[1].Strong, A. B., Plastics: Materials and Processing. 2006.
[2].劉士榮, 高分子加工. 2000: 滄海書局.
[3].Jeong, S., Kim, J. M., and Baig, C., Effect of Chain Orientation and Stretch on the Stress Overshoot of Entangled Polymeric Materials under Start-Up Shear. Macromolecules, 2017. 50(8): p. 3424-3429.
[4].Menezes, E. V. and Graessley, W. W., Nonlinear rheological behavior of polymer systems for several shear‐flow histories. Journal of Polymer Science: Polymer Physics Edition, 1982. 20(10): p. 1817-1833.
[5].Stratton, R. A. and Butcher, A. F., Stress relaxation upon cessation of steady flow and the overshoot effect of polymer solutions. Journal of Polymer Science: Polymer Physics Edition, 1973. 11(9): p. 1747-1758.
[6].Huppler, J. D., et al., Rheological Properties of Three Solutions. Part II. Relaxation and Growth of Shear and Normal Stresses. Transactions of the Society of Rheology, 1967. 11(2): p. 181-204.
[7].Robertson, C. G., et al., Reentanglement Kinetics in Sheared Polybutadiene Solutions. Macromolecules, 2004. 37(26): p. 10018-10022.
[8].Dealy, J. M., K.‐, W., and Tsang, W., Structural time dependency in the rheological behavior of molten polymers. Journal of Applied Polymer Science, 1981. 26(4): p. 1149-1158.
[9].Yamaguchi, M. and Gogos, C. G., Quantitative relation between shear history and rheological properties of LDPE. Advances in Polymer Technology, 2001. 20(4): p. 261-269.
[10].Xu, Y. Z., Kee, D. D., and Fong, C. F. C. M., Large transient shearing of molten polymers: Predictions of rate‐dependent and nonaffine network models. Journal of Applied Polymer Science, 1995. 55(5): p. 779-786.
[11].Sanchez-Reyes, J. and Archer, L. A., Relaxation dynamics of entangled polymer liquids in steady shear flow. Journal of Rheology, 2003. 47(2): p. 469-482.
[12].Richardson, R. K. and Ross-Murphy, S. B., Non-linear viscoelasticity of polysaccharide solutions. 1: Guar galactomannan solutions. International Journal of Biological Macromolecules, 1987. 9(5): p. 250-256.
[13].Roy, D. and Roland, C. M., Reentanglement kinetics in polyisobutylene. Macromolecules, 2013. 46(23): p. 9403-9408.
[14].Santangelo, P. G. and Roland, C. M., Molecular Weight Dependence of Fragility in Polystyrene. Macromolecules, 1998. 31(14): p. 4581-4585.
[15].T., S., Shear-banding during non-linear creep with a solution of monodisperse polystyrene. Rheol. Acta, 2007. 46: p. 629.
[16].Ebrahimi, T., Hatzikiriakos, S. G., and Mehrkhodavandi, P., Synthesis and Rheological Characterization of Star-Shaped and Linear Poly(hydroxybutyrate). Macromolecules, 2015. 48(18): p. 6672-6681.
[17].Seo, Y., Modeling of the transient viscosity for polymer melts after startup of shearing and elongational deformations. Journal of Applied Polymer Science, 2003. 88(2): p. 510-515.
[18].Borg, T. and Pääkkönen, E. J., Start‐Up and Transient Flow Effects From the Molecular Weight Distribution. AIP Conference Proceedings, 2008. 1027(1): p. 448-450.
[19].Borg, T., et al., Time Dependency of Viscosity in the Flow Simulations. 2004.
[20].Rajabian, M., et al., Shearing and mixing effects on synthesis and properties of organoclay/polyester nanocomposites. Rheologica Acta, 2012. 51(11-12): p. 1007-1019.
[21].Miller, B., Tiny clay particles pack potent properties punch. Plastics World; Boston, 1997. 55(10): p. 36-38.
[22].Maniar, K. K., Polymeric Nanocomposites: A Review. Polymer-Plastics Technology and Engineering, 2004. 43(2): p. 427-443.
[23].Casalini, R. and Roland, C. M., Local and Global Dynamics in Polypropylene Glycol/Silica Composites. Macromolecules, 2016. 49(10): p. 3919-3924.
[24].Bagheriasl, D., et al., Shear rheology of polylactide (PLA)–cellulose nanocrystal (CNC) nanocomposites. Cellulose, 2016. 23(3): p. 1885-1897.
[25].Lee, K. M. and Han, C. D., Effect of hydrogen bonding on the rheology of polycarbonate/organoclay nanocomposites. Polymer, 2003. 44(16): p. 4573-4588.
[26].Xiao, J., et al., Effect of Organically Modified Montmorillonite on Thermal Degradation Mechanism of Polycarbonate Nanocomposites. Procedia Engineering, 2013. 62(Supplement C): p. 791-796.
[27].Špírková, M., et al., Novel polycarbonate-based polyurethane elastomers: Composition–property relationship. European Polymer Journal, 2011. 47(5): p. 959-972.
[28].Feng, J., et al., Using TGA/FTIR TGA/MS and cone calorimetry to understand thermal degradation and flame retardancy mechanism of polycarbonate filled with solid bisphenol A bis(diphenyl phosphate) and montmorillonite. Polymer Degradation and Stability, 2012. 97(4): p. 605-614.
[29].張榮語, 射出成型模具設計. 2001: 高立圖書有限公司.
[30].Souvaliotis, A. and Beris, A. N., An extended White–Metzner viscoelastic fluid model based on an internal structural parameter. Journal of Rheology, 1992. 36(2): p. 241-271.
[31].Minoshima, W., White, J. L., and Spruiell, J. E., Experimental investigations of the influence of molecular weight distribution on melt spinning and extrudate swell characteristics of polypropylene. Journal of Applied Polymer Science, 1980. 25(2): p. 287-306.
[32].White, J. L. and Minoshima, W., Significance of deformation rate softening of memory in viscoelastic fluid mechanics and polymer processing. Polymer Engineering & Science, 1981. 21(17): p. 1113-1121.
[33].Lin, G. G., Chang, J. T., and Kuo, T. W., “Experimentation and modeling for the apparent elongation viscosity of polymer melts with the White–Metzner model”. Polymers for Advanced Technologies, 2014. 25(12): p. 1565-1571.
[34].White, J. L. and Metzner, A. B., Development of constitutive equations for polymeric melts and solutions. Journal of Applied Polymer Science, 1963. 7(5): p. 1867-1889.
[35].Seo, Y., A simple empirical model describing the steady state shear viscosity and its use in prediction of the first normal stress function in shear flow. Journal of Non-Newtonian Fluid Mechanics, 1994. 51(2): p. 179-194.
[36].Minoshima, W. and White, J. L., A comparative experimental study of the isothermal shear and uniaxial elongational rheological properties of low density, high density and linear low density polyethylenes. Journal of Non-Newtonian Fluid Mechanics, 1986. 19(3): p. 251-274.
[37].Barnes, H. A. and Roberts, G. P., A simple empirical model describing the steady-state shear and extensional viscosities of polymer melts. Journal of Non-Newtonian Fluid Mechanics, 1992. 44(C): p. 113-126.
[38].奇美實業股份有限公司., WONDERLITE® PC樹脂.
[39].維基百科. 聚碳酸酯. Available from: https://zh.wikipedia.org/wiki/%E8%81%9A%E7%A2%B3%E9%85%B8%E9%85%AF.
[40].Bordes, P., Pollet, E., and Avérous, L., Nano-biocomposites: Biodegradable polyester/nanoclay systems. Progress in Polymer Science (Oxford), 2009. 34(2): p. 125-155.
[41].Ray, S. S., et al., New polylactide/layered silicate nanocomposites. 5. Designing of materials with desired properties. Polymer, 2003. 44(21): p. 6633-6646.
[42].T., N. Q. and G., B. D., Preparation of polymer–clay nanocomposites and their properties. Advances in Polymer Technology, 2006. 25(4): p. 270-285.
[43].Giannelis, E. P., Polymer layered silicate nanocomposites. Advanced Materials, 1996. 8(1): p. 29-35.
[44].Giannelis, E. P., Krishnamoorti, R., and Manias, E., Polymer-Silicate Nanocomposites: Model Systems for Confined Polymers and Polymer Brushes, in Polymers in Confined Environments, S. Granick, et al., Editors. 1999, Springer Berlin Heidelberg: Berlin, Heidelberg. p. 107-147.
[45].LeBaron, P. C., Wang, Z., and Pinnavaia, T. J., Polymer-layered silicate nanocomposites: an overview. Applied Clay Science, 1999. 15(1): p. 11-29.
[46].Vaia, R. A., et al., Polymer/layered silicate nanocomposites as high performance ablative materials. Applied Clay Science, 1999. 15(1): p. 67-92.
[47].Biswas, M. and Ray, S. S., Recent Progress in Synthesis and Evaluation of Polymer-Montmorillonite Nanocomposites, in New Polymerization Techniques and Synthetic Methodologies. 2001, Springer Berlin Heidelberg: Berlin, Heidelberg. p. 167-221.
[48].Vaia, R. A., et al., Microstructural Evolution of Melt Intercalated Polymer−Organically Modified Layered Silicates Nanocomposites. Chemistry of Materials, 1996. 8(11): p. 2628-2635.
[49].Vega, J. F., et al., Rheology and reptation of linear polymers. Ultrahigh molecular weight chain dynamics in the melt. Journal of Rheology, 2004. 48(3): p. 663-678.
[50].Vega, J., et al., Viscoelasticity and macromolecular topology in single-site catalyzed polyethylene. Vol. 43. 2008. 1745-1748.
[51].李庭樞, 蒙脫土補強聚乳酸/十八烯琥珀酸酐摻合物的製備與性質,碩士論文、淡江大學, 2016.