跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.182) 您好!臺灣時間:2025/11/27 23:57
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:郭奕如
研究生(外文):I-Ju Kuo
論文名稱:亞急性中風病人復健中施予雙腦經顱直流電刺激可調控雙側運動皮質
論文名稱(外文):Neuromodulation of bilateral motor cortices by task-concurrent dual transcranial direct current stimulation in subacute stroke
指導教授:李怡慧李怡慧引用關係
指導教授(外文):I-Hui Lee
學位類別:碩士
校院名稱:國立陽明大學
系所名稱:腦科學研究所
學門:醫藥衛生學門
學類:醫學學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:52
中文關鍵詞:經顱直流電刺激中風運動皮質
外文關鍵詞:Transcranial direct current stimulationStrokePrimary motor cortex
相關次數:
  • 被引用被引用:0
  • 點閱點閱:429
  • 評分評分:
  • 下載下載:18
  • 收藏至我的研究室書目清單書目收藏:0
背景及目的:經顱直流電刺激(transcranial direct current stimulation, tDCS)雙側運動皮質(primary motor cortices, M1)較單側皮質刺激被認為更能提昇健康受試者的運動反應和皮質脊髓興奮性。中風後,從非損傷腦側M1到損傷側M1的腦半球間抑制性會異常升高,影響中風患者的功能恢復,然而,亞急性中風患者復健中結合雙側tDCS是否可能影響雙側M1的皮質興奮性仍然未知,我們的研究目的在探討亞急性中風患者在復健中施予雙側運動皮質tDCS的安全性和有效性。
方法:我們收錄12位第一次單側皮質下缺血性中風的亞急性病患(中風後2-4週)和13位條件相符的健康對照組進行了隨機交叉假刺激對照研究。在執行偏癱或非優勢橈側伸腕肌群運動時,受試者在分開的兩天接受真或假tDCS。真刺激tDCS是將陽極電片放置在損傷腦同側或非優勢M1上,而陰極電片放置在非損傷腦側或優勢M1上; 2毫安培20分鐘;假刺激tDCS則是電片放置相同的位置,但電刺激只有前2分鐘。我們在刺激前評估美國國衛院腦中風評估表(National Institutes of Health Stroke Scale, NIHSS)、Modified Rankin Scale(mRS)、Fugl-Meyer Assessment-Upper Extremity(FMA-UE)和Action Research Arm Test(ARAT),在刺激前後使用經顱磁刺激比較運動誘發電位(motor evoked potentials, MEPs)、大腦半球間抑制性的同側靜止期(ipsilateral silent period, iSP)和短間隔腦皮質內抑制(short interval intracortical inhibition, SICI)的變化。
結果:相較於假刺激,健康對照組在真刺激後顯著增加陽極刺激側M1的MEPs、減少SICI、並且延長iSP增加對側抑制,而在陰極刺激的M1減少MEPs、並且縮短iSP減少對側抑制,效果至少持續30分鐘。在中風患者也有相似的結果,真刺激後陽極損傷側M1增加MEPs、減少SICI、並且延長iSP增加對側抑制,同時陰極刺激非損傷側M1減少MEPs、增加SICI、並縮短iSP減少對側抑制。有趣的是,在中風患者控制了年齡、基準NIHSS、FMA-UE和MEP%變因之後,我們發現基準iSP的雙側比值有意義地預測真假刺激後陽極損傷側MEPs的變化差異量並呈現負相關(P= 0.04),且刺激沒有發生明顯副作用。
結論:亞急性中風患者復健中施予雙側tDCS可以安全並同步調節雙側M1興奮性和大腦半球間的抑制性,大腦半球間的抑制性的基準比值可能預測亞急性中風病患接受雙側M1 tDCS的反應程度。(臺北榮總人體試驗許可編號:2014-01-006C;美國臨床試驗註冊序號:NCT02158312)
Background and objective: Dual transcranial direct current stimulation (tDCS) to bilateral primary motor cortices (M1) has been suggested to enhance motor reaction and corticospinal excitability compared with unilateral tDCS in healthy subjects. After stroke, the contralesional hyperexcitatory M1 may impede functional recovery of the paretic hand through transcallosal inhibition of ipsilesional M1. It remains unknown how dual tDCS in combination with rehabilitation may affect motor cortical excitability and transcallosal intercations bilaterally in subacute stroke patients. Here we examined safety and efficacy of task-concurrent dual tDCS over the M1 in subacute stroke patients.
Methods: We conducted a randomized, single-blind crossover sham-controlled study in 12 subacute (2-4 weeks after onset) stroke patients with first-time, unilateral, subcortical ischemic stroke and 13 matched healthy controls. During exercising the paretic or non-dominant extensor carpi radialis, participants underwent two different tDCS conditions on separate days, i.e. real tDCS (anode over the ipsilesional or non-dominant M1, while cathode over the contralesional or dominant M1; 2 mA for 20 mins) and sham tDCS (same settings except for initial 2 mins). We evaluated the National Institutes of Health Stroke Scale (NIHSS), Modified Rankin Scale (mRS), Fugl-Meyer Assessment- Upper Extremity (FMA-UE) and Action Research Arm Test (ARAT) of patients and compared the changes of motor evoked potentials (MEPs), ipsilateral silent period (iSP) for interhemispheric inhibition and short interval intracortical inhibition (SICI) in all participants using transcranial magnetic stimulation before and after tDCS.
Results: Compared with sham stimulation, the real tDCS significantly increased MEPs, reduced SICI, and prolonged iSP of the anode-stimulated non-dominant M1, while decreased MEPs and shortened iSP of the cathode-stimulated dominant M1 in healthy controls for at least 30 mins. Similarly in stroke patients, the real tDCS increased MEPs, reduced SICI, and prolonged iSP of the anode-stimulated ipsilesional M1, while decreased MEPs, increased SICI, and shorten iSP of the cathode-stimulated contralesional M1. Interestingly, after adjustments of age, NIHSS, FMA-UE and baseline MEPs, we found that the baseline iSP ratio significantly predicted the MEP changes after tDCS in a negative correlation fashion. No adverse effects were observed.
Conclusions: Task-concurrent dual tDCS can safely and synchronously modulate bilateral M1 excitability and interhemispheric inhibition in subacute stroke patients. Their baseline interhemispheric inhibition ratio could be used to predict the dual tDCS responders and responses. Taipei Veterans General Hospital IRB No.: 2014-01-006C; ClinicalTrials.gov: NCT02158312.
誌謝 I
中文摘要 III
英文摘要 IV
目錄 V
縮寫中英對照 VII
第一章 背景 1
第一節 中風後復健的時機:急性、亞急性到慢性期的實証 1
第二節 非侵襲性經顱腦刺激和中風後的神經可塑性 2
第三節 比較單側與雙側經顱直流電刺激健康人運動皮質的效應 6
第四節 雙腦經顱直流電刺激中風後運動皮質的安全性和療效? 7
第二章 目的 10
第三章 方法 11
第一節 受試者條件 11
第二節 實驗設計 11
第三節 經顱直流電刺激及安全評估 11
第四節 神經功能和動作功能評估 12
第五節 經顱磁刺激評估 12
第六節 腦磁振造影 13
第七節 統計分析 13
第四章 結果 15
第一節 亞急性中風病患的特徵和腦梗塞位置 15
第二節 亞急性中風病患和健康人運動皮質的電生理基準值差異和經顱直流電刺激安全性 15
第三節 亞急性中風病患和健康人接受經顱直流電刺激後電生理改變 16
第四節 亞急性中風病患和健康對照者對經顱直流電刺激的反應比例 17
第五節 預測經顱直流電刺激可改變運動皮質興奮性的因子 18
第五章 結論 19
第六章 討論 20
第一節 本研究的主要新穎發現 20
第二節 本研究與過往文獻的異同之處 20
第三節 本研究的限制與未來研究方向 22
參考文獻 23
附圖 35
圖1 收案流程及受試者納入和排除條件 35
圖2 實驗設計 36
圖3 亞急性中風病患的腦梗塞位置 37
圖4 經顱直流電刺激後中風病患和健康對照者的運動皮質興奮性的改變 38
圖5 亞急性中風病患和健康對照者對經顱直流電刺激的反應比例 40
圖6 經顱直流電刺激運動皮質興奮性改變的預測因子 41
圖7 雙腦經顱直流電刺激效應的理論機制圖 42
附表 43
表1 文獻回顧單次雙腦經顱直流電刺激運動皮質的研究 43
表2 文獻回顧多次雙腦經顱直流電刺激中風後運動皮質的研究 48
表3 亞急性中風病患的基本特徵 51
表4 亞急性中風病患和健康對照者運動皮質的電生理基準值比較 52
1. Ammann, C., Spampinato, D., and Marquez-Ruiz, J. (2016). Modulating Motor Learning through Transcranial Direct-Current Stimulation: An Integrative View. Front Psychol 7, 1981.
2. Ang, K.K., Guan, C., Phua, K.S., Wang, C., Zhao, L., Teo, W.P., Chen, C., Ng, Y.S., and Chew, E. (2015). Facilitating effects of transcranial direct current stimulation on motor imagery brain-computer interface with robotic feedback for stroke rehabilitation. Arch Phys Med Rehabil 96, S79-87.
3. Bikson, M., Grossman, P., Thomas, C., Zannou, A.L., Jiang, J., Adnan, T., Mourdoukoutas, A.P., Kronberg, G., Truong, D., Boggio, P., et al. (2016). Safety of Transcranial Direct Current Stimulation: Evidence Based Update 2016. Brain Stimul 9, 641-661.
4. Bikson, M., Inoue, M., Akiyama, H., Deans, J.K., Fox, J.E., Miyakawa, H., and Jefferys, J.G. (2004). Effects of uniform extracellular DC electric fields on excitability in rat hippocampal slices in vitro. J Physiol 557, 175-190.
5. Bindman, L.J., Lippold, O.C., and Redfearn, J.W. (1962). Long-lasting changes in the level of the electrical activity of the cerebral cortex produced bypolarizing currents. Nature 196, 584-585.
6. Bolognini, N., Vallar, G., Casati, C., Latif, L.A., El-Nazer, R., Williams, J., Banco, E., Macea, D.D., Tesio, L., Chessa, C., et al. (2011). Neurophysiological and behavioral effects of tDCS combined with constraint-induced movement therapy in poststroke patients. Neurorehabil Neural Repair 25, 819-829.
7. Bradnam, L.V., Stinear, C.M., Barber, P.A., and Byblow, W.D. (2012). Contralesional hemisphere control of the proximal paretic upper limb following stroke. Cereb Cortex 22, 2662-2671.
8. Brunoni, A.R., Amadera, J., Berbel, B., Volz, M.S., Rizzerio, B.G., and Fregni, F. (2011). A systematic review on reporting and assessment of adverse effects associated with transcranial direct current stimulation. Int J Neuropsychopharmacol 14, 1133-1145.
9. Byblow, W.D., Stinear, C.M., Barber, P.A., Petoe, M.A., and Ackerley, S.J. (2015). Proportional recovery after stroke depends on corticomotor integrity. Ann Neurol 78, 848-859.
10. Calautti, C., and Baron, J.C. (2003). Functional neuroimaging studies of motor recovery after stroke in adults: a review. Stroke 34, 1553-1566.
11. Chan, L., Sandel, M.E., Jette, A.M., Appelman, J., Brandt, D.E., Cheng, P., Teselle, M., Delmonico, R., Terdiman, J.F., and Rasch, E.K. (2013). Does postacute care site matter? A longitudinal study assessing functional recovery after a stroke. Arch Phys Med Rehabil 94, 622-629.
12. Chen, J.L., and Schlaug, G. (2016). Increased resting state connectivity between ipsilesional motor cortex and contralesional premotor cortex after transcranial direct current stimulation with physical therapy. Sci Rep 6, 23271.
13. Chew, T., Ho, K.A., and Loo, C.K. (2015). Inter- and Intra-individual Variability in Response to Transcranial Direct Current Stimulation (tDCS) at Varying Current Intensities. Brain Stimul 8, 1130-1137.
14. Chhatbar, P.Y., Ramakrishnan, V., Kautz, S., George, M.S., Adams, R.J., and Feng, W. (2016). Transcranial Direct Current Stimulation Post-Stroke Upper Extremity Motor Recovery Studies Exhibit a Dose-Response Relationship. Brain Stimul 9, 16-26.
15. Chiou, S.Y., Wang, R.Y., Liao, K.K., Wu, Y.T., Lu, C.F., and Yang, Y.R. (2013). Co-activation of primary motor cortex ipsilateral to muscles contracting in a unilateral motor task. Clin Neurophysiol 124, 1353-1363.
16. Cramer, S.C., Nelles, G., Benson, R.R., Kaplan, J.D., Parker, R.A., Kwong, K.K., Kennedy, D.N., Finklestein, S.P., and Rosen, B.R. (1997). A functional MRI study of subjects recovered from hemiparetic stroke. Stroke 28, 2518-2527.
17. Creutzfeldt, O.D., Fromm, G.H., and Kapp, H. (1962). Influence of transcortical d-c currents on cortical neuronal activity. Exp Neurol 5, 436-452.
18. D'Agata, F., Peila, E., Cicerale, A., Caglio, M.M., Caroppo, P., Vighetti, S., Piedimonte, A., Minuto, A., Campagnoli, M., Salatino, A., et al. (2016). Cognitive and Neurophysiological Effects of Non-invasive Brain Stimulation in Stroke Patients after Motor Rehabilitation. Front Behav Neurosci 10, 135.
19. Datta, A., Bansal, V., Diaz, J., Patel, J., Reato, D., and Bikson, M. (2009). Gyri-precise head model of transcranial direct current stimulation: improved spatial focality using a ring electrode versus conventional rectangular pad. Brain Stimul 2, 201-207, 207 e201.
20. Di Lazzaro, V., Dileone, M., Capone, F., Pellegrino, G., Ranieri, F., Musumeci, G., Florio, L., Di Pino, G., and Fregni, F. (2014). Immediate and late modulation of interhemipheric imbalance with bilateral transcranial direct current stimulation in acute stroke. Brain Stimul 7, 841-848.
21. Dimyan, M.A., and Cohen, L.G. (2011). Neuroplasticity in the context of motor rehabilitation after stroke. Nat Rev Neurol 7, 76-85.
22. Dobkin, B.H., and Carmichael, S.T. (2016). The Specific Requirements of Neural Repair Trials for Stroke. Neurorehabil Neural Repair 30, 470-478.
23. English, C., Bernhardt, J., Crotty, M., Esterman, A., Segal, L., and Hillier, S. (2015). Circuit class therapy or seven-day week therapy for increasing rehabilitation intensity of therapy after stroke (CIRCIT): a randomized controlled trial. Int J Stroke 10, 594-602.
24. Fiori, V., Nitsche, M., Iasevoli, L., Cucuzza, G., Caltagirone, C., and Marangolo, P. (2017). Differential effects of bihemispheric and unihemispheric transcranial direct current stimulation in young and elderly adults in verbal learning. Behav Brain Res 321, 170-175.
25. Fritsch, B., Reis, J., Martinowich, K., Schambra, H.M., Ji, Y., Cohen, L.G., and Lu, B. (2010). Direct current stimulation promotes BDNF-dependent synaptic plasticity: potential implications for motor learning. Neuron 66, 198-204.
26. Fusco, A., De Angelis, D., Morone, G., Maglione, L., Paolucci, T., Bragoni, M., and Venturiero, V. (2013). The ABC of tDCS: Effects of Anodal, Bilateral and Cathodal Montages of Transcranial Direct Current Stimulation in Patients with Stroke-A Pilot Study. Stroke Res Treat 2013, 837595.
27. Goodwill, A.M., Teo, W.P., Morgan, P., Daly, R.M., and Kidgell, D.J. (2016). Bihemispheric-tDCS and Upper Limb Rehabilitation Improves Retention of Motor Function in Chronic Stroke: A Pilot Study. Front Hum Neurosci 10, 258.
28. Grefkes, C., and Fink, G.R. (2012). Disruption of motor network connectivity post-stroke and its noninvasive neuromodulation. Curr Opin Neurol 25, 670-675.
29. Grefkes, C., Nowak, D.A., Wang, L.E., Dafotakis, M., Eickhoff, S.B., and Fink, G.R. (2010). Modulating cortical connectivity in stroke patients by rTMS assessed with fMRI and dynamic causal modeling. Neuroimage 50, 233-242.
30. group, A.T.C., Bernhardt, J., Langhorne, P., Lindley, R.I., Thrift, A.G., Ellery, F., Collier, J., Churilov, L., Moodie, M., Dewey, H., et al. (2015). Efficacy and safety of very early mobilisation within 24 h of stroke onset (AVERT): a randomised controlled trial. Lancet 386, 46-55.
31. Ilic, T.V., Jung, P., and Ziemann, U. (2004). Subtle hemispheric asymmetry of motor cortical inhibitory tone. Clin Neurophysiol 115, 330-340.
32. Jang, S.H. (2007). A review of motor recovery mechanisms in patients with stroke. NeuroRehabilitation 22, 253-259.
33. Jo, J.Y., Lee, A., Kim, M.S., Park, E., Chang, W.H., Shin, Y.I., and Kim, Y.H. (2016). Prediction of Motor Recovery Using Quantitative Parameters of Motor Evoked Potential in Patients With Stroke. Ann Rehabil Med 40, 806-815.
34. Kabakov, A.Y., Muller, P.A., Pascual-Leone, A., Jensen, F.E., and Rotenberg, A. (2012). Contribution of axonal orientation to pathway-dependent modulation of excitatory transmission by direct current stimulation in isolated rat hippocampus. J Neurophysiol 107, 1881-1889.
35. Karok, S., and Witney, A.G. (2013). Enhanced motor learning following task-concurrent dual transcranial direct current stimulation. PLoS One 8, e85693.
36. Khedr, E.M., Etraby, A.E., Hemeda, M., Nasef, A.M., and Razek, A.A. (2010). Long-term effect of repetitive transcranial magnetic stimulation on motor function recovery after acute ischemic stroke. Acta Neurol Scand 121, 30-37.
37. Klomjai, W., Katz, R., and Lackmy-Vallee, A. (2015). Basic principles of transcranial magnetic stimulation (TMS) and repetitive TMS (rTMS). Ann Phys Rehabil Med 58, 208-213.
38. Koyama, S., Tanaka, S., Tanabe, S., and Sadato, N. (2015). Dual-hemisphere transcranial direct current stimulation over primary motor cortex enhances consolidation of a ballistic thumb movement. Neurosci Lett 588, 49-53.
39. Krishnan, C., Santos, L., Peterson, M.D., and Ehinger, M. (2015). Safety of noninvasive brain stimulation in children and adolescents. Brain Stimul 8, 76-87.
40. Kubis, N. (2016). Non-Invasive Brain Stimulation to Enhance Post-Stroke Recovery. Front Neural Circuits 10, 56.
41. Kujirai, T., Caramia, M.D., Rothwell, J.C., Day, B.L., Thompson, P.D., Ferbert, A., Wroe, S., Asselman, P., and Marsden, C.D. (1993). Corticocortical inhibition in human motor cortex. J Physiol 471, 501-519.
42. Labruna, L., Jamil, A., Fresnoza, S., Batsikadze, G., Kuo, M.F., Vanderschelden, B., Ivry, R.B., and Nitsche, M.A. (2016). Efficacy of Anodal Transcranial Direct Current Stimulation is Related to Sensitivity to Transcranial Magnetic Stimulation. Brain Stimul 9, 8-15.
43. Lang, C.E., Strube, M.J., Bland, M.D., Waddell, K.J., Cherry-Allen, K.M., Nudo, R.J., Dromerick, A.W., and Birkenmeier, R.L. (2016). Dose response of task-specific upper limb training in people at least 6 months poststroke: A phase II, single-blind, randomized, controlled trial. Ann Neurol 80, 342-354.
44. Lang, N., Nitsche, M.A., Paulus, W., Rothwell, J.C., and Lemon, R.N. (2004). Effects of transcranial direct current stimulation over the human motor cortex on corticospinal and transcallosal excitability. Exp Brain Res 156, 439-443.
45. Lang, N., Siebner, H.R., Ward, N.S., Lee, L., Nitsche, M.A., Paulus, W., Rothwell, J.C., Lemon, R.N., and Frackowiak, R.S. (2005). How does transcranial DC stimulation of the primary motor cortex alter regional neuronal activity in the human brain? Eur J Neurosci 22, 495-504.
46. Lefebvre, S., Dricot, L., Laloux, P., Desfontaines, P., Evrard, F., Peeters, A., Jamart, J., and Vandermeeren, Y. (2017). Increased functional connectivity one week after motor learning and tDCS in stroke patients. Neuroscience 340, 424-435.
47. Lefebvre, S., Dricot, L., Laloux, P., Gradkowski, W., Desfontaines, P., Evrard, F., Peeters, A., Jamart, J., and Vandermeeren, Y. (2015). Neural substrates underlying stimulation-enhanced motor skill learning after stroke. Brain 138, 149-163.
48. Lefebvre, S., Laloux, P., Peeters, A., Desfontaines, P., Jamart, J., and Vandermeeren, Y. (2012). Dual-tDCS Enhances Online Motor Skill Learning and Long-Term Retention in Chronic Stroke Patients. Front Hum Neurosci 6, 343.
49. Lefebvre, S., Thonnard, J.L., Laloux, P., Peeters, A., Jamart, J., and Vandermeeren, Y. (2014). Single session of dual-tDCS transiently improves precision grip and dexterity of the paretic hand after stroke. Neurorehabil Neural Repair 28, 100-110.
50. Liebetanz, D., Koch, R., Mayenfels, S., Konig, F., Paulus, W., and Nitsche, M.A. (2009). Safety limits of cathodal transcranial direct current stimulation in rats. Clin Neurophysiol 120, 1161-1167.
51. Liebetanz, D., Nitsche, M.A., Tergau, F., and Paulus, W. (2002). Pharmacological approach to the mechanisms of transcranial DC-stimulation-induced after-effects of human motor cortex excitability. Brain 125, 2238-2247.
52. Lindenberg, R., Nachtigall, L., Meinzer, M., Sieg, M.M., and Floel, A. (2013). Differential effects of dual and unihemispheric motor cortex stimulation in older adults. J Neurosci 33, 9176-9183.
53. Lindenberg, R., Sieg, M.M., Meinzer, M., Nachtigall, L., and Floel, A. (2016). Neural correlates of unihemispheric and bihemispheric motor cortex stimulation in healthy young adults. Neuroimage 140, 141-149.
54. Lopez, L., Chan, C.Y., Okada, Y.C., and Nicholson, C. (1991). Multimodal characterization of population responses evoked by applied electric field in vitro: extracellular potential, magnetic evoked field, transmembrane potential, and current-source density analysis. J Neurosci 11, 1998-2010.
55. Lopez-Alonso, V., Fernandez-Del-Olmo, M., Costantini, A., Gonzalez-Henriquez, J.J., and Cheeran, B. (2015). Intra-individual variability in the response to anodal transcranial direct current stimulation. Clin Neurophysiol 126, 2342-2347.
56. Lotze, M., Markert, J., Sauseng, P., Hoppe, J., Plewnia, C., and Gerloff, C. (2006). The role of multiple contralesional motor areas for complex hand movements after internal capsular lesion. J Neurosci 26, 6096-6102.
57. Mahmoudi, H., Borhani Haghighi, A., Petramfar, P., Jahanshahi, S., Salehi, Z., and Fregni, F. (2011). Transcranial direct current stimulation: electrode montage in stroke. Disabil Rehabil 33, 1383-1388.
58. Marquez-Ruiz, J., Leal-Campanario, R., Sanchez-Campusano, R., Molaee-Ardekani, B., Wendling, F., Miranda, P.C., Ruffini, G., Gruart, A., and Delgado-Garcia, J.M. (2012). Transcranial direct-current stimulation modulates synaptic mechanisms involved in associative learning in behaving rabbits. Proc Natl Acad Sci U S A 109, 6710-6715.
59. Miranda, P.C., Lomarev, M., and Hallett, M. (2006). Modeling the current distribution during transcranial direct current stimulation. Clin Neurophysiol 117, 1623-1629.
60. Murase, N., Duque, J., Mazzocchio, R., and Cohen, L.G. (2004). Influence of interhemispheric interactions on motor function in chronic stroke. Ann Neurol 55, 400-409.
61. Nicolo, P., Rizk, S., Magnin, C., Pietro, M.D., Schnider, A., and Guggisberg, A.G. (2015). Coherent neural oscillations predict future motor and language improvement after stroke. Brain 138, 3048-3060.
62. Nitsche, M.A., Jaussi, W., Liebetanz, D., Lang, N., Tergau, F., and Paulus, W. (2004). Consolidation of human motor cortical neuroplasticity by D-cycloserine. Neuropsychopharmacology 29, 1573-1578.
63. Nitsche, M.A., and Paulus, W. (2000). Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation. J Physiol 527 Pt 3, 633-639.
64. Nitsche, M.A., and Paulus, W. (2001). Sustained excitability elevations induced by transcranial DC motor cortex stimulation in humans. Neurology 57, 1899-1901.
65. Nouri, S., and Cramer, S.C. (2011). Anatomy and physiology predict response to motor cortex stimulation after stroke. Neurology 77, 1076-1083.
66. Nowak, D.A., Bosl, K., Podubecka, J., and Carey, J.R. (2010). Noninvasive brain stimulation and motor recovery after stroke. Restor Neurol Neurosci 28, 531-544.
67. O'Shea, J., Boudrias, M.H., Stagg, C.J., Bachtiar, V., Kischka, U., Blicher, J.U., and Johansen-Berg, H. (2014). Predicting behavioural response to TDCS in chronic motor stroke. Neuroimage 85 Pt 3, 924-933.
68. Opitz, A., Falchier, A., Yan, C.G., Yeagle, E.M., Linn, G.S., Megevand, P., Thielscher, A., Deborah, A.R., Milham, M.P., Mehta, A.D., et al. (2016). Spatiotemporal structure of intracranial electric fields induced by transcranial electric stimulation in humans and nonhuman primates. Sci Rep 6, 31236.
69. Poreisz, C., Boros, K., Antal, A., and Paulus, W. (2007). Safety aspects of transcranial direct current stimulation concerning healthy subjects and patients. Brain Res Bull 72, 208-214.
70. Priori, A., Berardelli, A., Rona, S., Accornero, N., and Manfredi, M. (1998). Polarization of the human motor cortex through the scalp. Neuroreport 9, 2257-2260.
71. Purpura, D.P., and McMurtry, J.G. (1965). Intracellular Activities and Evoked Potential Changes during Polarization of Motor Cortex. J Neurophysiol 28, 166-185.
72. Radman, T., Ramos, R.L., Brumberg, J.C., and Bikson, M. (2009). Role of cortical cell type and morphology in subthreshold and suprathreshold uniform electric field stimulation in vitro. Brain Stimul 2, 215-228, 228 e211-213.
73. Rehme, A.K., Fink, G.R., von Cramon, D.Y., and Grefkes, C. (2011). The role of the contralesional motor cortex for motor recovery in the early days after stroke assessed with longitudinal FMRI. Cereb Cortex 21, 756-768.
74. Roche, N., Geiger, M., and Bussel, B. (2015). Mechanisms underlying transcranial direct current stimulation in rehabilitation. Ann Phys Rehabil Med 58, 214-219.
75. Rothwell, J.C., Hallett, M., Berardelli, A., Eisen, A., Rossini, P., and Paulus, W. (1999). Magnetic stimulation: motor evoked potentials. The International Federation of Clinical Neurophysiology. Electroencephalogr Clin Neurophysiol Suppl 52, 97-103.
76. Sehm, B., Kipping, J., Schafer, A., Villringer, A., and Ragert, P. (2013). A Comparison between Uni- and Bilateral tDCS Effects on Functional Connectivity of the Human Motor Cortex. Front Hum Neurosci 7, 183.
77. Sehm, B., Schafer, A., Kipping, J., Margulies, D., Conde, V., Taubert, M., Villringer, A., and Ragert, P. (2012). Dynamic modulation of intrinsic functional connectivity by transcranial direct current stimulation. J Neurophysiol 108, 3253-3263.
78. Shafi, M.M., Westover, M.B., Fox, M.D., and Pascual-Leone, A. (2012). Exploration and modulation of brain network interactions with noninvasive brain stimulation in combination with neuroimaging. Eur J Neurosci 35, 805-825.
79. Stinear, C.M., and Byblow, W.D. (2014). Predicting and accelerating motor recovery after stroke. Curr Opin Neurol 27, 624-630.
80. Stinear, C.M., Petoe, M.A., Anwar, S., Barber, P.A., and Byblow, W.D. (2014). Bilateral priming accelerates recovery of upper limb function after stroke: a randomized controlled trial. Stroke 45, 205-210.
81. Tazoe, T., Endoh, T., Kitamura, T., and Ogata, T. (2014). Polarity specific effects of transcranial direct current stimulation on interhemispheric inhibition. PLoS One 9, e114244.
82. Tremblay, S., Larochelle-Brunet, F., Lafleur, L.P., El Mouderrib, S., Lepage, J.F., and Theoret, H. (2016). Systematic assessment of duration and intensity of anodal transcranial direct current stimulation on primary motor cortex excitability. Eur J Neurosci 44, 2184-2190.
83. Vandermeeren, Y., Jamart, J., and Ossemann, M. (2010). Effect of tDCS with an extracephalic reference electrode on cardio-respiratory and autonomic functions. BMC Neurosci 11, 38.
84. Vines, B.W., Cerruti, C., and Schlaug, G. (2008). Dual-hemisphere tDCS facilitates greater improvements for healthy subjects' non-dominant hand compared to uni-hemisphere stimulation. BMC Neurosci 9, 103.
85. Wagner, T., Fregni, F., Fecteau, S., Grodzinsky, A., Zahn, M., and Pascual-Leone, A. (2007). Transcranial direct current stimulation: a computer-based human model study. Neuroimage 35, 1113-1124.
86. Wang, L.E., Tittgemeyer, M., Imperati, D., Diekhoff, S., Ameli, M., Fink, G.R., and Grefkes, C. (2012). Degeneration of corpus callosum and recovery of motor function after stroke: a multimodal magnetic resonance imaging study. Hum Brain Mapp 33, 2941-2956.
87. Wang, Q.M., Cui, H., Han, S.J., Black-Schaffer, R., Volz, M.S., Lee, Y.T., Herman, S., Latif, L.A., Zafonte, R., and Fregni, F. (2014). Combination of transcranial direct current stimulation and methylphenidate in subacute stroke. Neurosci Lett 569, 6-11.
88. Ward, N. (2011). Assessment of cortical reorganisation for hand function after stroke. J Physiol 589, 5625-5632.
89. Ward, N.S., Brown, M.M., Thompson, A.J., and Frackowiak, R.S. (2003a). Neural correlates of motor recovery after stroke: a longitudinal fMRI study. Brain 126, 2476-2496.
90. Ward, N.S., Brown, M.M., Thompson, A.J., and Frackowiak, R.S. (2003b). Neural correlates of outcome after stroke: a cross-sectional fMRI study. In Brain, pp. 1430-1448.
91. Wieloch, T., and Nikolich, K. (2006). Mechanisms of neural plasticity following brain injury. Curr Opin Neurobiol 16, 258-264.
92. Williams, J.A., Pascual-Leone, A., and Fregni, F. (2010). Interhemispheric modulation induced by cortical stimulation and motor training. Phys Ther 90, 398-410.
93. Winstein, C.J., Stein, J., Arena, R., Bates, B., Cherney, L.R., Cramer, S.C., Deruyter, F., Eng, J.J., Fisher, B., Harvey, R.L., et al. (2016). Guidelines for Adult Stroke Rehabilitation and Recovery: A Guideline for Healthcare Professionals From the American Heart Association/American Stroke Association. Stroke 47, e98-e169.
94. Winters, C., van Wegen, E.E., Daffertshofer, A., and Kwakkel, G. (2015). Generalizability of the Proportional Recovery Model for the Upper Extremity After an Ischemic Stroke. Neurorehabil Neural Repair 29, 614-622.
95. Yang, Y.R., Tseng, C.Y., Chiou, S.Y., Liao, K.K., Cheng, S.J., Lai, K.L., and Wang, R.Y. (2013). Combination of rTMS and treadmill training modulates corticomotor inhibition and improves walking in Parkinson disease: a randomized trial. Neurorehabil Neural Repair 27, 79-86.
96. Zheng, X., and Schlaug, G. (2015). Structural white matter changes in descending motor tracts correlate with improvements in motor impairment after undergoing a treatment course of tDCS and physical therapy. Front Hum Neurosci 9, 229.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊