|
1.台灣癌症防治網[http://cisc.twbbs.org/lifetype/index.php?op=ViewArticle&articleId=1195&blogId=1]. 2.98年癌症登記報告[http://www.doh.gov.tw/ufile/doc/98%E7%99%BB%E8%A8%98%E8%80%85%E6%9C%83%E7%B0%A1%E5%A0%B1_%E5%AE%9A_1010621.pdf]. [cited 2012 0621]. 3.CANCER REGISTRY ANNUAL REPORT, 2008. TAIWAN. CANCER REGISTRY ANNUAL REPORT, 2008 TAIWAN, 2011. 4.Jemal, A., et al., Global cancer statistics. CA Cancer J Clin, 2011. 61(2): p. 69-90. 5.Ferlay, J., D.M. Parkin, and E. Steliarova-Foucher, Estimates of cancer incidence and mortality in Europe in 2008. Eur J Cancer, 2010. 46(4): p. 765-81. 6.Weinberg, R.A., The Biology Of Cancer. 2007: Garland Science. 7.Daraei, A., R. Salehi, and F. Mohamadhashem, DNA-methyltransferase 3B 39179 G > T polymorphism and risk of sporadic colorectal cancer in a subset of Iranian population. J Res Med Sci, 2011. 16(6): p. 807-13. 8.Sephton, S. and D. Spiegel, Circadian disruption in cancer: a neuroendocrine-immune pathway from stress to disease? Brain Behav Immun, 2003. 17(5): p. 321-8. 9.Pinczowski, D., et al., Risk factors for colorectal cancer in patients with ulcerative colitis: a case-control study. Gastroenterology, 1994. 107(1): p. 117-20. 10.Markowitz, S.D. and M.M. Bertagnolli, Molecular origins of cancer: Molecular basis of colorectal cancer. N Engl J Med, 2009. 361(25): p. 2449-60. 11.Cunningham, D., et al., Colorectal cancer. Lancet, 2010. 375(9719): p. 1030-47. 12.Birnbaum, D.J., et al., Expression Profiles in Stage II Colon Cancer According to APC Gene Status. Transl Oncol, 2012. 5(2): p. 72-6. 13.Davies, R.J., R. Miller, and N. Coleman, Colorectal cancer screening: prospects for molecular stool analysis. Nature reviews. Cancer, 2005. 5(3): p. 199-209. 14.Yang, J., et al., Adenomatous polyposis coli (APC) differentially regulates beta-catenin phosphorylation and ubiquitination in colon cancer cells. J Biol Chem, 2006. 281(26): p. 17751-7. 15.Weinstein, I.B., Cancer. Addiction to oncogenes--the Achilles heal of cancer. Science, 2002. 297(5578): p. 63-4. 16.Etienne-Grimaldi, M.C., et al., K-Ras mutations and treatment outcome in colorectal cancer patients receiving exclusive fluoropyrimidine therapy. Clin Cancer Res, 2008. 14(15): p. 4830-5. 17.van Wyk, R., et al., Somatic mutations of the APC, KRAS, and TP53 genes in nonpolypoid colorectal adenomas. Genes Chromosomes Cancer, 2000. 27(2): p. 202-8. 18.Martin, G.S., Cell signaling and cancer. Cancer Cell, 2003. 4(3): p. 167-74. 19.Corcoran, R.B., J. Settleman, and J.A. Engelman, Potential therapeutic strategies to overcome acquired resistance to BRAF or MEK inhibitors in BRAF mutant cancers. Oncotarget, 2011. 2(4): p. 336-46. 20.De Roock, W., et al., KRAS, BRAF, PIK3CA, and PTEN mutations: implications for targeted therapies in metastatic colorectal cancer. Lancet Oncol, 2011. 12(6): p. 594-603. 21.Montagut, C. and J. Settleman, Targeting the RAF-MEK-ERK pathway in cancer therapy. Cancer Lett, 2009. 283(2): p. 125-34. 22.Young, A., et al., Ras signaling and therapies. Adv Cancer Res, 2009. 102: p. 1-17. 23.Golsteyn, R.M., The story of gefitinib, an EGFR kinase that works in lung cancer. Drug Discov Today, 2004. 9(14): p. 587. 24.Davies, H., et al., Mutations of the BRAF gene in human cancer. Nature, 2002. 417(6892): p. 949-54. 25.Xu, H., et al., Epidermal growth factor receptor (EGFR)-related protein inhibits multiple members of the EGFR family in colon and breast cancer cells. Mol Cancer Ther, 2005. 4(3): p. 435-42. 26.Wang, L., et al., BRAF mutations in colon cancer are not likely attributable to defective DNA mismatch repair. Cancer Res, 2003. 63(17): p. 5209-12. 27.Di Nicolantonio, F., et al., Wild-type BRAF is required for response to panitumumab or cetuximab in metastatic colorectal cancer. J Clin Oncol, 2008. 26(35): p. 5705-12. 28.Fang, J.Y. and B.C. Richardson, The MAPK signalling pathways and colorectal cancer. Lancet Oncol, 2005. 6(5): p. 322-7. 29.Messa, C., et al., EGF, TGF-alpha, and EGF-R in human colorectal adenocarcinoma. Acta Oncol, 1998. 37(3): p. 285-9. 30.Mayer, A., et al., The prognostic significance of proliferating cell nuclear antigen, epidermal growth factor receptor, and mdr gene expression in colorectal cancer. Cancer, 1993. 71(8): p. 2454-60. 31.Van Cutsem, E., et al., Cetuximab plus irinotecan, fluorouracil, and leucovorin as first-line treatment for metastatic colorectal cancer: updated analysis of overall survival according to tumor KRAS and BRAF mutation status. J Clin Oncol, 2011. 29(15): p. 2011-9. 32.Giuliani, F. and G. Colucci, Cetuximab in colon cancer. Int J Biol Markers, 2007. 22(1 Suppl 4): p. S62-70. 33.Ciardiello, F., et al., Antitumor activity of sequential treatment with topotecan and anti-epidermal growth factor receptor monoclonal antibody C225. Clin Cancer Res, 1999. 5(4): p. 909-16. 34.Pao, W., et al., EGF receptor gene mutations are common in lung cancers from "never smokers" and are associated with sensitivity of tumors to gefitinib and erlotinib. Proc Natl Acad Sci U S A, 2004. 101(36): p. 13306-11. 35.Yu, Z., et al., Novel irreversible EGFR tyrosine kinase inhibitor 324674 sensitizes human colon carcinoma HT29 and SW480 cells to apoptosis by blocking the EGFR pathway. Biochem Biophys Res Commun, 2011. 411(4): p. 751-6. 36.Rocha-Lima, C.M., et al., EGFR targeting of solid tumors. Cancer Control, 2007. 14(3): p. 295-304. 37.Emery, C.M., et al., MEK1 mutations confer resistance to MEK and B-RAF inhibition. Proc Natl Acad Sci U S A, 2009. 106(48): p. 20411-6. 38.Dunn, E.F., et al., Dasatinib sensitizes KRAS mutant colorectal tumors to cetuximab. Oncogene, 2011. 30(5): p. 561-74. 39.Kertesz, M., et al., The role of site accessibility in microRNA target recognition. Nat Genet, 2007. 39(10): p. 1278-84. 40.Winter, J., et al., Many roads to maturity: microRNA biogenesis pathways and their regulation. Nat Cell Biol, 2009. 11(3): p. 228-34. 41.Griffiths-Jones, S., et al., miRBase: tools for microRNA genomics. Nucleic Acids Res, 2008. 36(Database issue): p. D154-8. 42.Friedman, R.C., et al., Most mammalian mRNAs are conserved targets of microRNAs. Genome Res, 2009. 19(1): p. 92-105. 43.Brennecke, J., et al., Principles of microRNA-target recognition. PLoS Biol, 2005. 3(3): p. e85. 44.Krek, A., et al., Combinatorial microRNA target predictions. Nat Genet, 2005. 37(5): p. 495-500. 45.Nielsen, C.B., et al., Determinants of targeting by endogenous and exogenous microRNAs and siRNAs. RNA, 2007. 13(11): p. 1894-910. 46.Grimson, A., et al., MicroRNA targeting specificity in mammals: determinants beyond seed pairing. Mol Cell, 2007. 27(1): p. 91-105. 47.Schickel, R., et al., MicroRNAs: key players in the immune system, differentiation, tumorigenesis and cell death. Oncogene, 2008. 27(45): p. 5959-74. 48.Garzon, R., et al., MicroRNA expression and function in cancer. Trends Mol Med, 2006. 12(12): p. 580-7. 49.Ambros, V., The functions of animal microRNAs. Nature, 2004. 431(7006): p. 350-5. 50.Tsuchida, A., et al., miR-92 is a key oncogenic component of the miR-17-92 cluster in colon cancer. Cancer Sci, 2011. 102(12): p. 2264-71. 51.Graziano, F., et al., Genetic modulation of the Let-7 microRNA binding to KRAS 3''-untranslated region and survival of metastatic colorectal cancer patients treated with salvage cetuximab-irinotecan. Pharmacogenomics J, 2010. 10(5): p. 458-64. 52.Akao, Y., Y. Nakagawa, and T. Naoe, MicroRNAs 143 and 145 are possible common onco-microRNAs in human cancers. Oncol Rep, 2006. 16(4): p. 845-50. 53.Bandres, E., et al., MicroRNAs as cancer players: potential clinical and biological effects. DNA Cell Biol, 2007. 26(5): p. 273-82. 54.Chang, H., RNAi-mediated knockdown of target genes: a promising strategy for pancreatic cancer research. Cancer Gene Ther, 2007. 14(8): p. 677-85. 55.Nie, J., et al., microRNA-365, down-regulated in colon cancer, inhibits cell cycle progression and promotes apoptosis of colon cancer cells by probably targeting Cyclin D1 and Bcl-2. Carcinogenesis, 2012. 33(1): p. 220-5. 56.Li, C., et al., Therapeutic microRNA strategies in human cancer. AAPS J, 2009. 11(4): p. 747-57. 57.Mosakhani, N., et al., MicroRNA profiling differentiates colorectal cancer according to KRAS status. Genes Chromosomes Cancer, 2012. 51(1): p. 1-9. 58.Estep, A.L., et al., Mutation analysis of BRAF, MEK1 and MEK2 in 15 ovarian cancer cell lines: implications for therapy. PLoS One, 2007. 2(12): p. e1279. 59.Geer, L.Y., et al., The NCBI BioSystems database. Nucleic Acids Res, 2010. 38(Database issue): p. D492-6. 60.Chen, C., et al., Real-time quantification of microRNAs by stem-loop RT-PCR. Nucleic Acids Res, 2005. 33(20): p. e179. 61.Chan, T.L., et al., BRAF and KRAS mutations in colorectal hyperplastic polyps and serrated adenomas. Cancer Res, 2003. 63(16): p. 4878-81. 62.Farrell, C., et al., Somatic mutations to CSMD1 in colorectal adenocarcinomas. Cancer Biol Ther, 2008. 7(4): p. 609-13. 63.Oliveira, C., et al., BRAF mutations characterize colon but not gastric cancer with mismatch repair deficiency. Oncogene, 2003. 22(57): p. 9192-6. 64.Oikonomou, E., et al., Selective BRAFV600E inhibitor PLX4720, requires TRAIL assistance to overcome oncogenic PIK3CA resistance. PLoS One, 2011. 6(6): p. e21632. 65.Ikehara, N., et al., BRAF mutation associated with dysregulation of apoptosis in human colorectal neoplasms. Int J Cancer, 2005. 115(6): p. 943-50. 66.Wan, J., et al., Detection of K-ras gene mutation in fecal samples from elderly large intestinal cancer patients and its diagnostic significance. World J Gastroenterol, 2004. 10(5): p. 743-6. 67.Gan, Y., et al., Differential roles of ERK and Akt pathways in regulation of EGFR-mediated signaling and motility in prostate cancer cells. Oncogene, 2010. 29(35): p. 4947-58. 68.Hennessy, B.T., et al., Exploiting the PI3K/AKT pathway for cancer drug discovery. Nature reviews. Drug discovery, 2005. 4(12): p. 988-1004. 69.Ryan Bruce Corcoran, H.E., David P. Ryan, Jeffrey A. Meyerhardt, Jeffrey A. Engelman, Relationship of incomplete inhibition of PI3K pathway signaling and efficacy of cetuximab in KRAS wild-type colorectal cancers. J Clin Oncol, 2012. 30: p. (suppl 4; abstr 462). 70.Cho, H.J., et al., Snail is required for transforming growth factor-beta-induced epithelial-mesenchymal transition by activating PI3 kinase/Akt signal pathway. Biochem Biophys Res Commun, 2007. 353(2): p. 337-43. 71.Wada, T. and J.M. Penninger, Mitogen-activated protein kinases in apoptosis regulation. Oncogene, 2004. 23(16): p. 2838-49. 72.Knuefermann, C., et al., HER2/PI-3K/Akt activation leads to a multidrug resistance in human breast adenocarcinoma cells. Oncogene, 2003. 22(21): p. 3205-12. 73.Feng, M., et al., Myc/miR-378/TOB2/cyclin D1 functional module regulates oncogenic transformation. Oncogene, 2011. 30(19): p. 2242-51. 74.Lee, D.Y., et al., MicroRNA-378 promotes cell survival, tumor growth, and angiogenesis by targeting SuFu and Fus-1 expression. Proc Natl Acad Sci U S A, 2007. 104(51): p. 20350-5. 75.Wajapeyee, N., et al., Oncogenic BRAF induces senescence and apoptosis through pathways mediated by the secreted protein IGFBP7. Cell, 2008. 132(3): p. 363-74. 76.Sharma, R.I. and T.A. Smith, Colorectal tumor cells treated with 5-FU, oxaliplatin, irinotecan, and cetuximab exhibit changes in 18F-FDG incorporation corresponding to hexokinase activity and glucose transport. J Nucl Med, 2008. 49(8): p. 1386-94. 77.Balin-Gauthier, D., et al., In vivo and in vitro antitumor activity of oxaliplatin in combination with cetuximab in human colorectal tumor cell lines expressing different level of EGFR. Cancer Chemother Pharmacol, 2006. 57(6): p. 709-18. 78.Rossi, L., E. Bonmassar, and I. Faraoni, Modification of miR gene expression pattern in human colon cancer cells following exposure to 5-fluorouracil in vitro. Pharmacol Res, 2007. 56(3): p. 248-53. 79.Bild, A.H., et al., Oncogenic pathway signatures in human cancers as a guide to targeted therapies. Nature, 2006. 439(7074): p. 353-7. 80.Prahallad, A., et al., Unresponsiveness of colon cancer to BRAF(V600E) inhibition through feedback activation of EGFR. Nature, 2012. 483(7387): p. 100-3. 81.Rinaldi, F., E. George, and A.I. Adler, NICE guidance on cetuximab, bevacizumab, and panitumumab for treatment of metastatic colorectal cancer after first-line chemotherapy. Lancet Oncol, 2012. 13(3): p. 233-4. 82.Tol, J., et al., Chemotherapy, bevacizumab, and cetuximab in metastatic colorectal cancer. N Engl J Med, 2009. 360(6): p. 563-72.
|