跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.81) 您好!臺灣時間:2025/10/05 10:39
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:李依芳
研究生(外文):LEE, YI,FANG
論文名稱:貝氏推論分段結構改變之變異數異質性模型
論文名稱(外文):Bayesian Inference of the Multiple Structural Change GARCH-type Model with Skew Student-t Er-rors
指導教授:陳婉淑
指導教授(外文):Chen, Cathy Woan-Shu
口試委員:顏盟峯蔡恆修
口試委員(外文):YEN, MENG,FENGTSAI, HENG,HSIU
口試日期:2019-06-18
學位類別:碩士
校院名稱:逢甲大學
系所名稱:統計學系統計與精算碩士班
學門:數學及統計學門
學類:統計學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:英文
論文頁數:50
中文關鍵詞:結構變化偏態t分配分段ARX-GARCH模型馬可夫鏈蒙地卡羅方法貝氏方法偏差信息量準則
外文關鍵詞:Structural changeSkew Student-t distributionSegmented ARX-GARCH modelMarkov chain Monte Carlo methodsBayesian inferenceDeviance information criterion
相關次數:
  • 被引用被引用:0
  • 點閱點閱:316
  • 評分評分:
  • 下載下載:2
  • 收藏至我的研究室書目清單書目收藏:0
本研究考慮具有外生變數和偏態Student-t誤差分配的分段自我迴歸不對稱GARCH模型。此模型稱為分段結構改變自我迴歸不對稱GARCH模型。本研究延伸到偏態Student-t分配在此模式架構,與其他分配相比,厚尾偏態Student-t分配在描述金融市場中的金融時間序列數據集方面表現極佳。本研究採用數個不同誤差分配的多個結構性改變的分段GARCH族群模型;除了模型中的未知參數,改變點的數目和位置也是未知的,我們採用貝氏方法的估計所有未知參數。通過貝氏推理估計模型參數,以顯示貝氏方法的有效性和可靠性。我們使用adaptive MCMC演算法,加速MCMC收斂。為識別斷點的數目及其位置,假設斷點的數目是預先固定的,並使用貝氏偏差信息量準則(DIC)來確定斷點的最佳數目以及最佳模型。本研究在模擬過程中探討模型選擇的準確率,並用模擬和實證分析結果來闡明所提的貝氏方法的可信度。對於實證分析,我們研究了2007年至2019年期間每日黃金報酬率和VIX對S&P 500指數報酬率的影響,結果顯示具有兩個斷點的不對稱GARCH模型是最佳的模型。
This research considers a piecewise autoregressive GARCH-type model with exogenous variables and skew Student-t errors, which we call a segmented ARX-GARCH model, and uses it to identify the location of structural breaks and to make inferences about all unknown parameters. Our model fills the gap in the existing literature by considering skew Student-t errors and proving the advantages of the fat-tailed skew Student-t distribution versus other distributions when studying financial time-series datasets. It is also able to detect the number of structural change points and their location in time series data by assuming the number of breakpoints is prefixed and employing deviance information criterion (DIC) to decide the optimal number of breakpoints. We also extend the segmented GARCH model to an asymmetric GARCH model and make inference about the parameters by employing the Bayesian approach, which is more efficient and reliable than conventional approaches. We utilize the adaptive Metropolis-Hastings Markov Chain Monte Carlo (MH-MCMC) methods by starting with the random walk MH algorithm and then moving to the independent kernel MH algorithm after the burn-in period for GARCH parameters in order to accelerate convergence. A simulation study’s results illustrate the credibility of our MCMC sampling scheme. For real data analysis, we examine the impact of daily gold returns and VIX on S&P 500 returns during 2007 to 2019. The empirical results show that our model is able to efficiently detect multiple structural changes and to capture the time-varying parameters in different segments. The proposed model can serve as an important element for strategy implementation, but also for the assessment of financial markets.
1 Introduction
2 The Structure Change Model
2.1 ARX-GARCH Model
2.2 ARX-GJR-GARCH Model
3 Bayesian methods
4 Simulation study
5 Empirical example
6 Conclusions and future research
Bai, J. and Perron, P. (2003) Computation and analysis of multiple structural change models. Journal of Applied Econometrics, 18, 1–22.
Black, F. (1976) Studies in stock price volatility changes. Proceedings of the 1976 Business Section. American Statistical Association, 177–181.
Bollerslev, T. (1986) Generalized autoregressive conditional heteroskedasticity, Journal of Econometrics, 31, 307–327.
Bollerslev, T.R., Chou, and Kroner, K. (1992) ARCH Modeling in Finance, Journal of Econometrics, 52, 5–59.
Chen, C.W.S., Chiang, T.C., and So, M.K.P. (2003) Asymmetrical reaction to US stock-return news: Evidence from major stock markets based on a double threshold model, Journal of Economics and Business, 55, 487–502.
Chen, C.W.S., Gerlach, R., and Liu, F.C. (2011) Detection of structural breaks in a time-varying heteroscedastic regression model, Journal of Statistical Planning and Inference, 141, 3367–3381.
Chen, C.W.S. and So, M.K.P. (2006) On a threshold heteroscedastic model, International Journal of Forecasting, 22, 73–89.
Chib, S. (1998) Estimation and comparison of multiple changepoint models, Journal of Econometrics, 86, 221–242.
Davis, R.A., Lee, T.C., and Rodriguez-Yam, G.A (2006) Structural break estimation for nonstationary time series models, Journal of the American Statistical Association, 101, 223–239.
Engle, R.F. (1982) Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom inflation, Econometrica, 50, 987–1008.
Fearnhead, P. and Liu, Z. (2005) On-line inference for multiple changepoints problems Journal of the Royal Statistical Society B, 69, 589–605.
Gelman, A., Roberts, G.O., and Gilks, W.R. (1996) Efficient metropolis jumping rules, In Bernardo, J.M., Berger, J. O., Dawid, A.P., and Smith, A.F.M. (Eds.), Bayesian Statistics, 5, 599–607.
Giordani, P. and Kohn, R. (2012) Efficient bayesian inference for multiple change-point and mixture innovation models, Journal of Business and Economic Statistics, 196, 66–77.
Giot, P. (2005), Relationships between implied volatility indices and stock index returns, Journal of Portfolio Management, 31, 92–100.
Glosten, L.R., Jagannathan, R., and Runkle, D.E. (1993) On the relation between the expected value and the volatility of the nominal excess return on stocks, Journal of Finance, 487, 1779–1801.
Hansen, B.E (1994) Autoregressive conditional density estimation, International Economic Review, 35, 705–730.
Hastings, W.K. (1970) Monte carlo sampling methods using markov chains and their applications, Biometrika, 57,97–109.
Inclan, C. (1994) Detection of multiple changes of variance using posterior odds, Journal of Business and Economic Statistics, 11, 289–300.
Kanas, A. (2013) The Risk-Return Relation and VIX: Evidence from the S&P 500, Empirical Economics, 44, 1291–1314.
Kim, C.J., Nelson, C.R., and Piger, J. (2004) The less-volatile US economy: A Bayesian investigation of timing, breadth, and potential explanations, Journal of Business and Economic Statistics, 22, 80–93.
Lai, T.L. and Xing, H. (2013) Stochastic change-point ARX-GARCH models and their applications to econometric time series, Statistica Sinica, 23, 1573–1594.
Metropolis, N., Rosenbluth, A.W., Rosenbluth, M.N., Teller, A.H., and Teller, E. (1953) Equation of state calculations by fast computing machines, Journal of Chemical Physics, 21,1087–1092.
Mishra, P.K., Das, J.R., and Mishra, S.K. (2010) Gold Price Volatility and Stock Market Returns In India, American Journal of Scientific Research, 9, 47–55
Nelson, D.B. (1991) Conditional heteroscedasticity in asset pricing: a new approach, Econometrica, 59, 347–370.
Pesaran, M.H., Pettenuzzo, D., and Timmermann, A. (2006) Forecasting time series subject to multiple structural breaks, Review of Economic Studies, 73, 1057–1084.
Pesaran, M.H. and Timmermann, A. (2002) Market timing and return prediction under model instability, Journal of Empirical Finance,9, 495–510.
Pesaran, M.H. and Timmermann, A. (2004) How costly is it to ignore breaks when forecasting the direction of a time series ? International Journal of Forecasting, 20, 411–425.
Poon, S.H. and Granger, C.W.J. (2003) Forecasting volatility in financial markets: a review, Journal of Economic Literature, 41, 478–539.
Ray, B.K. and Tsay, R.S. (2002) Bayesian methods for change-point detection in long-range dependent processes, Journal of Time Serie Analysis, 23, 687–705.
So, M.K.P., Chen, C.W.S., and Chen, M. (2005) A Bayesian threshold nonlinearity test for financial time series. Journal of Forecasting, 24, 61–76.
Spiegelhalter, D.J., Best, N.G., Carlin, B.P., and Van der Linde, A. (2002) Bayesian measures of model complexity and fit (with discussion), Journal of the Royal Statistical Society, Series B, 64, 583–616.
Stock, J. andWatson, M. (1996) Evidence on structural instability in macroeconomic time series relations, Journal of Business and Economic Statistics, 14, 11–30.
Than-Thi H., Dong M.C., and Chen, C.W.S. (2019) Bayesian modelling structural changes on housing price dynamics, In Kreinovich V., Sriboonchitta S. (eds.) Structural Changes and their Econometric Modeling, Studies in Computational Intelligence, 808, 83–104.
Zeileis, A., Kleiber, C., Kramer, W., and Hornik, K. (2003) Testing and dating of structural changes in practice, Computational Statistics and Data Analysis, 44, 109–123.
電子全文 電子全文(本篇電子全文限研究生所屬學校校內系統及IP範圍內開放)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top