跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.59) 您好!臺灣時間:2025/10/16 12:19
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:連萬翔
研究生(外文):Lien, Wan-HSiang
論文名稱:仿生釕氫團簇催化劑應用於甲酸去氫化及二氧化碳氫化反應之研究
論文名稱(外文):The Study of a Ruthenium-Based Biomimetic H-Cluster Catalyst for Formic Acid Dehydrogenation and Carbon Dioxide Hydrogenation
指導教授:吳東昆
指導教授(外文):Wu, Tung-Kung
口試委員:徐秀福鄭建中梁蘭昌
口試委員(外文):Hsu, Hsiu-FuCheng, Chien-ChungLiang, Lan-Chang
口試日期:2018-10-19
學位類別:碩士
校院名稱:國立交通大學
系所名稱:生物科技學系
學門:生命科學學門
學類:生物科技學類
論文種類:學術論文
論文出版年:2018
畢業學年度:107
語文別:英文
論文頁數:114
中文關鍵詞:產氫酶釕金屬氫化反應去氫化反應
外文關鍵詞:HydrogenaseRutheniumAzadithiolateHydrogenationDehydrogenation
相關次數:
  • 被引用被引用:0
  • 點閱點閱:170
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
非再生能源是一種有限自然能源,大多來自石油,煤炭和天然氣,可是這些非再生能源不可能永久性使用。因此,身為可再生資源-氫氣是一種在未來被使用燃料之一,因為氫氣燃燒熱比其他有機物例如:酒精來的高的高出許多,且燃燒後產生水回到大自然。在自然界中,氫氣可以由氫化酶所產生。近年來,許多研究發表關於氫化酶產氫氣並將其應用於生產系統之中。
在研究第一個部分中,我們成功合成了鐵-鐵氫化酶活性位置類似物的人工仿生結構,並將鐵替換為釕作為中心金屬Ru2S2(tosyl-adt2-),使用紫外光-可見光光譜儀、紅外線光譜儀以及循環伏安法來鑑定催化劑官能基的特徵,並利用核磁共振以及X-光單晶繞射儀對催化劑結構進行鑑定。 產氫氣實驗描述了在500 W Xe燈照射下,討論催化劑Ru2S2(tosyl-adt2-)活性和催化劑在水/醇/甲酸環境下做脫氫反應之優化且討論溫度、濃度、鹼、磷配位基和光敏劑對反應的影響。 最後,在最佳條件下以陽光照射取代Xe燈照射。
氫作為未來的燃料能在安全且穩定下的運輸及儲存是一個重大的課題。甲酸可以藉由二氧化碳氫化而產生,甲酸也可以做為氫氣和二氧化碳載體。在第二項研究中,我們報告了催化劑Ru2S2(tosyl-adt2-)活性對於二氧化碳氫化反應開發與優化。
The non-renewable energy, which is a limited natural energy that comes from the oil, coal, and natural gas, is not likely to continue into the future. A renewable resource such as hydrogen is the fuel of the future, as it has the highest heat energy of combustion compared to the other organic sources and it is eco-friendly. In nature, hydrogen can be generated by the hydrogenase. In recent years, studies on the hydrogenase have been published, and the investigated hydrogen production systems have been applied.
In this study, we successfully synthesized an artificial bionic iron-iron [Fe-Fe] hydrogenase's active site and replace the center metal atom iron with ruthenium, Ru2S2(tosyl-adt2-), and characterized the system using UV-visible spectroscopy, Fourier transform infrared spectroscopy, cyclic voltammetry, nuclear magnetic resonance spectroscopy, and X-ray diffraction. In the experiments, the Ru2S2(tosyl-adt2-) activities were obtained, and aqueous/alcohol/formic acid dehydrogenation under a 500 W Xe lamp was optimized. The effects of temperature, concentration, base, p-ligand, and photosensitizers were studied. Lastly, the lamp source irradiation was replaced by solar irradiation in the best condition.
Hydrogen as the fuel of the future requires both safe and stable for storage and transportation. Formic acid is produced by the hydrogenation of CO2, and it is an intermediate H2 and CO2 carrier. Furthermore, we also report the development and optimization of an active system of the reversible hydrogenation of CO2 with the Ru2S2(tosyl-adt2-) catalyst.
摘要 iii
Abstract iv
Table of Contents vi
Table of Figures xiv
Table of Tables xvii
Table of Schemes xix
1. Introduction 1
1.1 The global energy crisis 1
1.2 The solar energy 2
1.3 Hydrogen economy 5
1.4 Hydrogenase 9
1.4.1 [Fe-Fe] Hydrogenase 10
1.5 Photocatalytic system 11
1.5.1 Photocatalyst for hydrogen generation from aqueous phase 12
1.5.2 Photocatalyst for hydrogen generation from alcohol phase 14
1.6 Hydrogen generation for azadithiolate cofactor in metal complex 15
1.7 Specific aims 16
2.Materials and Methods 18
2.1 Experimental Materials 18
2.2 Experimental Apparatus 20
2.3 Synthetic Section 20
2.3.1 Synthesis of 5-(tert-butyl)-1,3,5-dithiazinane 20
2.3.2 Synthesis of BnN(CH2SAc)2 21
2.3.3 Synthesis of tert-ButylN(CH2SAc)2 22
2.3.4 Synthesis of p-ChlorobenN(CH2SAc)2 22
2.3.5 Synthesis of TsN(CH2Cl)2 23
2.3.6 Synthesis of TsN(CH2SAc)2 23
2.3.7 Synthesis of TsN(CH2SH)2 24
2.3.8 Synthesis of Ru2S2(tosyl-adt2-) 25
2.4 Crystallography 26
2.5 UV-Visible absorption and Fourier transform infrared spectroscopy 26
2.6 Nuclear magnetic resonance spectroscopy 27
2.7 Electrochemical cyclic voltammetry 27
2.8 Photocatalytic hydrogen generation 28
2.8.1 Hydrogen generation from aqueous phase 29
2.8.2 Hydrogen generation from alcohol phase 30
2.8.3 Hydrogen generation from organic phase 30
2.9 Reversible hydrogenation of carbon dioxide to formate 31
3.Result and Discussion 33
3.1 Preparation of RN(CH2SAc) 2 33
3.2 Hydrolysis of RN(CH2SAc) 2 34
3.3 Characterization of Ruthenium catalyst 35
3.3.1 Structure Characterization of Ru2S2(tosyl-adt2-) 35
3.4 Electrochemical properties of Ru2S2(tosyl-adt2-) and similar structure photocatalysts 38
3.5 UV-Vis absorption spectrum analysis of substrates and Ru2S2(tosyl-adt2-) 41
3.6 FT-IR absorption spectrum analysis for substrates and Ru2S2(tosyl-adt2-) 42
3.7 Hydrogen generation 43
3.7.1 Hydrogen generation form alcohol phase 44
3.7.2 Influence of Base or Acid on the alcohol system 45
3.7.3 Different 0.1 M base in the alcohol system 47
3.7.4 Different amounts of base in the alcohol system 49
3.7.5 Different p-ligands in the alcohol system 51
3.7.5 Optimal concentration of organophosphorus ligand in the alcohol system 53
3.7.6 Influence of light and heat in the alcohol system 55
3.7.7 Influence of different common alcohols on hydrogen generation system 57
3.7.8 Influence of different alcohols on hydrogen generation system 59
3.8 Hydrogen generation from Aqueous phase 61
3.8.1 Different electron donors in the aqueous system 62
3.8.2 Different amounts of DBU in the aqueous system 64
3.8.3 Different concentratinos of photosensitizer-CdS in the aqueous system 66
3.8.4 Different concentrations of photosensitizer TiO2 in the aqueous system 68
3.8.5 Influence of catalyst and photosensitizer in aqueous system 70
3.8.6 Light source from the sunlight to direct irradiation 73
3.9 Hydrogen generation from organic phase 75
3.9.1 Different bases (2 mol) in organic system 76
3.9.2 Different amounts of base in the organic system 79
3.9.3 Different p-ligands in the organic system 82
3.9.4 Optimist concentration of organophosphorus ligand in the organic system 84
3.9.5 Influence of catalyst concentration the hydrogen production in the organic system 86
3.9.6 Proof of hydrogen and carbon dioxide generation by formic acid dehydrogenation 88
3.9.7 The light source from the sunlight to direct irradiation 90
3.9.8 The light source from the sunlight to direct irradiation in the circulatory system 92
3.10 Reversible hydrogenation of carbon dioxide to formate 95
3.10.1. Influence of the catalyst, base and organophosphorus ligands on the hydrogenation of carbon dioxide system 96
3.10.2 Optimum the best condition in the hydrogenation of carbon dioxide system 98
3.10.3 Different catalyst in the hydrogenation of carbon dioxide system 104
4. Conclusion 106
5. Future perspective 108
6.References 109
Appendix 112
1. U. S. Energy Information Administration / Monthly Energy Review September 2018
2. Seth Dunn. Hydrogen Energy 2002, 27, 235–264
3. Seth Dunn. Hydrogen Energy 2009, 34, S1-S52
4. J.J Conti. U.S. Energy Info. Adiminstration 2012
5. Luth,W. Aktionslinie hessen-nanotech 2008,9 ,17-21
6. Solar energy prespective: Executive Summary. International Energy Agency. 2011
7. Bockris. J.O.M Science 1972,176,1323-1343
8. Miyaoka .Energy Procedia, 2014, 49, 927-934
9. Yamaguchi. Journal of the Japan Institute of Energy, 2013, 92, 909-91210
11. Mathematical. Physical and Engineering Sciences 2010, 368, 3329-3335
12. Kawasaki Heavy Industries; editorial revision by Nipon.com
13. Thauer, R. K.Microbiology, 1998, 144, 2377-2406.
14.Jugder, B,E. C.P RSC Advances 2013, 3,8142
15. Fontecilla-Camps. Chem Rev. 2018, 10, 4273–4303
16. Ding Yi. China Biotechnology,2018, 35,109
17. J.W. Peters, Science. 1998, 282,1853-1858
18. Simon P.J. Albracht, Inorg. Chem, 2006,11,88-95
19. Claudio G. Inorg. Chem, 2007,46,5911-5921
20. Jules H. chembiochem,2002,3,153-160
21.Brudivig G. Chemistry & biology 2010,17,434
22. Zhang P. Dalton Trans, 2010, 39, 1204-1206
23 Liu J Dalton Trans, 2012, 41, 9700–9707
24. Izawa, T. Tetrahedron: Asymmetry 1997, 8, 2645−2648
25. Bourrez M, inorg Chem. 2014, 53, 10667-10673
26. Raja Angamuthu , Inorg. Chem. 2015, 54, 5717−5724
27. Ref: Chem. Commun., 2011, 47, 4908–4910
28. Tard W, Chem.Rev. 2009, 109, 2245−2274.
29. Bull. Korean Chem. Soc. 2003, 24, No. 3,
30. Dermato-Endocrinology. 5 (1): 51–108. ][A. Nolte; L. Horing; M. W. Davidson; vol 2015
31. Birgit E. angew. chem. Int. Ed. 2012,51,5711-5713
32. Mulder, D. Am. Chem. Soc. 2014, 136, 15394−15402.
33. Fontecilla-Camps. Nature 2009, 460, 814−822.
34. Tschierlei Energy Environ. Sci. 2011, 4, 2340−2352.
35. Felton, G. J. Organomet. Chem. 2009, 694, 2681−2699.
35. Frey M. chembiochem,2002, 3, 153-160
36.Jogrnberg B. Arch Dermatol, 1963, 88, 267-271
37. Fujishima, A. Nature. 1972,238, 37–8
38. Boddin A. J.Am.Chem.Soc,2010,132,8924-8934
39. Filonenko A. A.Pidko, ACS Catal. 2013, 3, 2522 –2526
40. Mulder D. J. Am. Chem. Soc. 2014, 136, 15394−15402.
41. Fontecilla C. Nature 2009, 460, 814−822.
42. Tschierlei S. Energy Environ. Sci. 2011, 4, 2340−2352.
43. Iwatani, M.; Kudo, K.; Sugita, N.; Takezaki, Y. Sekiyu Gakkaishi 1978, 21, 290-296.
44. Pe´rez, E. Tetrahedron Lett. 2002, 43, 4091-4093.
45. Perez, E. J. Org.Chem 2004, 69, 8005-8011.
46. Eberle M. Chem. Soc. Rev. 2010, 39, 656– 675.
47. David C. Tetrahedron Letters 2004, 45, 8483–8487
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊