跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.208) 您好!臺灣時間:2025/10/02 11:46
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:高安琪
研究生(外文):An-Chi Kao
論文名稱:建構和評估Gellan gum/ Graphene薄膜作為傷口敷料之可行性
論文名稱(外文):The fabrication and evaluation of a film composed with Gellan gum/ Graphene for wound healing
指導教授:李明偉李明偉引用關係
指導教授(外文):Ming-Wei Lee
學位類別:碩士
校院名稱:中山醫學大學
系所名稱:醫學檢驗暨生物技術學系碩士班
學門:醫藥衛生學門
學類:醫學技術及檢驗學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:56
相關次數:
  • 被引用被引用:0
  • 點閱點閱:249
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本實驗利用結冷膠(Gellan gum、GG)混合石墨烯(Graphene、GO)研製出一種新的具有可降解性、保濕性的傷口敷料,促進傷口癒合。結冷膠是一種陰離子多醣體,具有獨特的生物相容性和價格便宜的特性。石墨烯是一種碳原子的單層薄片,具有獨特的熱、機械性質和電子的特性。結冷膠與石墨烯混合採兩種方式進行,一是將結冷膠和石墨烯混合製膜,二是將石墨烯散佈在結冷膠膜表面,經過交聯作用後而製成GGM和GGS薄膜。薄膜經交聯後,在含膠量和含水量的實驗結果顯示,石墨烯存在不影響交聯結果,GGM的含膠量為63.97%,含水量為94.27%;GGS的含膠量為60.82%,含水量為95.72%。在抗菌實驗的結果顯示,添加石墨烯於結冷膠表面或是混合成薄膜,對於傷口的抗菌效果並不明顯。由動物實驗結果顯示,GGM、GGS薄膜,能夠有效的促進傷口癒合,GGM在術後3、7、14天,傷口癒合程度達25.85%、45.18%、88.98%;GGS在術後3、7、14天,傷口癒合程度達20.85%、36.88%、75.38%,並且改善敷料更換時對於傷口二次傷害的缺點。

In this study we prepared thick films of Gellan gum (GG)/ Graphene (GO) for wound-dressing applications. Gellan gum, an anion polysaccharide, it has biocompatibility and low production cost. Graphene, a single-atom-thick of carbon atoms, it possesses thermal, mechanical, and electrical properties. The applied film was fabricated using two different methods. The first method used of gellan gum mixed with graphene and reacted with 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC) to obtain a cross-linked film (GGM). The second method that of the prepared graphene is spray on gellan gum film, and then through EDC cross-linking to form the GGS film. The GGM with 63.97% gel content and 94.27% water content. The GGS with 60.82% gel content and 95.72% water content. Antimicrobial susceptibility test has resulted that GGM and GGS without effective antimicrobials for prevention and treatment of infections. Animal wound healing study, on day3, 7, 14, after surgery, the wound size reduction (%) in the GGM-treated group was 25.85%、45.18%、88.98%. On day3, 7, 14, after surgery, the wound size reduction (%) in the GGS-treated group was 20.85%、36.88%、75.38%. Thus, the GGM, GGS films developed in this study has potential for future use in surgical applications.

論文電子檔著作權授權書 i
論文口試委員審定書 ii
致謝 iii
中文摘要 iv
Abstract v
目錄 vi
圖目錄 ix
第一章、緒論 1
1.1 傷口癒合的機制 1
1.2 現行敷料的種類與優缺點 7
1.3 結冷膠的性質/應用 9
1.4 石墨烯的性質/應用 12
第二章、研究動機 15
第三章、材料與方法 17
3.1儀器設備與藥品 17
3.2 實驗項目流程圖 19
3.3 實驗方法 20
3.3.1 結冷膠薄膜的製備 20
3.3.2 結冷膠/石墨烯薄膜的製備(混合) 20
3.3.3 石墨烯散布在結冷膠膜表面之製備(表面) 20
3.3.4 結冷膠/石墨烯薄膜的交聯 21
3.3.5 結冷膠/石墨烯薄膜的元素分析 21
3.3.6 結冷膠/石墨烯薄膜的含膠量(Gel content)測試 21
3.3.7 結冷膠/石墨烯薄膜的含水量(Water content)測試 22
3.3.8 抗菌試驗 22
3.3.9動物實驗 23
第四章、結果與討論 25
4.1 結冷膠/石墨烯薄膜之巨觀圖 25
4.2結冷膠/石墨烯的FTIR分析結果 26
4.3 結冷膠/石墨烯SEM 表面型態 28
4.4 結冷膠/石墨烯薄膜的含膠量 33
4.5 結冷膠/石墨烯薄膜的含水量 35
4.6 結冷膠/石墨烯薄膜抗菌性 37
4.7 結冷膠/石墨烯膜對於傷口癒合的觀察 39
4.8 傷口組織的組織切片 42
第五章、討論 47
第六章、結論 48
第七章、參考文獻 48



圖 1:傷口癒合的過程 4
圖 2:傷口癒合過程中細胞反應 5
圖 3:結冷膠的結構 11
圖 4:結冷膠/石墨烯薄膜之巨觀圖 25
圖 5:結冷膠薄膜在交聯前後的FTIR分析圖 27
圖 6: GGS之表面型態 29
圖 7 :GGS薄膜之元素分析 30
圖 8: GGM之表面型態 31
圖 9 :GGM薄膜之元素分析 32
圖 10 :結冷膠/石墨烯薄膜交聯後的含膠量(Gel content) 34
圖 11 :結冷膠/石墨烯薄膜交聯後的含水量(Water content)測試36
圖 12 :結冷膠/石墨烯抗菌圈試驗 38
圖 13:傷口癒合巨觀圖 40
圖 14:傷口癒合程度統計表 41
圖 15:傷口癒合實驗的組織切片圖(H&E stain) 43














圖目錄
圖 1:傷口癒合的過程……………………………………………….4
圖 2:傷口癒合過程中細胞反應……………………….…………....5
圖 3:結冷膠的結構…………………………………………………11
圖 4:結冷膠/石墨烯薄膜之巨觀圖…………..……………………. 25
圖 5:結冷膠薄膜在交聯前後的FTIR分析圖 27
圖 6: GGS之表面型態 29
圖 7 :GGS薄膜之元素分析 30
圖 8: GGM之表面型態 31
圖 9 :GGM薄膜之元素分析 32
圖 10 :結冷膠/石墨烯薄膜交聯後的含膠量(Gel content) 34
圖 11 :結冷膠/石墨烯薄膜交聯後的含水量(Water content)測試 36
圖 12 :結冷膠/石墨烯抗菌圈試驗 38
圖 13:傷口癒合巨觀圖 40
圖 14:傷口癒合程度統計表 41
圖 15:傷口癒合實驗的組織切片圖(H&E stain) 43


1.Pauline Beldon. Basic science of wound healing. Surgery 28 (9):409-412, 2010.

2.Diegleman RF, Evans MC. Wound healing: an overview of acute, fibrotic and delayed healing. Frontiers in Bioscience 9:283-289, 2004.

3.Hunt TK, Van Winkle W. Normal repair. In: Hunt TK, Dunphy JE, eds. Fundamentals of wound management. New York: Appleton-Century-Crofts, 1997.

4.Sipos P, Gyory H, Hagymasi K, et al. Special wound healing methods used in ancient Egypt and the mythological background. World Journy of Surgery 28 (2):211-216, 2004.

5.Rogers AA, Walmsley RS, Rippon MG, et al. Adsorption of serum-derived proteins by primary dressings: implications for dressing adhesion to wounds. Journal Wound Care 8 (8):403-406, 1999.

6.Douglas Queen, Heather Orsted, Hiromi Sanada, et al. A dressing history. International Wound Journal (1):59-77, 2004.

7.Alvarez O. Moist environment for healing: matching the dressing to the wound. Ostomy Wound Manage 21:64-83, 1988.

8.Eaglstein WH. Moist wound healing with occlusive dressings: a clinical focus. Dermatol Surgery 27 (2):175-181, 2001.

9.Sibbald RG, Williamson D, Orsted HL. Preparing the wound bed — debridement, bacterial balance and moisture balance. Ostomy Wound Manage 46 (11):14-35, 2000.

10.Schultz GS, Sibbald RG, Falanga V, et al. Wound bed preparation: a systematic approach to wound management.Wound Repair and Regeneration Suppl 1:S1-28, 2003.

11.Shaw JE, Sicree RA, Zimmet PZ. Global estimates of the prevalence of diabetes for 2010 and 2030. Diabetes Research and Clinical Practice 87 (1):4-14, 2010.

12.Jo C Dumville, Sohan Deshpande, Susan O’Meara1, et al. Hydrocolloid dressings for healing diabetic foot ulcers, http://www.thecochranelibrary.com (2012)

13.Skorkowska-Telichowska K, Czemplik M, Kulma A. The local treatment and available dressings designed for chronic wounds. J Am Acad Dermatol 68 (4):117-126, 2013.
14.鄭佩綺,全球高階傷口敷料市場發展概況,http://ieknet.iek.org.tw (2010)

15.陳郁文,台灣先進傷口照護市場面面觀, http://investtaiwan.nat.gov.tw (2011)

16.Adamian, AA, Dobysh SV, Kilimchuk LE, et al. Development of new biologically active dressings and methodology oftheir use. Khirurgiia (Mosk) 12:10-14, 2004.

17.Payam Zahedi, Iraj Rezaeian, Seyed-Omid Ranaei-Siadat, et al. A review on wound dressings with an emphasis on electrospun nanofibrous polymeric bandages. Polymers for Advanced Technologies 21:77–95, 2010.

18.Livshits VS. Polymer dressings for wounds and burns (review). Pharmaceutical Chemistry Journal 22 (7):515-522, 1988.

19.Victoria J. Cornelius, Natasa Majcen, Martin J. Snowden, John C. Mitchell, Bojana Voncina. “Preparationof SMART wound dressings based on colloidal microgels and textile fibres,” SPIE International Symposium on Smart Materials, Australia, P11-13, 2006.

20.Seaman, S. Dressing selection in chronic wound management. Journal of the American Podiatric Medical Assocication 92 (1):24-33, 2002.

21.Joshua S Boateng, Kerr H Matthews, Howard NE Stevens. Wound healing dressings and drug delivery systems: a review. Journal of Pharmaceutical Science 97 (8):2892-2923, 2008.

22.Sawant SV, Sankpal SV, Jadhav KR, et al. Hydrogel as drug delivery system. Research Journal of Pharmacy and Technology 5: 561-569, 2012.

23.Whiting DR, Guariguata L, Weil C Sh. IDF Diabetes Atlas: global estimates of the prevalence of diabetes for 2011 and 2030. Diabetes Research and Clinical Practice 94 (3):311-321, 2011.

24.Liane IF Moura, Ana MA Dias, Eugenia Carvalh, et al. Recent advances on the development of wound dressings for diabetic foot ulcer treatment—A review. Acta Biomaterialia 9 (7):7093-7114, 2013.

25.Mogosanu GD, Popescu FC, Cristina Jana Busuioc, et al. Natural products locally modulators of the cellular response: therapeutic perspectivesin skin burns. Romanian Journal of Morphology and Embryol 53 (2):249-262, 2012.

26.Zilberman M, Elsner JJ. Antibiotic-eluting medical devices for various applications. Journal of Controlled Release 130 (3):202-215, 2008.

27.George Dan Mogos﹐ anua, Alexandru Mihai Grumezescu. Natural and synthetic polymers for wounds and burns dressing. International Journal of Pharmaceutics 463 (2):127-136, 2014.

28.Kerihuel JC. Effect of activated charcoal dressings on healing outcomes ofchronic wounds. Joural of Wound Care 19 (5):208-215, 2010.

29.Atiyeh BS, Hayek SN, Gunn SW. New technologies for burn wound closure and healing – review of the literature Burns 31 (8): 944-956, 2005.

30.Singh MR, Saraf S, Vyas A, et al. Innovative approaches inwound healing: trajectory and advances. Artif Cells Nanomed Biotechnol 41 (3):202-212, 2013.

31.Zahedi P, Rezaeian I, Ranaei-Siadat SO, et al. A review on wound dressings with an emphasis on electrospun nanofibrous polymericbandages. Polymers for Advance Technologies 21:77-95, 2010.

32.Zhong W, Xing, MM, Maibach HI. Nanofibrous materials for wound care.Cutan Ocul Toxicol 29 (3):143-152, 2010.

33.Huang S, Fu X. Naturally derived materials-based cell and drug deliverysystems in skin regeneration. Journal of Controlled Release 142:149-159, 2010.

34.Pietro Matricardi, Claudia Cencetti, Roberto Ria, Franco Alhaique, Tommasina Coviello. Preparation and Characterization of Novel Gellan Gum Hydrogels Suitable for Modified Drug Release 14 (9):3376-3391, 2009.

35.Edwin R. Morris , Katsuyoshi Nishinari , Marguerite Rinaudo. Gelation of gellan -A review. Food Hydrocolloids 28:373-411, 2012.

36.Tomasz Osmałek, Anna Froelich, Sylwia Tasarek. Application of gellan gum in pharmacy and medicine. International Journal of Pharmaceutics 466 (1-2):328-340, 2014.

37.Li C, Wang X, Chen F, et al. The antifungal activity of grapheme oxideesilver nanocomposites. Biomaterials 34 (15):3882-3890, 2013.

38.Kan Wang, Jing Ruan, Hua Song, et al. Biocompatibility of Graphene Oxide. nanoscale research letters 6 (8):1-8, 2011.

39.Jiaxing Huang,Laura J. Cote, Jeamyung Kim, et al.舊材料的新見解-氧化石墨烯之介面活性.工業材料雜誌291:123-134, 2011.

40.Bingan Lu, Ting Li, Haitao Zhao, et al . Graphene-based composite materials beneficial to wound healing. The Royal Society of Chemistry 4 (9):2978-2982, 2012.

41.Ping-Ping Zuo, Hua-Feng Feng, Zhi-Zhen Xu, et al. Fabrication of biocompatible and mechanically reinforced graphene oxide-chitosan nanocomposite films. Chemistry Central Journal 7 (39):1-11, 2013.

42.Kennedy JF, Knill CJ, Thorley M. Natural polymers for healing wounds. International Journal of Pharmaceutics 463 (2):127-136, 2013.

43.Mishra RK, Banthia AK, Majeed ABA. Pectin based formulations forbiomedical applications: a review. Asian Jouranl of Pharmaceutics and Clinical Research 5 (4):1-7, 2012.

44.Munarin F, Tanzi, MC, Petrini P. Advances in biomedical applications ofpectin gels. International Journal of Biology Macromolecules 51 (4):681-689, 2012.

45.CNR Rao, AK Sood, R Voggu. Some novel attributes of graphene, The Jounal of Physical Chemistry Letters 1 (2):572-580, 2010.

46.Andreia Fonseca de Fariaa, Diego Stefani Teodoro Martineza, Stela Maris Meister Meira, et al. Anti-adhesion and antibacterial activity of silver nanoparticles supported on graphene oxide sheets. Colloids and Surfaces B: Biointerfaces 113:115-124, 2014.
47.Yong qiang He, Nana Zhang, Qiaojuan Gong, et al. Alginate/graphene oxide fibers with enhanced mechanical strength prepared by wet spinning. Carbohydrate Polymers 88 (3):1100-1108, 2012.

48.Szu-Hsien Chen, Ching-Ting Tsao, Chih-Hao Chang, et al. Assessment of reinforced poly(ethylene glycol) chitosan hydrogels as dressings in a mouse skin wound defect model. Materials Science and Engineering C 33 (5) :2584-2594, 2013.

49.Ming-Wei Lee, Hui-Ju Chen, Shu-Wei Tsao. Preparation, characterization and biological properties of Gellan gum films with 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide cross-linker. Carbohydrate Polymers 82 920–926, 2010.

50.Elbadawy A. Kamoun, Xin Chen, Moharmed s, et al. Crosslinked poly(vinyl alcohol) hydrogels for wound dressing applications: A review of remarkably blended polymers. Arabian Journal of Chemistry 1-14, 2014.

51.Daichi Chikazua,Tetsushi Taguchib, Hiroyuki Koyamac, et al. Improvement in wound healing by a novel synthetic collagen-gel dressing in genetically diabetic mice. Asian Journal of Oral and Maxillofacial Surgery 22 61–67, 2010.

52.Sangiliyandi Gurunathan, Jae Woong Han, Ahmed Abdal Dayem, et al.Antibacterial activity of dithiothreitol reduced graphene oxide. Journal of Industrial and Engineering Chemistry 19 1280–1288, 2013.

53.Pei-Leun Kang, Shwu Jen Chang, Ioannis Manousakas, et al. Development and assessment of hemostasis chitosan dressings. Carbohydrate Polymers 85:565–57, 2011.

54.謝孟亨,A Study on the Fabrications and Characteristics of PVA/ Nano Ag Multi-Porous Fibers by Wet Spinning Method P1-102, 2009.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top