence assay, Q4-15a-1 can rapidly interact with the bacterial surface, disrupt the membrane and enter cytosol in only a few minutes. Minimum biofilm eradication concentration (MBEC) of Q4-15a-1 is 4x MIC (16 μg/mL), thus Q4-15a-1 is effective against MDR ETEC biofilm. Besides, we established an MDR ETEC infection model with IPEC-1 cell. In this infection model, 32 μg/mL Q4-15a-1 can completely inhibit ETEC adhesion on IPEC-1. Overall, these results suggested that Q4-15a-1 may be a promising antibacterial candidate for treatment of weaned piglets infected by MDR ETEC.
摘要 I
Abstract II
致謝 III
目錄 (Table of Contents) IV
圖目錄 (List of Figures) VI
表目錄 (List of Tables) VII
名詞縮寫表 (Abbreviations) VIII
第一章 前言 1
第一節 腸毒素型大腸桿菌 (Enterotoxigenic Escherichia coli) 1
第二節 抗生素 (Antibiotics) 4
第三節 多重抗藥性 (Multidrug-resistance, MDR) 6
第四節 抗菌胜肽 (Antimicrobial peptides, AMPs) 7
第二章 研究目的 11
第三章 實驗材料與儀器 12
第一節 生物材料與藥品試劑 12
第二節 儀器設備 14
第四章 實驗流程與方法 15
第一節 實驗之菌株與保存與培養 16
第二節 菌落數與濁度之關係 - 平板計數法 (Plate count) 16
第三節 最小抑菌濃度 (Minimal inhibitory concentration, MIC) 16
第四節 組合試驗 (Combination test) 17
第五節 時間殺菌曲線 (Time-kill assay) 18
第六節 最小生物膜清除濃度 (Minimum biofilm eradication concentration) 18
第七節 細胞培養與凍存 (Cell culture and freezing) 19
第八節 細胞活性分析 (Cell viability assay) 20
第九節 貼附感染試驗 (Infection assay of bacterial adhesion) 21
第十節 螢光試驗 (Fluorescence assay) 22
第五章 結果 23
第一節 腸毒素型大腸桿菌 23
一、 菌株來源、抗性資料與生長情形 23
二、 平板計數法 - 菌落數與濁度之間的關係 23
第二節 抗菌胜肽之抗菌活性 23
一、 AMPs對菌株之抑菌效力 23
二、 AMP Q4-15a-1對MDR腸毒素型大腸桿菌之時間殺菌曲線 24
三、 AMP Q4-15a-1與抗生素組合試驗 24
四、 AMP Q4-15a-1與天然AMPs組合試驗 25
五、 AMP Q4-15a-1 對MDR腸毒素型大腸桿菌之抗生物膜效力 25
第四節 抗菌胜肽對MDR腸毒素型大腸桿菌細胞膜影響 25
一、 AMP Q4-15a-1 於MDR腸毒素型大腸桿菌中定位 25
二、 AMP Q4-15a-1 對MDR腸毒素型大腸桿菌細胞膜之影響 26
第五節 抗菌胜肽應用於貼附型感染模式之效力 26
一、 IPEC-1與IPEC-J2細胞活性分析 26
二、 AMP Q4-15a-1 抑制MDR腸毒素型大腸桿菌感染試驗 26
第六章 討論 27
第一節 AMPs對MDR 腸毒素型大腸桿菌之抗菌能力 27
第二節 AMP Q4-15a-1之快速殺菌分析 27
第三節 AMP Q4-15a-1與抗生素及天然AMPs之組合抗菌效力 27
第四節 AMP Q4-15a-1抗生物膜效力 28
第五節 AMP Q4-15a-1抑制MDR ETEC感染效力 28
第七章 結論與未來展望 29
第八章 圖表 30
第九章 參考文獻 42

黃于軒 (2018) 優化陽離子抗菌胜肽序列並提升其對多重抗藥性豬霍亂沙門氏菌之抗菌 效力 國立宜蘭大學碩士論文

Alborn, W., Allen, N., & Preston, D. (1991) Daptomycin disrupts membrane potential in growing Staphylococcus aureus. Antimicrob Agents Chemother. 35(11), 2282-2287.

Almaaytah, A., Qaoud, M., Khalil Mohammed, G., Abualhaijaa, A., Knappe, D., Hoffmann, R., & Al-Balas, Q. (2018) Antimicrobial and antibiofilm activity of UP-5, an ultrashort antimicrobial peptide designed using only arginine and biphenylalanine. Pharmaceuticals (Basel). 11(1), 3.

Bailey, M. (2009) The mucosal immune system: recent developments and future directions in the pig. Dev Comp Immunol. 33(3), 375-383.

Bardiau, M., Szalo, M., & Mainil, J. G. (2010) Initial adherence of EPEC, EHEC and VTEC to host cells. Vet Res. 41(5), 57.

Batoni, G., Maisetta, G., & Esin, S. B. e. B. A.-B. (2016) Antimicrobial peptides and their interaction with biofilms of medically relevant bacteria. Biochim Biophys Acta. 1858(5), 1044-1060.

Bessin, Y., Saint, N., Marri, L., Marchini, D., & Molle, G. (2004) Antibacterial activity and pore-forming properties of ceratotoxins: a mechanism of action based on the barrel stave model. Biochim Biophys Acta. 1667(2), 148-156.

Brown, J. W., Badahdah, A., Iticovici, M., Vickers, T. J., Alvarado, D. M., Helmerhorst, E. J., Oppenheim, F. G., Mills, J. C., Ciorba, M. A., & Fleckenstein, J. M. (2018) A role for Salivary peptides in the innate defense against enterotoxigenic Escherichia coli. J. Infect. Dis. 217(9), 1435-1441.

Bugg, T., & Walsh, C. (1992) Intracellular steps of bacterial cell wall peptidoglycan biosynthesis: enzymology, antibiotics, and antibiotic resistance. Nat Prod Rep. 9(3), 199-215.

Campbell, J. M., Crenshaw, J. D., & Polo, J. (2013) The biological stress of early weaned piglets. J Anim Sci Biotechnol. 4(1), 19.
Cantor, R. S. (2002) Size distribution of barrel-stave aggregates of membrane peptides: influence of the bilayer lateral pressure profile. Biophys J. 82(5), 2520-2525.

Chen, C.-R., Malik, M., Snyder, M., & Drlica, K. (1996) DNA gyrase and topoisomerase IV on the bacterial chromosome: quinolone-induced DNA cleavage. J Mol Biol. 258(4), 627-637.
Chou, H.-T., Kuo, T.-Y., Chiang, J.-C., Pei, M.-J., Yang, W.-T., Yu, H.-C., Lin, S.-B., & Chen, W.-J. (2008) Design and synthesis of cationic antimicrobial peptides with improved activity and selectivity against Vibrio spp. Int J Antimicrob Agents. 32(2), 130-138.

Colvin, K. M., Gordon, V. D., Murakami, K., Borlee, B. R., Wozniak, D. J., Wong, G. C., & Parsek, M. R. (2011) The pel polysaccharide can serve a structural and protective role in the biofilm matrix of Pseudomonas aeruginosa. PLoS Pathog. 7(1), e1001264.

Cortés, M. E., Bonilla, J. C., & Sinisterra, R. D. (2011) Biofilm formation, control and novel strategies for eradication. Sci Against Microbial Pathog Commun Curr Res Technol Adv. 2, 896-905.

Davey, M. E., & O'toole, G. A. (2000) Microbial biofilms: from ecology to molecular genetics. Microbiol Mol Biol Rev. 64(4), 847-867.

Davies, D. G., Parsek, M. R., Pearson, J. P., Iglewski, B. H., Costerton, J. W., & Greenberg, E. P. (1998) The involvement of cell-to-cell signals in the development of a bacterial biofilm. Science. 280(5361), 295-298.

Davies, J., & Davies, D. (2010) Origins and evolution of antibiotic resistance. Microbiol Mol Biol Rev. 74(3), 417-433.

Devriendt, B., Stuyven, E., Verdonck, F., Goddeeris, B. M., & Cox, E. (2010) Enterotoxigenic Escherichia coli (K88) induce proinflammatory responses in porcine intestinal epithelial cells. Dev Comp Immunol. 34(11), 1175-1182.

Duan, Q., Nandre, R., Zhou, M., & Zhu, G. (2017) Type I fimbriae mediate in vitro adherence of porcine F18ac+ enterotoxigenic Escherichia coli (ETEC). ANN MICROBIOL. 67(12), 793-799.
Dubreuil, J. D. (2012) The whole Shebang: the gastrointestinal tract, Escherichia coli enterotoxins and secretion. J Curr Issues Mol Biol. 14(2), 71-82.

Dubreuil, J. D., Isaacson, R. E., & Schifferli, D. M. (2016) Animal enterotoxigenic Escherichia coli. EcoSal Plus. 7(1).

Ebenhan, T., Gheysens, O., Kruger, H. G., Zeevaart, J. R., & Sathekge, M. M. (2014) Antimicrobial peptides: their role as infection-selective tracers for molecular imaging. Biomed Res Int. 2014.

Eisenberg, D., Weiss, R. M., & Terwilliger, T. C. (1984). The hydrophobic moment detects periodicity in protein hydrophobicity. PNAS, 81(1), 140-144.

Etebu, E., & Arikekpar, I. (2016) Antibiotics: Classification and mechanisms of action with emphasis on molecular perspectives. Int. J. Appl. Microbiol. Biotechnol. Res. 4, 90-101.

Fairbrother, J. M., Nadeau, É., & Gyles, C. L. (2005) Escherichia coli in postweaning diarrhea in pigs: an update on bacterial types, pathogenesis, and prevention strategies. Anim Health Res Rev. 6(1), 17-39.

Falagas, M. E., Kasiakou, S. K., & Saravolatz, L. D. (2005) Colistin: the revival of polymyxins for the management of multidrug-resistant gram-negative bacterial infections. Clin Infect Dis. 40(9), 1333-1341.

Falagas, M. E., Rafailidis, P. I., & Matthaiou, D. K. (2010) Resistance to polymyxins: mechanisms, frequency and treatment options. Drug Resist Updat. 13(4-5), 132-138.

Feng, X., Sambanthamoorthy, K., Palys, T., & Paranavitana, C. (2013) The human antimicrobial peptide LL-37 and its fragments possess both antimicrobial and antibiofilm activities against multidrug-resistant Acinetobacter baumannii. Peptides. 49, 131-137.

Flemming, H.-C., & Wingender, J. (2010) The biofilm matrix. Nat Rev Microbiol. 8(9), 623.

Forte, L., Thorne, P., Eber, S., Krause, W., Freeman, R., Francis, S., & Corbin, J. (1992) Stimulation of intestinal Cl-transport by heat-stable enterotoxin: activation of cAMP-dependent protein kinase by cGMP. Am J Physiol. 263(3), C607-C615.

Franklin, M., Nivens, D., Weadge, J., & Howell, P. (2011) Biosynthesis of the mbio. asm. org Pseudomonas aeruginosa extracellular polysaccharides, alginate, Pel, and Psl. Front Microbiol. 2: 167.
Fuente-Núñez, C., Cardoso, M. H., de Souza Cândido, E., Franco, O. L., & Hancock, R. E. (2016) Synthetic antibiofilm peptides. Biochim Biophys Acta. 1858(5), 1061-1069.

Fujinaga, Y., Wolf, A. A., Rodighiero, C., Wheeler, H., Tsai, B., Allen, L., Jobling, M. G., Rapoport, T., Holmes, R. K., & Lencer, W. I. (2003) Gangliosides that associate with lipid rafts mediate transport of cholera and related toxins from the plasma membrane to endoplasmic reticulm. Mol Biol Cell. 14(12), 4783-4793.

Gale, E. F., Cundliffe, E., Reynolds, P. E., Richmond, M. H., & Waring, M. J. (1981). The molecular basis of antibiotic action. 2nd Ed. New York.

Garrett, T. R., Bhakoo, M., & Zhang, Z. (2008) Bacterial adhesion and biofilms on surfaces. Progress in Natural Science. 18(9), 1049-1056.

Gazit, E., R.Miller, I., C.Biggin, P., S.P.Sansom, M., & YechielShai. (1996) Structure and orientation of the mammalian antibacterial peptide cecropin P1 within phospholipid membranes. J Mol Biol. 258, 860-870.

Geens, M. M., & Niewold, T. A. (2010) Preliminary characterization of the transcriptional response of the porcine intestinal cell line IPEC-J2 to enterotoxigenic Escherichia coli, Escherichia coli, and E. coli lipopolysaccharide. Comp Funct Genomics. 2010.

Giuliani, A., Pirri, G., & Nicoletto, S. (2007) Antimicrobial peptides: an overview of a promising class of therapeutics. Open Life Sciences. 2(1), 1-33.

Gupta, P., Sarkar, S., Das, B., Bhattacharjee, S., & Tribedi, P. (2016) Biofilm, pathogenesis and prevention—a journey to break the wall: a review. Arch Microbiol. 198(1), 1-15.

Gyles, C. L. (1992) Escherichia coli cytotoxins and enterotoxins. Can J Microbiol. 38(7), 734-746.

Höltje, J.-V. (1998) Growth of the stress-bearing and shape-maintaining murein sacculus of Escherichia coli. Microbiol. Mol. Biol. Rev. 62(1), 181-203.

Høiby, N., Bjarnsholt, T., Givskov, M., Molin, S., & Ciofu, O. (2010) Antibiotic resistance of bacterial biofilms. Int J Antimicrob Agents. 35(4), 322-332.


Hall-Stoodley, L., Costerton, J. W., & Stoodley, P. (2004) Bacterial biofilms: from the natural environment to infectious diseases. Nat Rev Microbiol. 2(2), 95.

Hancock, R. E., & Sahl, H.-G. (2006) Antimicrobial and host-defense peptides as new anti-infective therapeutic strategies. Nat Biotechnol. 24(12), 1551.

Hariharan, H., Coles, M., Poole, D., & Page, R. (2004) Antibiotic resistance among enterotoxigenic Escherichia coli from piglets and calves from piglets and calves with diarrhea. Can Vet J. 45(7), 605.

Hong, W., Zeng, J., & Xie, J. (2014) Antibiotic drugs targeting bacterial RNAs. Acta Pharm Sin B. 4(4), 258-265.

Hurlow, J., Couch, K., Laforet, K., Bolton, L., Metcalf, D., & Bowler, P. (2015) Clinical biofilms: a challenging frontier in wound care. Adv Wound Care (New Rochelle). 4(5), 295-301.

Jechalke, S., Heuer, H., Siemens, J., Amelung, W., & Smalla, K. (2014) Fate and effects of veterinary antibiotics in soil. TRENDS MICROBIOL. 22(9), 536-545.

Jenssen, H., Hamill, P., & Hancock, R. E. (2006) Peptide antimicrobial agents. Clin Microbiol Rev. 19(3), 491-511.

Josephine, H. R., Kumar, I., & Pratt, R. (2004) The perfect penicillin? Inhibition of a bacterial DD-peptidase by peptidoglycan-mimetic β-lactams. J Am Chem Soc. 126(26), 8122-8123.

Koh, S. Y., George, S., Brözel, V., Moxley, R., Francis, D., & Kaushik, R. S. (2008) Porcine intestinal epithelial cell lines as a new in vitro model for studying adherence and pathogenesis of enterotoxigenic Escherichia coli. Vet Microbiol. 130(1-2), 191-197.

Kumar, C. G., & Anand, S. K. (1998) Significance of microbial biofilms in food industry: a review. Int J Food Microbiol. 42(1-2), 9-27.

Kumar, P., Kizhakkedathu, J., & Straus, S. (2018) Antimicrobial peptides: Diversity, mechanism of action and strategies to improve the activity and biocompatibility in vivo. BIOMOL THER. 8(1), 4.

Lamb, H. M., & Wiseman, L. (1998) Pexiganan acetate. Drugs. 56(6), 1047-1052.

Lambert, P. (2002) Mechanisms of antibiotic resistance in Pseudomonas aeruginosa. J R Soc Med. 95(Suppl 41), 22.

Landman, D., Georgescu, C., Martin, D. A., & Quale, J. (2008) Polymyxins revisited. Clin Microbiol Rev. 21(3), 449-465.

Lebeaux, D., Ghigo, J.-M., & Beloin, C. (2014) Biofilm-related infections: bridging the gap between clinical management and fundamental aspects of recalcitrance toward antibiotics. Microbiol Mol Biol Rev. 78(3), 510-543.

Letourneau, J., Levesque, C., Berthiaume, F., Jacques, M., & Mourez, M. (2011) In vitro assay of bacterial adhesion onto mammalian epithelial cells. J Vis Exp(51), e2783.

Lipsky, B. A., Holroyd, K. J., & Zasloff, M. (2008) Topical versus systemic antimicrobial therapy for treating mildly infected diabetic foot ulcers: a randomized, controlled, double-blinded, multicenter trial of pexiganan cream. Clin Infect Dis. 47(12), 1537-1545.

Livermore, D. M., & Brown, D. F. (2001) Detection of β-lactamase-mediated resistance. J Antimicrob Chemother. 48(suppl_1), 59-64.

Lowy, F. D. (2003) Antimicrobial resistance: the example of Staphylococcus aureus. J Clin Invest. 111(9), 1265-1273.

Ludtke, S. J., He, K., Heller, W. T., Harroun, T. A., Yang, L., & Huang, H. W. (1996) Membrane pores induced by magainin. Biochemistry. 35(43), 13723-13728.

Mahlapuu, M., Håkansson, J., Ringstad, L., & Björn, C. (2016) Antimicrobial peptides: an emerging category of therapeutic agents. Front Cell Infect Microbiol. 6, 194.

Malmsten, M. (2016) Interactions of antimicrobial peptides with bacterial membranes and membrane components. Curr Top Med Chem. 16(1), 16-24.

Mihajlovic, M., & Lazaridis, T. (2010) Antimicrobial peptides in toroidal and cylindrical pores. Biochim Biophys Acta. 1798(8), 1485-1493.

Monroe, D. (2007) Looking for chinks in the armor of bacterial biofilms. PLoS Biol. 5(11), e307.
Nagy, B., & Fekete, P. Z. (2005) Enterotoxigenic Escherichia coli in veterinary medicine. Int J Med Microbiol. 295, 443–454.

Nguyen, L. T., Haney, E. F., & Vogel, H. J. (2011) The expanding scope of antimicrobial peptide structures and their modes of action. Trends Biotechnol. 29(9), 464-472.

O’brien, A., & Holmes, R. J. E. c. (1996) Protein toxins of Escherichia coli and Salmonella. ASM Press, 2788-2802.

Olofsson, S. K., & Cars, O. (2007) Optimizing drug exposure to minimize selection of antibiotic resistance. Clin Infect Dis. 45(Supplement_2), S129-S136.

Oren, Z., & Shai, Y. (1998) Mode of action of linear amphipathic α‐helical antimicrobial peptides. Biopolymers. 47(6), 451-463.

Otto, M. (2013) Staphylococcal infections: mechanisms of biofilm maturation and detachment as critical determinants of pathogenicity. Annu Rev Med. 64, 175-188.

Park, J. T., & Uehara, T. (2008) How bacteria consume their own exoskeletons (turnover and recycling of cell wall peptidoglycan). Microbiol Mol Biol Rev. 72(2), 211-227.

Park, S.-C., Kim, J.-Y., Shin, S.-O., Jeong, C.-Y., Kim, M.-H., Shin, S. Y., Cheong, G.-W., Park, Y., & Hahm, K.-S. (2006) Investigation of toroidal pore and oligomerization by melittin using transmission electron microscopy. Biochem Biophys Res Commun. 343(1), 222-228.

Park, S.-C., Park, Y., & Hahm, K.-S. (2011) The Role of Antimicrobial Peptides in Preventing Multidrug-Resistant Bacterial Infections and Biofilm Formation. Int J Mol Sci. 12(9), 5971-5992.

Patel, U., Yan, Y. P., Hobbs, F. W., Kaczmarczyk, J., Slee, A. M., Pompliano, D. L., Kurilla, M. G., & Bobkova, E. V. (2001) Oxazolidinones mechanism of action: inhibition of the first peptide bond formation. J Biol Chem. 276(40), 37199-37205.


Rasamiravaka, T., Labtani, Q., Duez, P., & El Jaziri, M. (2015) The formation of biofilms by Pseudomonas aeruginosa: a review of the natural and synthetic compounds interfering with control mechanisms. Biomed Res Int.

Rasschaert, K., Devriendt, B., Favoreel, H., Goddeeris, B. M., & Cox, E. (2010) Clathrin-mediated endocytosis and transcytosis of enterotoxigenic Escherichia coli F4 fimbriae in porcine intestinal epithelial cells. Vet Immunol Immunopathol. 137(3-4), 243-250.

Ruiz, J. (2003) Mechanisms of resistance to quinolones: target alterations, decreased accumulation and DNA gyrase protection. J Antimicrob Chemother. 51(5), 1109-1117.

Sarmah, A. K., Meyer, M. T., & Boxall, A. B. (2006) A global perspective on the use, sales, exposure pathways, occurrence, fate and effects of veterinary antibiotics (VAs) in the environment. Chemosphere. 65(5), 725-759.

Sauer, K., Camper, A. K., Ehrlich, G. D., Costerton, J. W., & Davies, D. G. (2002) Pseudomonas aeruginosa displays multiple phenotypes during development as a biofilm. J Bacteriol. 184(4), 1140-1154.

Silva, L. V. d., Araújo, M. T., Santos, K. R. N. d., & Nunes, A. P. F. (2011) Evaluation of the synergistic potential of vancomycin combined with other antimicrobial agents against methicillin-resistant Staphylococcus aureus and coagulase-negative Staphylococcus spp strains. Mem Inst Oswaldo Cruz. 106(1), 44-50.

Smith, M., Jordan, D., Chapman, T., Chin, J.-C., Barton, M., Do, T., Fahy, V., Fairbrother, J., & Trott, D. (2010) Antimicrobial resistance and virulence gene profiles in multi-drug resistant enterotoxigenic Escherichia coli isolated from pigs with post-weaning diarrhoea. Vet Microbiol. 145(3-4), 299-307.

Stoodley, P., Cargo, R., Rupp, C. J., Wilson, S., & Klapper, I. (2002) Biofilm material properties as related to shear-induced deformation and detachment phenomena. J Ind Microbiol Biotechnol. 29(6), 361-367.

Sutherland, I. W. (1999) Polysaccharases for microbial exopolysaccharides. Carbohydr Polym. 38(4), 319-328.

Talaro, K. P., & Chess, B. (2008). Foundations in microbiology 8th Ed. . McGraw Hill, New York.
Tamba, Y., & Yamazaki, M. (2009) Magainin 2-induced pore formation in the lipid membranes depends on its concentration in the membrane interface. J Phys Chem B. 113(14), 4846-4852.
Vannuffel, P., & Cocito, C. (1996) Mechanism of action of streptogramins and macrolides. Drugs. 51(1), 20-30.

Vasudevan, R. (2014) Biofilms: microbial cities of scientific significance. J Microbiol Exp 1(3), 00014.

Ventola, C. L. (2015) The antibiotic resistance crisis: part 1: causes and threats. P T. 40(4), 277.

Whipp, S. C., Moon, H. W., & Argenzio, R. A. (1981) Comparison of enterotoxic activities of heat-stable enterotoxins from class 1 and class 2 Escherichia coli of swine origin. Infect Immun. 31(1), 245-251.

Wright, G. D. (2010) Q&A: Antibiotic resistance: where does it come from and what can we do about it? BMC Biol. 8(1), 123.

Xie, W. Y., Shen, Q., & Zhao, F. (2018) Antibiotics and antibiotic resistance from animal manures to soil: a review. EUR J SOIL SCI. 69(1), 181-195.

Yeaman, M., & Yount, N. (2003) Mechanisms of antimicrobial peptide action and resistance. Pharmacol Rev.. 55(1), 27-55.

Yeung, A. T., Gellatly, S. L., & Hancock, R. E. (2011) Multifunctional cationic host defence peptides and their clinical applications. Cell Mol Life Sci. 68(13), 2161.

Zavascki, A. P., Goldani, L. Z., Li, J., & Nation, R. L. (2007) Polymyxin B for the treatment of multidrug-resistant pathogens: a critical review. J Antimicrob Chemother. 60(6), 1206-1215.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊