跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.41) 您好!臺灣時間:2026/01/13 21:50
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:王亦安
研究生(外文):WANG, YI-AN
論文名稱:有機污泥衍生燃料燃燒廢氣之污染特性
論文名稱(外文):Characterization of Air Pollutants Emitted from Burning Organic Sludge Induced Fuels
指導教授:林紘原
指導教授(外文):Lin,Hung-Yuan
口試委員:何鴻哲李灝銘陳王琨
口試委員(外文):Ho,Hong-CheLee,How-MingChen,Wang-Kun
口試日期:2018-06-27
學位類別:碩士
校院名稱:萬能科技大學
系所名稱:環境工程研究所
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2018
畢業學年度:106
語文別:中文
論文頁數:152
中文關鍵詞:分子碰撞頻率空燃比污泥衍生燃料燃燒理論空氣污染
外文關鍵詞:molecular collision frequencyair-to-fuel ratiosludge induced fuelcombustion theoryair pollution
相關次數:
  • 被引用被引用:0
  • 點閱點閱:206
  • 評分評分:
  • 下載下載:20
  • 收藏至我的研究室書目清單書目收藏:0
本研究以理論預測法與實驗分析法評估廢水處理污泥衍生燃料在批式、無燃燒控制下,燃燒廢氣中空氣污染物濃度的變化。所採用的理論預測法是建立在分子碰撞頻率理論與空燃比在1.0以上的燃燒理論上。實測分析法則針對由食品、紙漿、染整等事業廢水與生活污水處理產生之污泥,依適當比例混合製成的衍生燃料進行批式、不控制空燃比之燃燒實驗,於燃燒過程監測廢氣之CO、CO2、NO、NO2、VOCs、PM10之濃度。研究結果顯示,理論法預測廢氣中CO、NO、CH4、NH3、H2S等空氣污染物濃度明顯隨著空燃比升高而減少。空燃比小於1.0,CO2濃度明顯隨著空燃比升高而增加,於等於1.0時最高,再隨著空燃比升高而漸減,所預測的變化趨勢係屬合理。此一結果也顯示本研究建立在空燃比小於1情境下的廢氣組成推估方法尚屬可行。實驗分析法的結果雖受限於檢測範圍,無法印證理論值,但也監測到相似的變化趨勢。實驗分析法另得出以下結果:(1)以三種混合有機污泥燃料在加入10%碳黑後,廢氣中CO、VOCs均較不添加者為低,但也會增加PM10濃度;(2)添加10%石灰後,可以100%去除污泥衍生燃料廢氣的SO2濃度,但也會降低燃燒效率,導致碳含量高的燃料之VOCs濃度增加;(3)添加10%咖啡渣後,CO濃度較未添加10%咖啡渣之樣品顯著減少,但NOx濃度則明顯增加,VOCs濃度也有增加。兩種方法都導向在空燃比小於1.0的情況下,燃燒有機污泥衍生燃料會產生高濃度的空氣污染物,需要採用燃燒控制或原料添加石灰等方法控制之。
In this study, both the theoretical prediction method and the experimental method were applied to assess the concentration variationof air pollutants in combustion exhausted gas emitted from burning sludge induced fuel under batch and non-control combustion conditions. The theoretical method is based on the molecular collision frequency theory and the general combustion theory for air-to- fuel ratio equal or greater than 1.0. In general, the predicted concentrations and their variation trends of CO、NO、CH4、NH3、H2S seem reasonal. Hence, the prediction method established in this study is acceptable.
Study results show that under air-to-fuel ratio less 1.0, the lower the ratio, the higher the concentrations of air pollutants such as CO, NO, VOCs, PM10 theoretically predicted. Although the experimental method cannot give comparable data due to limitation of monitoring range, it did provide similar results. From waste gas monitoring data, we confirmed these findings: (1) Lower CO and VOCs concentrations were monitored for samples added with 10% carbon black than without adding that material; (2) SO2 was completely removed from the waste gas stream by adding 10% lime to tested samples; (3) Lower CO and higher NOx and VOCs concentrations were monitored after samples added with 10% coffee drink residue. However, other appropriate control methods including keeping air-to-fuel ratio may help a cleaner emission.

摘要 i
Abstract ii
目錄 iii
表目錄 vii
圖目錄 x
第一章 前言 1
1.1研究動機 1
1.2研究目的 1
第二章 文獻回顧 3
2-1國內污泥產量與再利用現況 3
2-1-1污泥種類與特性 3
2-1-2產業污泥特性與種類 3
2.2污泥衍生燃料之研發與應用 6
2-3污泥與其他固體燃料共燃 8
2-4燃燒理論 10
2-4-1焚化程序基本概念 10
2-4-2理論需氧氣與空氣量 11
2-4-3燃燒實際空氣量 13
2-4-4反應速率的定義與表示 16
2-4-5溫度對反應速率的影響 17
2-4-6化學反應活化能 18
2-4-7氮氧化物的熱力學 21
2-5 氣體粒子碰撞頻率 25
2-6以自由能最少法估算廢氣組成 27
2-7污泥衍生燃料製造技術 27
2-7-1污泥乾燥技術 28
2-7-2碳化技術 28
2-7-3污泥氣化技術 28
2-8污泥衍生燃料燃燒之空氣污染問題 29
2-8-1硫氧化物SOX 30
2-8-2氮氧化物 NOX 30
2-8-3一氧化碳 CO 31
2-8-4懸浮微粒 31
2-8-5有機氣體 32
第三章 研究方法與實驗設備 33
3-1廢氣組成理論預估法 33
3-1-1碰撞頻率分析法之建立 33
3-2實驗材料與設備 48
3-3燃燒與監測方法 50
3-3-1實驗步驟 50
第四章 結果與討論 52
4-1燃燒廢氣組成之理論預測結果 52
4-1-1樣品元素組成與三成分 52
4-1-2燃燒廢氣組成預測結果 53
4-1-2燃燒廢氣組成預測結果合理性探討 58
4-2樣本燃燒氣體監測與分析結果 59
4-2-1樣品燃燒廢氣監測結果 59
4-2-2 添加碳黑等廢氣濃度變化 64
4-3 燃料燃燒廢氣歷線分析 69
第五章 結論 76
參考文獻 78
附 錄 83


1.行政院環保署-事業廢棄物申報及管理資訊系統
https://waste.epa.gov.tw/prog/IndexFrame.asp
2.行政院環保署-空氣品質改善資訊網
https://air.epa.gov.tw/Public/Main.aspx
3.邱英嘉、吳宜璁、林彥宇,高溫速燃型固態污泥衍生燃料研究,第24屆燃燒與能源技術研討會論文,2014。
4.劉秀英、王雪梅,物理化學(修訂版),文京圖書有限公司,pp.540-544,(1999)
5.章裕民,焚化處理技術,文京開發出版股份有限公司,pp.95-97,(2000)。
6.Charles N. Haas、Richard J. Vamos,Hazardous and Industrial Waste Treatment。有害廢棄物處理(蘇弘毅譯。)高立圖書有限公司,pp.336-339, (2003) 。
7.李灝銘、李恆毅、余玉正、曾錦清,漂流木、建築廢木、海藻、垃圾衍生燃料等四種生質物之熱平衡計算,核能研究所,(2007)。
8.張漢昌、錢玉樹,有害廢棄物污染防治(第二版),新文京開發出版股份有限公司,pp.127,(2008)。
9.張漢昌、錢玉樹,有害廢棄物處理,新文京開發出版股份有限公司,pp., (2008) 。
10.鄭宗岳、林鴻祥,空氣污染防治理論及設計,新文京開發出版股份有限公司,pp.85-95,(2011)。
11.陳維新、江金龍,“空氣污染防制”, 高立圖書有限公司,pp8-1~8-9, (2013) 。
12.鄭宗岳、林鴻祥,“空氣污染防制及設計”, 高立圖書有限公司,pp9-13,115-119., (2013) 。
13.Kenneth Wark Jr., Cecil F. Warner, Wayne T. Davis, Air Pollution Its Origin and Control (3nd ed.), Addison Wesley Longman, Inc, pp433-437,1998
14.Demirbas, Sahin, A., “ Evaluation of biomass residue: 1. Briquetting waste paper and wheat straw mixtures”, Fuel Processing Technology, Vol. 55, pp. 175-183, 1998
15.Yaman, S., SahanŞahan, M., Haykiri, H. A., Şeşen, K., Küçükbayrak, S., “Fuel briquettes from biomass–lignite blends”, Fuel Processing Technology, Vol. 72, pp. 1-8, 2001.
16.Shin, D., Jang, S., Hwang, J., “Combustion characteristics of paper mill sludge in a lab-scale combustor with internally cycloned circulating fluidized bed”, Waste management, Vol. 25(7), pp. 680-685, 2005.
17.Marsh, R., Griffiths, J. A., Williams, K .P., Wilcox, S. J., “Physical and thermal properties of extruded refuse derived fuel”, Fuel Processing Technology, Vol. 88, pp. 701-706, 2007.
18.Jiang, J., Ma, X. Q., “Experimental research of microwave pyrolysis about paper mill sludge”, Applied Thermal Engineering, Vol. 31(17-18), pp. 3897-3903, 2011.
19.Raj, C.S., Arul, S., Sendilvelan, S., Saravanan, C.G., “Bio Gas from Textile Cotton Waste - An Alternate Fuel for Diesel Engines”, The Open Waste Management Journal, Vol. 2, pp. 1-5, 2009.
20.Gautam S.P., Bundela P. S., Jain R.K., Padmanabhan V., “Co-incineration of textile ETP sludge in captive power house boiler”, Recent Research in Science and Technology, Vol. 3(4), pp. 105-113, 2011.
21.Chen, W.S., Cheng, F.C., Sheng, Y.H., Tsai, M.S., The characteristics of organic sludge/sawdust derived fuel”, Bioresource Technology, Vol. 102(9), pp. 5406-5410, 2011.
22.Chang, F. C., Ko, C. H., Wu, J. Y., Wang, H. P., Chen, W. S., Resource recovery of organic sludge as refuse derived fuel by fry-drying process”, Bioresource Technology, Vol. 141, pp. 240-244, 2013.
23.Wzorek, M., “Characterisation of the properties of alternative fuels containing sewage sludge”, Fuel Processing Technology, Vol. 104, pp. 80-89, 2012.
24.Hou, S. S., Chen, M. C., Lin, T. H., “ Experimental study of the combustion characteristics of densified refuse derived fuel (RDF-5) produced from oil sludge”, Fuel, Vol. 116, pp. 201-207, 2014.
25.Chiemchaisri, C., Charnnok, B., Visvanathan, C., “Recovery of plastic wastes from dumpsite as refuse~derived fuel and its utilization in small gasification system”, Bioresource Technology, Vol. 101, pp. 1522-1527, 2010.
26.Sakkampang, .C, Wongwuttanasatian, .T, Study of ratio of energy consumption and gained energy during briquetting process for glycerin-biomass briquette fuel, Fuel, Vol. 115, pp. 186-189, 2014.
27.Yaman, S., Şahan, M., Haykiri-açma, H., Şeşen, K., Küçükbayrak, S., “Production of fuel briquettes from olive refuse and paper mill waste“, Fuel Processing Technology, 68, 23–31(2000).
28.Li, Yadong., Liu, Henry., Zhang, Ou., “High-pressure compaction of municipal solid waste to form densified fuel”, Fuel Processing Technology, 74, 81–91, 2001.
29.Mani, Sudhagar., Tabil, Lope G., Sokhansanj, Shahab., “Grinding performance and physical properties of wheat and barley straws, corn stover and switchgrass”, Biomass and Bioenergy, 27, 339–352, 2004.
30.Mani, Sudhagar., Tabil, Lope G., Sokhansanj, Shahab., “Effects of compressive force, particle size and moisture content on mechanical properties of biomass pellets from grasses. Biomass and Bioenergy, 30, pp. 648–654, 2006.
31.Chou, C. S., Lin, S. H., Lu, W. C., “Preparation and characterization of solid biomass fuel made from rice straw and rice bran”, Fuel Processing Technology, 90, pp. 980–987, 2009.
32.Gil, V. M., Oulego, P., Casal, D. M., Pevida, C., Pis, J. J., Rubiera, F., “Mechanical durability and combustion characteristics of pellets from biomass blends”, Bioresource Technology, 101, pp.8859–8867, 2010.
33.Gil, V. M., Casal, D., Pevida, C., Pis, J. J., Rubiera, F., “Thermal behaviour and kinetics of coal/biomass blends during co-combustion”, Bioresource Technology, 101, pp. 5601–5608, 2010.
34.Chen, S. W., Chang, C. F., Shen, H. Y., Tsai, S. M., The characteristics of organic sludge/sawdust derived fuel”, Bioresource technology, 102(9), pp. 5406–5410, 2011.
35.Chen, W. S., Lin, C. W., Chang, F. C., Lee, W. J., Wu, J. L., “ Utilization of spent activated carbon to enhance the combustion efficiency of organic sludge derived fuel”, Bioresource Technology, 113, pp. 73–77, 2012.
36.Miranda, T., Arranz, I. J., Montero, I., Román, S., Rojas, V. C., Nogales, S., “Characterization and combustion of olive pomace and forest residue pellets”, Fuel Processing Technology, 103, 91–96(2012).
37.Chang, F. C., Ko, C. H., Wu, J. Yi., Wanga, H. P., Chen, W. S., “Resource recovery of organic sludge as refuse derived fuel by fry-drying process”, Bioresource Technology, 141, pp. 240–244, 2013.
38.Hou, S. S., Chen, M. C., Lin, T. H., “Experimental study of the combustion characteristics of densified refuse derived fuel (RDF-5) produced from oil sludge”, Fuel, 116, pp. 201–207, 2014.
39.Shanchao Hu, Xiaoqian Ma, Yousheng Lin, Zhaosheng Yu, Shiwen Fang, “Thermogravimetric analysis of the co-combustion of paper mill sludge and municipal solid waste”, Energy Conversion and Management 99, pp112-118(2015)
40.Zilin Cai, Xiaoqian Ma, Shiwen Fang, Zhaosheng Yu Yan Lin, “Thermo-gravimetric analysis of the co-combustion of eucalyptus residues and paper mill sludge”, Applied Thermal Engineering 106, pp938-943(2016)

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top