跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.134) 您好!臺灣時間:2025/11/14 14:12
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:孔忠日
研究生(外文):Zhong-Ri Kong
論文名稱:特定形貌銅奈米結構應用於電催化二氧化碳還原產物之研究
論文名稱(外文):Morphology Matters: Product Distribution of CO2 Electroreduction on Shaped Copper Nanoparticles
指導教授:陳浩銘陳浩銘引用關係
指導教授(外文):Hao-Ming Chen
口試日期:2017-07-31
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:化學研究所
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:134
中文關鍵詞:電化學還原二氧化碳銅奈米方塊銅奈米八面體乙烯甲烷乙醇
外文關鍵詞:electrochemical reductioncarbon dioxidecopper nanocubecopper nanoctahedronethylenemethaneethanol
相關次數:
  • 被引用被引用:0
  • 點閱點閱:329
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
自工業革命以來,人類對能源需求急遽增加,電催化二氧化碳還原反應被視為能成為新的燃料來源並減緩全球暖化之潛力。已知銅金屬應用於電催化二氧化碳還原反應能產出甲烷、乙烯與乙醇等還原產物。然而前仆後繼的許多研究結果並不一致,本研究將此現象歸因於催化劑表面形貌之差異。此外,文獻報導指出銅金屬之晶面會影響其電催化二氧化碳還原產物。
本研究利用晶面對還原產物選擇性之影響,結合奈米粒子具有高表面積且容易控制其形貌、結構的特性,合成三種特定形貌之銅奈米粒子並探討其還原產物之分佈趨勢。分別為方塊、菱形六角化十二面體、八面體。以 TEM、SEM、SAED、XRD 鑑定其結構,方塊粒子之晶面為(100),八面體粒子之晶面為(111),菱形六角化十二面體則具有 (100) 與 (111) 兩種晶面。GC、GC-MS 與 NMR 定性和定量分析二氧化碳氣體與液體還原產物。研究結果發現銅奈米方塊主要還原產物為乙烯,其乙烯和甲烷之比例乃三種結構之冠,與文獻之銅 (100) 單晶電極結果一致。銅奈米八面體主要還原產物為乙烯,與文獻之銅 (111) 單晶電極結果不同。銅奈米菱形六角化十二面體主要還原產物為乙烯、甲烷與乙醇,其中乙醇於 -1.19 V (vs. RHE) 達到最高電流效率約 27 %,相較之下,銅奈米方塊與銅奈米八面體於相同還原電壓下之乙醇電流效率,僅 5 % 和 8 %,故推測此產物選擇性並不來自於 (100) 或 (111) 晶面的貢獻。本研究認為此產物選擇性是來自於奈米銅菱形六角化十二面體粒子本身之結構存在較多的邊,而邊所代表的晶面為 (110)。
In the recent decades, electrochemical CO2 reduction has been of great interest for renewable energy source and for strategies to mitigate global warming. Prof. Hori had reported that copper is the only one of metal electrodes which has ability of reducing CO2 to hydrocarbons and oxygenates, such as methane, ethylene and ethanol. However, lots of research done on copper metal do not be consistent with others. We attribute our observation to the different morphologies of every metal copper catalyst. Moreover, Prof. Hori had also demonstrated that product distribution would be in different tendency with the change of crystal facets.
In this study, we have combined properties of nanoparticles, such as high surface area and well-controlled shape, and facet effect toward product selectivity on electrochemical CO2 reduction. Here we synthesize three different morphologies of Cu nanoparticles, which in the order of cube, hexarhombic dodecahedron and octahedron in the figure, from left to right. With the characterization of TEM, SEM, SAED and XRD, copper nanocube and nanoctahedron have predominant facet with respect to (100) and (111). Hexarhomic dodecahedron has both specific crystal facets. Qualitatively and quantitatively analysis of gas and liquid products are achieved by gas chromatography, gas chromatography-mass spectrometry and nuclear magnetic resonance. Our results indicate that ethylene is the major product of Cu nanocube which has highest C2H4/CH4 ratio and is consistent with previous Cu (100) single crystal work. Ethylene is the major product of Cu nanoctahedron, which coincides with Cu (111) single crystal work. Cu hexarhombic dodecahedron which ethylene, methane and ethanol are major products reaches maximum current efficiency around 15 to 25% in the voltage of -1.2 V to -1.3 V (vs. RHE). On the other hand, Cu nanocube and nanoctahedron only reach the highest current efficiency of ethanol around 5 to 10%. Apparently, this product selectivity toward ethanol do not be the contribution of (100) or (111), either. We attribute this product selectivity to the structure difference of hexarhombic dodecahedron which has more numbers of edges than cube and octahedron and the atom arrangement on edge line is (110).
Furthermore, we have applied in-situ x-ray absorption spectroscopy to monitoring copper nanoparticle catalyst how to participate in the carbon dioxide reduction reaction. Our results indicate that coordination numbers of Cu–C and Cu–O bond vary with potentials and the tendency is in line with the mechanism proposed in this study.
誌謝 I
中文摘要 II
ABSTRACT III
目錄 V
圖目錄 IX
表目錄 XV
縮寫表 XVI
第一章 緒論 1
1.1 全球暖化與能源危機 1
1.2 二氧化碳之應用 2
1.3 電催化二氧化碳還原反應 3
1.3.1 各種金屬電極之反應活性 3
1.3.2 電催化二氧化碳還原反應之發展潛力 7
1.3.3 水溶液中二氧化碳衍生物之平衡 9
1.3.4 二氧化碳還原反應之困境—過電壓 9
1.3.5 二氧化碳還原反應之困境—產物選擇性 11
1.3.6 電活性物質—二氧化碳 12
1.3.7 中間產物—一氧化碳 15
1.3.8 銅金屬 17
1.4 本研究之研究目的 23
第二章 實驗設計與方法 24
2.1 化學藥品 24
2.2 銅奈米粒子之製備 26
2.2.1 銅奈米方塊之製備 26
2.2.2 銅奈米八面體之製備 27
2.2.3 銅奈米菱形六角化十二面體之製備 28
2.3 樣品之鑑定及分析 31
2.3.1 高解析穿透式電子顯微鏡 32
2.3.2 掃描式電子顯微鏡 34
2.3.3 X 光繞射儀 35
2.4 電化學二氧化碳還原反應之實驗架設 36
2.5 電催化二氧化碳還原之電化學量測 39
2.5.1 電阻電降補償 40
2.5.2 電化學活性表面積測量 41
2.6 電化學二氧化碳還原產物之定性與定量分析 43
2.6.1 氣相層析質譜儀 43
2.6.2 核磁共振儀 49
2.7 感應耦合電漿質譜儀 52
2.8 臨場電化學二氧化碳還原反應之吸收光譜量測 54
2.8.1 同步輻射光源 54
2.8.2 X 光吸收近吸收邊緣結構光譜 56
2.8.3 延伸 X 光吸收細微結構 57
2.8.4 臨場 X 光吸收光譜之實驗架設 62
第三章 研究結果與討論 64
3.1 銅奈米粒子結構鑑定 64
3.1.1 穿透式電子顯微鏡分析 64
3.1.2 掃描式電子顯微鏡分析 70
3.1.3 X 光繞射分析 75
3.1.4 合成銅奈米粒子之晶面選擇性討論 76
3.2 工作電極之製備 78
3.3 電催化二氧化碳還原反應分析 81
3.3.1 還原電流 vs. 電壓 81
3.3.2 二氧化碳還原產物 vs. 電壓 84
3.3.3 產氫反應 vs. 生成一氧化碳 88
3.3.4 甲烷選擇性 90
3.3.5 銅奈米菱形六角化十二面體 vs. 乙醇選擇性 97
3.3.6 奈米粒子大小效應 103
3.4 反應機構 107
3.4.1 一氧化碳和甲酸 107
3.4.2 CHOads vs. COHads 109
3.4.3 甲烷和甲醇 109
3.4.4 銅 (100) 晶面之乙烯選擇性 110
3.4.5 乙烯和乙醇 115
3.4.6 次要產物 116
3.5 臨場 X 光吸收光譜分析 118
3.5.1 銅之 K 層 X 光吸收光譜分析 118
3.5.2 銅在 L 層之 X 光吸收光譜分析 120
3.5.3 延伸X光吸收細微結構分析 122
第四章 結論 126
參考資料 128
(1) Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change. IPCC, 2001. Climate Change 2001: The Scientific Basis; Core Writing Team, Houghton, J. T.; Ding, Y.; Griggs, D. J.; Noguer, M.; van der Linden, P. J.; Dai, X.; Maskell, K.; Johnson, C. A., Eds.; IPCC: Cambridge, United Kingdom and New York, USA, 2001.
(2) Meinshausen, M.; Meinshausen, N.; Hare, W.; Raper, S. C. B.; Frieler, K.; Knutti, R.; Frame, D. J.; Allen, M. R. Nature 2009, 458, 1158-1162.
(3) Matthews, H. D.; Caldeira, K. Geophys. Res. Lett. 2008, 35, L04705.
(4) Shafiee, S.; Topal, E. Energy Pol. 2009, 37, 181-189.
(5) Wilcox, J., In Carbon Capture, 1 ed.; Springer-Verlag New York: 2012; pp 1-34.
(6) Szulczewski, M. L.; MacMinn, C. W.; Herzog, H. J.; Juanes, R. Proc. Natl. Acad. Sci. 2012, 109, 5185-5189.
(7) Matter, J. M.; Stute, M.; Snæbjörnsdottir, S. Ó.; Oelkers, E. H.; Gislason, S. R.; Aradottir, E. S.; Sigfusson, B.; Gunnarsson, I.; Sigurdardottir, H.; Gunnlaugsson, E.; Axelsson, G.; Alfredsson, H. A.; Wolff-Boenisch, D.; Mesfin, K.; Taya, D. F. d. l. R.; Hall, J.; Dideriksen, K.; Broecker, W. S. Science 2016, 352, 1312.
(8) Hori, Y. Chem. Lett. 1985, 14, 1695-1698.
(9) Hori, Y.; Murata, A.; Takahashi, R. J. Chem. Soc., Faraday Trans. 1 1989, 85, 2309-2326.
(10) Chelazzi, D.; Ceppatelli, M.; Santoro, M.; Bini, R.; Schettino, V. Nat. Mater. 2004, 3, 470-475.
(11) UNDP, 2000. World Energy Assessment: Energy and the Challenge of Sustainability; Core Writing Team, Goldemberg, J., Eds.; UNDP: New York, USA, 2000.
(12) http://www.greenrhinoenergy.com/solar/radiation/spectra.php. [Online Access at July, 2017].
(13) Hori, Y., In Modern Aspects of Electrochemistry, Vayenas, C. G.; White, R. E.; Gamboa-Aldeco, M. E., Eds. Springer: New York, 2008; pp 89-189.
(14) Jordan, J.; Smith, P. T. Proc. Chem. Soc. 1960, 7, 246.
(15) Paik, W.; Andersen, T. N.; Eyring, H. Electrochim. Acta 1969, 14, 1217-1232.
(16) Pacansky, J.; Wahlgren, U.; Bagus, P. S. J. Chem. Phys. 1975, 62, 2740-2744.
(17) Aylmer-Kelly, A. W. B.; Bewick, A.; Cantrill, P. R.; Tuxford, A. M. Faraday Discuss. Chem. Soc. 1973, 56, 96-107.
(18) Kuhl, K. P.; Hatsukade, T.; Cave, E. R.; Abram, D. N.; Kibsgaard, J.; Jaramillo, T. F. J. Am. Chem. Soc. 2014, 136, 14107-14113.
(19) Teeter, T. E.; Van Rysselberghe, P. J. Chem. Phys. 1954, 22, 759-760.
(20) Rysselberghe, P. v.; Alkire, G. J.; McGee, J. M. J. Am. Chem. Soc. 1946, 68, 2050-2055.
(21) Dunwell, M.; Lu, Q.; Heyes, J. M.; Rosen, J.; Chen, J. G.; Yan, Y.; Jiao, F.; Xu, B. J. Am. Chem. Soc. 2017, 139, 3774-3783.
(22) Chen, Y.; Li, C. W.; Kanan, M. W. J. Am. Chem. Soc. 2012, 134, 19969-19972.
(23) Cook, R. L.; MacDuff, R. C.; Sammells, A. F. J. Electrochem. Soc. 1989, 136, 1982-1984.
(24) Hori, Y.; Murata, A.; Takahashi, R.; Suzuki, S. J. Am. Chem. Soc. 1987, 109, 5022-5023.
(25) Hori, Y.; Koga, O.; Yamazaki, H.; Matsuo, T. Electrochim. Acta 1995, 40, 2617-2622.
(26) Kuhl, K. P.; Cave, E. R.; Abram, D. N.; Jaramillo, T. F. Energy Environ. Sci. 2012, 5, 7050-7059.
(27) Peterson, A. A.; Nørskov, J. K. J. Phys. Chem. Lett. 2012, 3, 251-258.
(28) Ma, S.; Sadakiyo, M.; Heima, M.; Luo, R.; Haasch, R. T.; Gold, J. I.; Yamauchi, M.; Kenis, P. J. A. J. Am. Chem. Soc. 2017, 139, 47-50.
(29) Sarfraz, S.; Garcia-Esparza, A. T.; Jedidi, A.; Cavallo, L.; Takanabe, K. ACS Catal. 2016, 6, 2842-2851.
(30) Kortlever, R.; Peters, I.; Balemans, C.; Kas, R.; Kwon, Y.; Mul, G.; Koper, M. T. M. Chem. Commun. 2016, 52, 10229-10232.
(31) Kim, C.; Eom, T.; Jee, M. S.; Jung, H.; Kim, H.; Min, B. K.; Hwang, Y. J. ACS Catal. 2017, 7, 779-785.
(32) Fang, Y.; Flake, J. C. J. Am. Chem. Soc. 2017, 139, 3399-3405.
(33) Cao, Z.; Kim, D.; Hong, D.; Yu, Y.; Xu, J.; Lin, S.; Wen, X.; Nichols, E. M.; Jeong, K.; Reimer, J. A.; Yang, P.; Chang, C. J. J. Am. Chem. Soc. 2016, 138, 8120-8125.
(34) Hori, Y.; Takahashi, I.; Koga, O.; Hoshi, N. J. Mol. Catal. A: Chem. 2003, 199, 39-47.
(35) Min, S.; Yang, X.; Lu, A.-Y.; Tseng, C.-C.; Hedhili, M. N.; Li, L.-J.; Huang, K.-W. Nano Energy 2016, 27, 121-129.
(36) Raciti, D.; Livi, K. J.; Wang, C. Nano Lett. 2015, 15, 6829-6835.
(37) Williams, D. B.; Carter, C. B., Transmission Electron Microscopy: A Textbook for Materials Science, Second Edition ed.; Plenum Press: New York, 1996.
(38) Goldstein, J.; Newbury, D. E.; Echlin, P.; Joy, D. C.; Jr., A. D. R.; Lyman, C. E.; Fiori, C.; Lifshin, E., Scanning Electron Microscopy and X-Ray Microanalysis : A Text for Biologists, Materials Scientists, and Geologists, 2 ed.; Springer US: Plenum Press, New York, 1992.
(39) Li, C. W.; Kanan, M. W. J. Am. Chem. Soc. 2012, 134, 7231-7234.
(40) Li, C. W.; Ciston, J.; Kanan, M. W. Nature 2014, 508, 504-507.
(41) Pavia, D. L.; Lampman, G. M.; Kritz, G. S.; Engel., R. G., In Introduction to Organic Laboratory Techniques, 4 ed.; Thomson Brooks/Cole: 2006; pp 797-817.
(42) Wade, J. L. G., Organic Chemistry, 7 ed.; Pearson International Edition: 2010.
(43) Welz, B.; L.G. Borges, D., Encyclopedia of Applied Physics, 2009.
(44) Schnohr, C. S.; Ridgway, M. C., In X-Ray Absorption Spectroscopy of Semiconductors, Schnohr, C. S.; Ridgway, M. C., Eds. Springer: Verlag Berlin Heidelberg, 2015.
(45) Stern, E. A. J.Synchrotron Rad. 2001, 8, 49-54.
(46) Bordwehr, R. S. v. Ann. Phys. Fr. 1989, 14, 377-466.
(47) Jiang, P.; Chen, J.-L.; Borondics, F.; Glans, P.-A.; West, M. W.; Chang, C.-L.; Salmeron, M.; Guo, J. Electrochem. Commun. 2010, 12, 820-822.
(48) Guo, H.; Chen, Y.; Cortie, M. B.; Liu, X.; Xie, Q.; Wang, X.; Peng, D.-L. J. Phys. Chem. C 2014, 118, 9801-9808.
(49) DuChene, J. S.; Niu, W.; Abendroth, J. M.; Sun, Q.; Zhao, W.; Huo, F.; Wei, W. D. Chem. Mater. 2013, 25, 1392-1399.
(50) Guo, H.; Chen, Y.; Ping, H.; Jin, J.; Peng, D.-L. Nanoscale 2013, 5, 2394-2402.
(51) Ruge, M.; Drnec, J.; Rahn, B.; Reikowski, F.; Harrington, D. A.; Carlà, F.; Felici, R.; Stettner, J.; Magnussen, O. M. J. Am. Chem. Soc. 2017, 139, 4532-4539.
(52) Zhang, Y.-J.; Sethuraman, V.; Michalsky, R.; Peterson, A. A. ACS Catal. 2014, 4, 3742-3748.
(53) Gattrell, M.; Gupta, N.; Co, A. J. Electroanal. Chem. 2006, 594, 1-19.
(54) Saraby-Reintjes, A. Electrochim. Acta 1986, 31, 251-254.
(55) Gennero de Chialvo, M. R.; Chialvo, A. C. Electrochim. Acta 1998, 44, 841-851.
(56) Koper, M. T. M. J. Electroanal. Chem. 2011, 660, 254-260.
(57) Peterson, A. A.; Abild-Pedersen, F.; Studt, F.; Rossmeisl, J.; Norskov, J. K. Energy Environ. Sci. 2010, 3, 1311-1315.
(58) Schouten, K. J. P.; Kwon, Y.; van der Ham, C. J. M.; Qin, Z.; Koper, M. T. M. Chem. Sci. 2011, 2, 1902-1909.
(59) Ledezma-Yanez, I.; Gallent, E. P.; Koper, M. T. M.; Calle-Vallejo, F. Catal. Today 2016, 262, 90-94.
(60) Zhang, Y.-J.; Peterson, A. A. Phys. Chem. Chem. Phys. 2015, 17, 4505-4515.
(61) Hahn, C.; Hatsukade, T.; Kim, Y.-G.; Vailionis, A.; Baricuatro, J. H.; Higgins, D. C.; Nitopi, S. A.; Soriaga, M. P.; Jaramillo, T. F. Proc. Natl. Acad. Sci. 2017, 114, 5918-5923.
(62) Reske, R.; Mistry, H.; Behafarid, F.; Roldan Cuenya, B.; Strasser, P. J. Am. Chem. Soc. 2014, 136, 6978-6986.
(63) Tang, W.; Peterson, A. A.; Varela, A. S.; Jovanov, Z. P.; Bech, L.; Durand, W. J.; Dahl, S.; Norskov, J. K.; Chorkendorff, I. Phys. Chem. Chem. Phys. 2012, 14, 76-81.
(64) Vollmer, S.; Witte, G.; Wöll, C. Catal. Lett. 2001, 77, 97-101.
(65) Verdaguer-Casadevall, A.; Li, C. W.; Johansson, T. P.; Scott, S. B.; McKeown, J. T.; Kumar, M.; Stephens, I. E. L.; Kanan, M. W.; Chorkendorff, I. J. Am. Chem. Soc. 2015, 137, 9808-9811.
(66) Nørskov, J. K.; Bligaard, T.; Logadottir, A.; Kitchin, J. R.; Chen, J. G.; Pandelov, S.; Stimming, U. J. Electrochem. Soc. 2005, 152, J23-J26.
(67) Greeley, J.; Nørskov, J. K.; Kibler, L. A.; El-Aziz, A. M.; Kolb, D. M. ChemPhysChem 2006, 7, 1032-1035.
(68) Loiudice, A.; Lobaccaro, P.; Kamali, E. A.; Thao, T.; Huang, B. H.; Ager, J. W.; Buonsanti, R. Angew. Chem. Int. Ed. 2016, 55, 5789-5792.
(69) Zhu, W.; Michalsky, R.; Metin, Ö.; Lv, H.; Guo, S.; Wright, C. J.; Sun, X.; Peterson, A. A.; Sun, S. J. Am. Chem. Soc. 2013, 135, 16833-16836.
(70) Zhu, W.; Zhang, Y.-J.; Zhang, H.; Lv, H.; Li, Q.; Michalsky, R.; Peterson, A. A.; Sun, S. J. Am. Chem. Soc. 2014, 136, 16132-16135.
(71) Gao, D.; Zhou, H.; Wang, J.; Miao, S.; Yang, F.; Wang, G.; Wang, J.; Bao, X. J. Am. Chem. Soc. 2015, 137, 4288-4291.
(72) Chaplin, R. P. S.; Wragg, A. A. J. Appl. Electrochem. 2003, 33, 1107-1123.
(73) Zhang, Y.; Chen, L.; Li, F.; Easton, C. D.; Li, J.; Bond, A. M.; Zhang, J. ACS Catal. 2017, 7, 4846-4853.
(74) Feaster, J. T.; Shi, C.; Cave, E. R.; Hatsukade, T.; Abram, D. N.; Kuhl, K. P.; Hahn, C.; Nørskov, J. K.; Jaramillo, T. F. ACS Catal. 2017, 7, 4822-4827.
(75) Heyes, J.; Dunwell, M.; Xu, B. J. Phys. Chem. C 2016, 120, 17334-17341.
(76) Nie, X.; Esopi, M. R.; Janik, M. J.; Asthagiri, A. Angew. Chem. Int. Ed. 2013, 52, 2459-2462.
(77) Cheng, T.; Xiao, H.; Goddard, W. A. J. Phys. Chem. Lett. 2015, 6, 4767-4773.
(78) Xiao, H.; Cheng, T.; Goddard, W. A.; Sundararaman, R. J. Am. Chem. Soc. 2016, 138, 483-486.
(79) Hori, Y.; Takahashi, R.; Yoshinami, Y.; Murata, A. J. Phys. Chem. B 1997, 101, 7075-7081.
(80) Schouten, K. J. P.; Qin, Z.; Pérez Gallent, E.; Koper, M. T. M. J. Am. Chem. Soc. 2012, 134, 9864-9867.
(81) Montoya, J. H.; Shi, C.; Chan, K.; Nørskov, J. K. J. Phys. Chem. Lett. 2015, 6, 2032-2037.
(82) Calle-Vallejo, F.; Koper, M. T. M. Angew. Chem. Int. Ed. 2013, 52, 7282-7285.
(83) Pérez-Gallent, E.; Figueiredo, M. C.; Calle-Vallejo, F.; Koper, M. T. M. Angew. Chem. Int. Ed. 2017, 56, 3621-3624.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊