跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.119) 您好!臺灣時間:2025/11/24 13:33
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:施智仁
研究生(外文):Zhi-Ren Shi
論文名稱:以Maxwell 3D 協助用於非導磁鍋具之電磁爐研製
論文名稱(外文):Design and Implementation of Induction Cooker for Non-Magnetic Pot Assisted by Maxwell 3D
指導教授:黃明熙
指導教授(外文):Ming-Shi Huang
口試委員:林法正賴炎生
口試日期:2018-07-06
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:電機工程系電力電子產業碩士專班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2018
畢業學年度:106
語文別:中文
論文頁數:80
中文關鍵詞:降壓轉換器半橋串聯諧振電路Maxwell 3D非導磁鍋具電磁爐
外文關鍵詞:Buck ConverterHalf Bridge Series Resonant ConverterMaxwell 3DNon-magnetic Material PanInduction Cooker
相關次數:
  • 被引用被引用:5
  • 點閱點閱:251
  • 評分評分:
  • 下載下載:17
  • 收藏至我的研究室書目清單書目收藏:0
感應加熱可用於多種不同之領域,其中用於烹飪即為電磁爐,電磁爐相較傳統加熱擁有高加熱效率與高安全性。本文針對用於非導磁鍋具之電磁爐進行設計,包含轉換器及感應線圈。非導磁鍋具是以渦流效應進行加熱,因此等效加熱電阻低需以大電流來提供加熱功率;另外,亦存在加熱效率低及與線圈/鍋具間電氣參數計算不易等問題。基此,使用Ansys Maxwell 3D軟體協助線圈及諧振槽電路設計並以銅鍋作為測試載具;首先估算銅鍋等效加熱電阻,隨後以加熱功率及效率為依據,選配最佳線圈匝數並估算該線圈於安置鍋具之等效電感。為降低損失使用0.05mm/4800股Litz線繞製線圈並以阻抗分析儀量測線圈電阻與頻率關係,而最佳諧振頻率是以諧振電路與銅鍋加熱效率最大化及加熱功率最大化來決定。經由上述方法取得電氣參數來建構模擬環境,以分析諧振電路特性做為控制策略設計之參考。
所提轉換器是由三級電路串接,依序為全波整流、降壓轉換器及半橋諧振電路;由於銅鍋之低等效電阻及高Q值特性,使諧振電路存在較高的電流對頻率之斜率,因此諧振電路是以固定頻率輸出來提供穩定之諧振槽電流,而以降壓轉換器經由調控輸出電壓來間接調整諧振槽電流大小,可避免因工作頻率解析度不足而造成音頻噪音。另外,提出諧振頻率偵測方法,對不同尺寸鍋具或因鍋具改變放置線圈上之位置所形成之諧振頻率進行偵測,以提供適合操作頻率;除此亦可作為移鍋偵測以降低電磁爐之安全疑慮。為提供加熱功率控制,因此提出經由降壓轉換器輸出功率、諧振槽損失及以諧振電流之峰值來估算銅鍋功率作為回授。
最後以數位訊號處理器TMS320F28075做為控制核心,建構輸出電流為100Arms之半橋諧振電路,並以AWG44/4800股Litz線(線徑為AWG4)繞製線圈,分別針對101kHz及189kHz之諧振頻率並參考EN 60350-2:2013及ASTM F1521-12標準對銅鍋加熱,以說明諧振頻率對加熱效率之影響,其中101kHz諧振頻率有較佳的加熱效率(60.3%, 520W)。除此,亦由卡路里計及阻抗分析量測儀之量測結果與Maxwell 3D 模擬結果比較,可發現於所提電磁爐之諧振電感值及等效加熱電阻值皆相當吻合。
Induction heating can be used in many different fields and the equipment for cooking food is called induction cooker. The induction cooker provides both the higher efficiency and more safety compared with the traditional heating methods. The objective of this thesis is focused on the design of induction cooker for the non-ferromagnetic material pan including the power converters and heating coil. Since the non-ferromagnetic pan is heated by eddy current which leads to low equivalent heating resistance, the pan needs larger current to fulfil enough power for heating. Moreover, there exists inherent problems such as low efficiency and that electric parameters between pan and heating coil are not easy to measure. Hence, the simulation software Ansys Maxwell 3D is adopted to assist design of heating coil for resonant circuit and a copper pan is used for design and test. To start with, the equivalent heating resistance of copper pan is estimated by Maxwell 3D. Then the optimal turns of heating coil is selected according to the heating power and efficiency. In the end, the equivalent inductance including heating coil and pan, which puts in heating coil, are estimated. In order to reduce the loss of heating coil caused by skin effect, the heating coil is made up of 0.05 mm/4800 strands Litz wire and the relation between resistance and frequency of coil is measured by impedance analyzer. Furthermore, the optimal resonant frequency of the converter is determined by maximizing heating power and heating efficiency. The electric parameters are obtained through above methods to construct the simulation environment. Hence, the characteristics of the resonant circuit are analyzed which can be used for the design of control strategy.
The proposed converter is cascaded by three stages, which are full-wave rectifier, Buck converter and half-bridge resonant converter. Due to the low heating equivalent resistance and high quality factor(Q) of the copper pan, it exists high slope ratio between resonant current and frequency. Hence the resonant circuit is operated with fixed switching frequency to achieve stable resonant current. Then the amplitude of resonant current flowing can be controlled by adjusting dc link voltage, which can prevent the noise caused by insufficient resolution of switching frequency. Moreover, the thesis proposed a resonant frequency estimated method to detect currently resonant frequency for different materials of pan, pan size and the position of pan on heating coil. Thereby, that suitable switching frequency for heating pan can be selected. In addition, the proposed method can be used for moving detection of pan during heating to reduce the safety concern. In order to control the heating power, this thesis also proposed a power control strategy with an estimated heating power as feedback signal, which is calculated by buck converter output power, resonant tank loss and resonant peak current.
Finally, a DSP-based controller TMS320F28075 is used to fulfil a half-bridge series resonant converter with 100Arms output current. Moreover, the heating coil is 15 turns which are made up of equivalent #4 AWG, 4800-stranded #AWG 44 Litz wire. Then, a copper pan is tested and the heating power is measured by Calorie meter according to the regulations of EN 60350-2:2013 and ASTM F1521-12 at 101kHz and 189kHz operating frequency. The measured results show that operating frequency do influence heating efficiency and the heating efficiency is better under 101kHz test condition (60.3%, 520W). In addition, the measured results by Calorie meter and impedance analyzer are compared with simulated results by Maxwell 3D, which show good match in values of resonant inductance and equivalent heating resistance for the induction cooker.
摘 要 i
ABSTRACT iii
誌 謝 vi
目 錄 vii
表目錄 ix
圖目錄 x
第一章 緒論 1
1.1研究背景 1
1.2文獻探討 5
1.2.1電磁爐之相關控制及應用 7
1.2.2非導磁材料鍋具加熱系統架構比較 9
1.2.3電磁爐相關測試法規 12
1.3研究內容 14
1.4論文架構 18
第二章 感應加熱原理 19
2.1前言 19
2.2感應加熱原理 19
2.3線圈於高頻下之效應 22
2.3.1趨膚效應 22
2.3.2鄰近效應 23
2.4ANSYS Maxwell 3D分析 25
2.4線圈設計與製作 30
第三章 電磁爐電路研製 34
3.1半橋串聯諧振電路設計 35
3.1.1電路分析 35
3.1.2電磁爐之等效電路 36
3.1.3諧振槽特性分析 38
3.1.4諧振槽電路設計 40
3.1.5控制架構 43
3.2降壓轉換器設計 45
3.2.1控制架構 47
3.3不同諧振頻率之效率分析 49
3.4諧振點估測 51
3.5功率控制策略 53
第四章 實驗結果與討論 55
4.1量測設置 55
4.2串聯諧振電路 57
4.3降壓轉換器 65
4.4功率控制 69
第五章 結論與未來展望 72
5.1結論 72
5.2未來研究方向 73
參考文獻 74
符號彙編 78
[1]Ó. Lucía, P. Maussion, E. J. Dede, and J. M. Burdío, “Induction Heating Technology and Its Applications: Past Developments, Current Technology, and Future Challenges,” IEEE Trans. Ind. Electron., vol. 61, no. 5, pp. 2509-2520, May, 2014.
[2]Electrification Futures Study: End-Use Electric Technology Cost and Performance Projections through 2050. [Online]. Available:
https://www.nrel.gov/docs/fy18osti/70485.pdf
[3]Induction cooktops [Online]. Available:
https://www.electroluxappliances.ca/Kitchen-Appliances/cooktops/
[4]What is induction? [Online]. Available: http://www.sarvotech.com/induction.html
[5]Cooktop comparison: Gas, electric and induction. [Online]. Available: https://www.
bijlibachao.com/appliances/cooktop-comparison-gas-electric-and-induction.html
[6]內政統計通報106年第28週。 [Online]. Available:
https://www.moi.gov.tw/files/news_file/week10628.pdf
[7]中華民國內政部營建署。 [Online]. Available: https://www.cpami.gov.tw/
[8]東京消防廳,高層建築的防火安全措施。 [Online]. Available:
[9]什麼是電氣化住宅? [Online]. Available: https://hanshindenka.com
[10]A. Amrhein, and J. Lai, “A Transformer-Coupled, Series-Resonant Topology for The Induction Heating of Aluminum Cookware,” ICPE-ECCE Asia, 2015, pp. 1234-1239.
[11]H. Park, and J. Jung, “Load Adaptive Modulation of Series Resonant Inverter for All-Metal Induction Heating Applications,” IEEE Trans. Ind. Electron., vol. 65, no. 9, pp. 6983-6993, Jan, 2018.
[12]Y. Kwon, S. Yoo, and D. Hyun, “Half-Bridge Series Resonant Inverter for Induction Heating Applications with Load-Adaptive PFM Control Strategy,” IEEE Applied Power Electron. Conf. and Expo., vol. 1, pp. 575-581, Mar. 1999.
[13]安東尼廚房。 [Online]. Available: http://anthony0520.pixnet.net/blog/post/63479944
[14]Ó. Lucía, J. Acero, C. Carretero, and J. M. Burdio, “Induction Heating Appliances: Toward More Flexible Cooking Surfaces,” IEEE Ind. Electron. Mag., vol. 7, no. 3, pp. 35-47, Sept, 2013.
[15]I. Millan, D. Puyal, J. M. Burdio, J. Acero, and S. Llorente, “Resonant Inverter Topology for All-Metal Domestic Induction Heating,” IEEE International Symposium on Ind. Electron., 2007, pp. 913-918.
[16]Theory of heating by induction - ASM International [Online]. Available: https://www.asminternational.org/
[17]P. Viriya, S. Sittichok, and K. Matsuse, “Analysis of High-Frequency Induction Cooker with Variable Frequency Power Control,” PCC Osaka, 2002, vol. 3, pp. 1502-1507.
[18]J. Jittakort, S. Yachiangkam, A. Sangswang, S. Naetiladdanon, S. Chudjuarjeen, and C. Koompai, “A Variable-frequency Asymmetrical Voltage-cancellation Control of Series Resonant Inverters in Domestic Induction Cooking,” ICPE-ECCE Asia, 2011, pp. 2320-2327.
[19]S. Yachiangkam, A. Sangswang, and S. Naetiladdanon, “A Comparison of Asymmetrical Control Strategies for Domestic Induction Cooking Applications with Low-Quality Factor Loads,” 2016 13th ECTI-CON, 2016, pp. 1-6.
[20]I. Millán, J. M. Burdío, J. Acero, Ó. Lucía, and S. Llorente, “Series Resonant Inverter with Selective Harmonic Operation Applied to All-Metal Domestic Induction Heating,” IET Power Electron., vol. 4, no. 5, pp. 587-592, May, 2011.
[21]Induction heating coil [Online]. Available:
http://www.totoku.com/products/coils/cat2/induction-heating-coil.php
[22]M. Pérez-Tarragona, H. Sarnago, Ó. Lucía, and J. M. Burdio, “Design and Experimental Analysis of PFC Rectifiers for Domestic Induction Heating Applications,” IEEE Trans. Power Electron., vol. 33, no. 8, pp. 6585-6594, Sept, 2017.
[23]M. Pérez-Tarragona, H. Sarnago, Ó Lucía, and J. M. Burdío, “Full-bridge Series Resonant Multi-inverter Featuring New 900-V SiC Devices for Improved Induction Heating Appliances,” 2016 IEEE APEC, 2016, pp. 1762-1766.
[24]M. Pérez-Tarragona, H. Sarnago, Ó Lucía, and J. M. Burdío, “Soft-Transient Modulation Strategy for Improved Efficiency and EMC Performance of PFC Converters Applied to Flexible Induction Heating Appliances,” 2018 IEEE APEC, 2018, pp. 3530-3534.
[25]F. Sanz, C. Sagues, and S. Llorente “Induction Heating Appliance With a Mobile Double-Coil Inductor,” IEEE Trans. Ind. Appl., vol. 51, no. 3, pp. 1945-1952, Nov, 2014.
[26]Panasonic takes induction to the next level [Online]. Available:
https://www.sefa.com/panasonic-takes-induction-next-level/
[27]張群,以氮化鎵功率晶體研製用於電磁爐之諧振轉換器,碩士論文,國立台北科技大學電機工程研究所,台北,2017。
[28]Energy conservation program: Test procedures for cooking products [Online]. Available: https://www.energy.gov/sites/prod/files/2016/11/f34/Cooking_Products_TP_Final_Rule.pdf
[29]ASTM Compass [Online]. Available: http://compass.astm.org
[30]H. Sarnago, J. M. Burdio, and Ó. Lucía, “High Performance and Cost Effective ZCS Matrix Resonant Inverter for Total Active Surface Induction Heating Appliances,” IEEE Trans. Power Electron., 2018, pp. 1-1.
[31]S. Zinn and S. L. Semiatin, Elements of Induction Heating: Design, Control, and Applications, Norwell: ASM International 1988.
[32]How induction stoves work: How the heat happens [Online]. Available:
https://www.popularmechanics.com
[33]李政峰,具負載電流估測之無線能量傳輸系統研製,碩士論文,國立台北科技大學電機工程研究所,台北,2017。
[34]宮崎技術研究所。[Online]. Available: http://www.miyazaki-gijutsu.com/
[35]M. Hediehloo, and M. Akhbari, “New Approach in Design of Planar Coil of Induction Cooker Based on Skin and Proximity Effects Analysis,” IEEE International Conf. on Ind. Technology, 2009, pp. 1-6.
[36]The worlds largest manufacturer of fine enameled copper wire [Online]. Available:
https://www.elektrisola.com/en/home.html
[37]Energy research for application [Online]. Available: http://www.bine.info/en/topics/
[38]Analysis of impedance-frequency characteristics of a cable [Online]. Available:
https://www.jmag-international.com/catalog/
[39]Epoxies [Online]. Available: https://www.epoxies.com/products/ul-listed/
[40]S. T. Karris, Signals and Systems with MATLAB Applications, Norwell: Orchard, 2003.
[41]Z. Liou, “High Frequency Inverter Power Stage Design Considerations for Non-Magnetic Materials Induction Cooking,” Master thesis, Bradley Department of Electrical and Computer Engineering, Virginia Tech, Blacksburg, VA, 2011.
[42]G. C. Hsieh, C. Y. Tsai, and W. L. Hsu, “Synchronous Rectification LLC Series-Resonant Converter,” 22nd Annual IEEE APEC, 2007, pp. 1003-1009.
[43]TI TMS320F28075 datasheet [Online]. Available:
http://www.ti.com/product/TMS320F28075
[44]R. W. Erickson, D. Maksimovic, Fundamentals of Power Electronics, 2nd ed. Norwell, MA: Kluwer, 2001
[45]TDK [Online]. Available: http://www.global.tdk.com/
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top