跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.23) 您好!臺灣時間:2025/10/26 02:06
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:廖國廷
研究生(外文):Guo-Ting Liao
論文名稱:非恆溫狀態下聚醯亞胺高分子熱裂解之動力學探討
論文名稱(外文):Thermal Decomposition Kinetics of Polyimide Polymer for Non-isothermal Conditions
指導教授:王榮基王榮基引用關係
指導教授(外文):Rong-Chi Wang
學位類別:碩士
校院名稱:大同大學
系所名稱:化學工程學系(所)
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:英文
論文頁數:157
中文關鍵詞:二酐熱重分析(TGA)Coats-Redfern方法聚醯亞胺Horowitz-Metzger方法Van Krevelen方法
外文關鍵詞:Van Krevelen methodpolyimideHorowitz-Metzger methoddianhydridesthermogravimetric analysis (TGA)Coats-Redfern method
相關次數:
  • 被引用被引用:0
  • 點閱點閱:297
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
新的二胺單體與六種二酐單體聚合成(a)-(f)系列的聚醯亞胺高分
子,使用熱重分析儀(TGA)在加熱速率 20℃/min以氮氣和空氣為載體下之非恆溫熱裂解研究。 動力溫度方程式使用三種單一熱速率積分法,分別為Coats-Redfern、Horowitz-Metzger 和Van Krevelen法結合常見的固體狀態方程式g(a) 作為實驗數據之解析並計算出反應活化能 (E)、預反應因子 (A) 及反應級數 (n)。 發現氮氣和空氣在固體狀態反應機構分別為F1 和R2下最符合熱重曲線之實驗數據。 由三種不同積分法的數學計算證明Coats-Redfern法比其他方法準確,因為Horowitz-Metzger和 Van Krevelen方法需選擇參考溫度導致誤差較大。
從分子結構組成的觀點來看, 聚醯亞胺在含氮氣下活化能依次為PI-e(DSDA) =PI-f(6FDA) >PI-a(PMDA) >PI-d(ODPA) =PI-b(BPDA) >PI-c(BTDA); 而在含空氣下活化能依次為PI-f(6FDA) >PI-a(PMDA) >PI-d(ODPA) =PI-c(BTDA) >PI-b(BPDA) =PI-e(DSDA)。 其中空氣下活化能大小順序與氮氣不同且整體的值都比較低。在此研究中,由聚醯亞胺(a)-(f)之任一樣品中發現反應活化能和預反應因子皆隨反應級數增加而增加。另一方面,空氣下所得之參數值比在氮氣者低。因為影響的因素不只是分子結構組成還有空氣中氧氣助燃的影響。
Studies of non-isothermal decomposition of a new diamine monomer led to a series of novel polyimide polymer (a)-(f) when reacted with six dianhydrides were measured by thermogravimetric analysis (TGA) at a heating rate of 20℃/min in nitrogen and air atmospheres. Three single heating-rate integral methods by Coats-Redfern, Horowitz-Metzger and Van Krevelen that were analysed using the non-isothermal data with different expressions of solid state reactions, i.e., g(a) would be used to estimate the activation energy (E), pre-exponential factor (A), and order of reaction (n). The F1 and R2 models were selected as the best mechanisms for solid-state reactions to fit experimental TG curves in nitrogen and air atmospheres, individually. Mathematical verification of using different integral methods shows that the Coats-Redfern method is more precise than the Horowitz-Metzger and Van Krevelen methods since the other two methods are dependent on the arbitrary selection of the reference temperatures.
From the molecular structure point of view, the order of the activation energy of polyimide under nitrogen is PI-e(DSDA) =PI-f(6FDA) >PI-a(PMDA) >PI-d(ODPA) =PI-b(BPDA) >PI-c(BTDA); however, under air it is PI-f(6FDA) >PI-a(PMDA) >PI-d(ODPA) =PI-c(BTDA) >PI-b (BPDA) =PI-e(DSDA). In this study, it is found that the activation energy and pre-exponential factor show the same trend, i.e., both values increase with increasing the order of reaction for each sample, i.e., polyimide (a)-(f). On the other hand, the parameter values in air are lower than those in N2. It can be attributed to that not only the molecular structure but also combustion of oxygen would affect the value of activation energy.
TABLE OF CONTENTS

PAGE
ACKNOWLEDGEMENT i
ABSTRACT (ENGLISH) ii
ABSTRACT (CHINESE) iii
TABLE OF CONTENTS iv
LIST OF SCHEME viii
LIST OF TABLES ix
LIST OF FIGURES xii
NOMENCLATURE xv
CHAPTER
1 INTRODUCTION 1
2 LITERATURE SURVEY 7
2.1 The thermal degradation of polymer 7
2.2 Thermal analysis of polyimide 18
3 EXPERIMENTAL 35
3.1 Experimental material 35
3.1.1 Monomer synthesis 35
3.1.2 Polyimide synthesis 36
3.2 Experimental procedure 39
3.3 Reactions 41
3.4 Kinetic methods 42
3.4.1 Kinetic methods used in non-isothermal analysis (Petrovic and
Zavargo, 1986; Regnier and Guibe, 1997) 42
3.4.2 Integral approximations for non-isothermal kinetics 44
3.4.2.1 Coats and Redfern method (Coats and Redfern, 1964)44
3.4.2.2 Horowitz and Metzger method (Horowitz and Metzger,
1963) 47
3.4.2.3 Van Krevelen method (Van Krevelen et al., 1951) 48
3.4.3 The kinetics of the mechanism of solid-state reactions 50
3.4.3.1 The mechanism of solid-state reactions for Coats and Redfern method
(Coats and Redfern, 1964) 54
3.4.3.2 The mechanism of solid-state reactions for Horowitz and Metzger
method (Horowitz and Metzger, 1963) 54
3.4.3.3 The mechanism of solid-state reactions for Van Krevelen method (Van
Krevelen et al., 1951) 55
4 RESULTS AND DISCUSSION 57
4.1 Non-isothermal results 58
4.2 Kinetics parameters of thermal degradation by different methods 64
4.2.1 Comparison of the reaction order of kinetics calculation result of
non-isothermal degradation by the Coats-Redfern, Horowitz-Metzger, Van
Krevelen methods 64
4.2.2 Comparison of the kinetics calculation of non-isothermal degradation
by the Coats-Redfern, Horowitz-Metzger, Van Krevelen
methods 76
4.3 The various mechanisms of non-isothermal degradation determined by
Coats-Redfern, Horowitz-Metzger, Van Krevelen methods 83
4.3.1 Knetics calculation by Coats-Redfern method 85
4.3.2 Knetics calculation by Horowitz-Metzger method 88
4.3.3 Knetics calculation by Van Krevelen method 91
4.3.4 The models with the best mechanism for solid-state reactions to fit
experimental TG curves 94
4.3.5 Comparison of kinetics parameters by different thermal degradation
methods 96
4.4 The order of the activation energy of polyimides 103
CONCLUSIONS 108
REFERENCES 110
APPENDIX A 116
APPENDIX B 119
APPENDIX C 122
APPENDIX D 128
APPENDIX E 134
APPENDIX F 140
APPENDIX G 146
APPENDIX H 152
Agrawal, R. K., “Integral Approximations for Nonisothermal Kinetics”, American Institute of Chemical engineers, 33, 1212-1214 (1987).

Albano, C. and E. D. Freitas, “Thermogravimetric Evaluation of The Kinetics of Decomposition of Polyolefin Blends”, Polymer Degradation and Stability, 61, 289-295 (1998).

Burnham, A. K., “Computational Aspects of Kinetic Analysis. Part D: The ICTAC Kinetics Project – Multi-thermal–History Model–Fitting Methods and Their Relation to Isoconversional Methods”, Thermochimica Acta, 355, 165-170 (2000).

Brown, M. E., M. Maciejewski, S. Vyazovkin, R. Nomen, J. Sempere, A. Burnham, J. Opfermann, R. Strey, H. L. Anderson, A. Kemmler, R. Keuleers, J. Janssens, H. O. Desseyn, C. R. Li, T. B. Tang, B. Roduit, J. Malek and T. Mitsuhashi, “Computational Aspects of Kinetic Analysis Part A: The ICRT Kinetics Project-Data, Methods and Results”, Thermochimica Acta, 355, 125-143 (2000).

Chang, T. C., K. H. Wu, C. L. Liao, S. T. Lin and G. P. Wange, “Thermo-oxidative Degradation of Siloxane-Containning Polyimide and Unmodified Polyimide”, Polymer Degradation and Stability, 62, 299-305 (1998).

Chang, T. C., K. H. Wu and Y. S. Chiu, “Characterization and Degradation of Some Phosphorus-Containing Polyimides”, Polymer Degradation and Stability, 63, 103-109 (1999).

Cheng, Y., Y. Huang, K. Alexander and D. Dollimorey, “A Thermal Analysis Study of Methyl Salicylate”, Thermochimica Acta, 367-368, 23-28 (2001).

Chetana, P. R., X. Siddaramaiah and P. G. Ramappa, “TGA Studies of Metoclopramide Complexes of Cobalt(II) in the Solid State”, Thermochimica Acta, 425, 13-21 (2005).

Coats, A. W. and J. P. Redfern, “Kinetic Parameters from Thermogravimetric Data”, Nature, 201, 68-69 (1964).

Da Silva, S. A., M. M. Conceicao, A. G. Souza and R. O. Macedo, ” Calorimetric and Kinetic Parameters of Manioc Derivatives”, Thermochimica Acta, 328, 177-181 (1999).

Deshpande, G. and M. E. Rezac, “Kinetic Aspects of the Thermal Degradation of Poly(dimethylsiloxane) and Poly(dimethyl diphenyl siloxane)”, Polymer Degradation and Stability, 76, 17-24 (2002).

Devapal, D., S. Packirisamy, G. Ambadas, T. S. Radhakrishnan, K. Krishnan and K. N. Ninan, “Thermal Degradation Kinetics of Poly(methylvinylsilylene -co-styrene)”, Thermochimica Acta, 409, 151-156 (2004).

El-Wahab, M. A., “Thermal decomposition Kinetics of Some New Unsaturated Polyesters”, Thermochimica Acta, 256, 271-280 (1995).

Freeman, E. S., and B. Carroll, “The Application of Thermogravimetric Techniques to Reaction Kinetics. The Thermogravimetric Evaluation of the Kinetics of the Decomposition of Calcium Oxalate Monohydrate”, J.Phys. Chem, 62, 394 (1958).

Fraga, F. and E. Rodriguez Nunez, “Activation Energies for the Epoxy System BADGE n=0/m-XDA Obtained Using Data from Thermogravimetric Analysis”, Journal of Applied Polymer Science, 80, 776-782 (2001).

Ghosh, M. K. and K. L. Mittal, Polyimides Fundamentals and Applications, Marcel Dekker, New York (1996).

Gupta, V., K. K. Bamzai, P. N. Kotru and B. M. Wanklyn, “Dielectric Properties, Ac Conductivity and Thermal behaviour of Flux Grown cadmium titanate crystals”, Materials Science and Engineering B, 130, 163-172 (2006).

Heda, P. K., D. Dollimore, K. S. Alexander, D. Chen, E. Law and P. Bicknell, “A Method of Assessing Solid State Reactivity Illustrated by Thermal Decomposition Experiments on Sodium Bicarbonate”, Thermochimica Acta, 255, 255-272 (1995).

Horowitz, H. H. and G. Metzger, “A New Analysis of Thermogravimetric Traces”, Analytical Chemistry, 35, 1464-1468 (1963).

Hsiao, S. H. and C. T. Li, “Synthesis and Characterization of New Adamantane-Based Polyimides”, Macromolecules, 31, 7213-7217 (1998).

Jimenez, A., V. Berenguer, J. Lopez and A. Sanchez, “Thermal Degradation Study of Poly(vinyl Choride): Kinetic Analysis of Thermogravimetric Data”, Journal of Applied Polymer Science, 50, 1565-1573 (1993).

Juntgen, H. and K. H. van Heek, “Proposal for a Regenerative High-Temperature Process for Coal Gas Cleanup with Calcined Limestone”, Fuel, 2, 103-112 (1968).

Kissinger, H. E., ”Reaction Kinetics in Differential Thermogravimetric Data”, Anal Chem, 29, 1702-1706 (1957).

Kumar, H., A. A. Kumear, and Siddaramaiah, “Physico-mechanical, Thermal and Morphological Behaviour of Polyurethane/Poly(methyl methacrylate) semi-interpenetrating Polymer Networks”, Polymer Degradation and Stability, 91, 1097-1104 (2006).

Lee, T. V. and S. R. Beck, “A New Integral Approximation Formula for Kinetic Analysis of Nonisothermal TGA Data”, American Institute of Chemical engineers, 30, 517-519 (1984).

Li, C. H., “An Integral Approximation Formula for Kinetic Analysis of Nonisothermal TGA Data”, American Institute of Chemical engineers, 31, 1036-1038 (1985).

Li, L., C. Cuan and A. Zhang, “Thermal Stabilities and the Thermal Degradation Kinetics of Polyimides”, Polymer Degradation and Stability, 84, 369-373 (2004).

Li, S. and C. Yue, “Study of Different Kinetic Models for Oil Shale Pyrolysis”, Fuel Processing Technology, 85, 51-61 (2003).

Liao, S. H., Synthesis and Optoelectronic Properties of Nonel Aromatic Polyamides and Polyimides having Triphenylamine Units in the Main Chain and 3,6-Bis(tetr-butyl)carbazole Pendent Groups, M.S. Thesie, Tatung University, 2007.

Lua, A. C. and J. Su, “Isothermal and Non-isothermal Pyrolysis Kinetics of Kapton Polyimide”, Polymer Degradation and Stability, 91, 144-153 (2006).

MacCallum, JR. and J. Tanner, “Derivation of Rate Equations Used in Thermogravimetry”, Nature, 225, 1127-1128 (1970).

Maciejewski, M., “Computational Aspects of Kinetic Analysis. Part B: The ICTAC Kinetics Project – The Decomposition Kinetics Survial in the Kinetic Minefield”, Thermochimica Acta, 355, 145-154 (2000).

Marcilla, A., J. C. Garcia-Quesada and R. Ruiz-Femenia, “Additional Considerations to the Paper Entitled: Computational Aspects of Kinetic Analysis. Part B: The ICTAC Kinetics Project—The Decomposition Kinetics of Calcium Carbonate Revisited, or Some Tips on Survival in the Kinetic Minefield”, Thermochimica Acta, 445, 92-96 (2006).

Meng, X., Y. Huang, H. Yu and Z. Lv, “Thermal Degradation Kinetics of Polyimide Containing 2,6-benzobisoxazole Units”, Polymer Degradation and Stability, 92, 962-967 (2007).

Mianowski, A. and T. Radko, “Evaluation of the Solution of a Standard Kinetic Equation for Non-isothermal Conditions”, Thermochimica Acta, 204, 281-293 (1992).

Mianowski, A. and T. Radko, “The Possibility of Identification of Activation Energy by Means of the Temperature Criterion”, Thermochimica Acta, 247, 389-405 (1994).

Moguet, F., S. Bordere, A. Tressaud, F. Rouquerol and P. Llewellyn, “Deintercalation Process of Fluorinated Carbon Fibres – II. Kinetic Study
and Reaction Mechanisms”, Carbon, 36, 1199-1205 (1998).

Nishizaki, “Comparative Study of Various Methods for Thermogravimetric Analysis of Polystyrene Degradation”, Journal of Applied Polymer Science, 25, 2869-2877 (1980).

Ozawa, T., ”A New method of Analyzing Thermogravimetric Data”, Bull Chem Soc Japan, 38, 1881-1886 (1965).

Perez-Maqueda, L. A., P. E. Sanchez-Jimenez and J. M. Criado, “Evaluation of the Integral Methods for the Kinetic Study of Thermally Stimulated Processes in Polymer Science”, Polymer, 46, 2950-2954 (2005).

Petrovic, Z. S. and Z. Z. Zavargo, H “Reliability of Methods for Determination of Kinetics Parameters from Thermogravimetry and DSC Measurements”, Journal of Applied Polymer Science, 32, 4353-4367 (1986).

Reddy, D. S., C. H. Chou, C. F. Shu and G. H. Lee, “Synthesis and Characterization of Soluble Poly(ether imide)s Based on 2,2’-bis(4-aminophenoxy)-9,9’-spirobifluorene”, Polymer, 44, 557-563 (2003)

Regnier, N. and C. Guibe, “Methodology for Multistage Degradation of Polyimide Polymer”, Polymer Degradation and Stability, 55, 165-172 (1997).

Reich, L. and D. W. Levi, “Thermal Sstability Indices for Polymeric Materials Based on Energy Considerations”, Makromol Chem, 66, 102-112 (1963).

Roduit, B., “Computational Aspects of Kinetic Analyis. Part E: The ICTAC Kinetics Project-numerical Techniques and Kinetics of Solid State Processes”, Thermochimica Acta, 355, 171-180 (2000).

Sanchez, G., J. Garcia, J. Perez, G. Garcia and G. Lopez, “Synthesis and Thermal Behaviour of Pentamehylcyclopentadienylrhodium(III) Complexe with Anilines”, Thermochimica Acta, 307, 127-134 (1997).

Sestak, J., “Study of the Kinetics of the Mechanism of Solid-State Reactions at Increasing Temperatures”, Thermochimica Acta, 3, 1-12 (1971).

Slovak, V. and P. Susak, “Pitch Pyrolysis Kinetics from Single TG Curve”, Journal of Analytical and Applied Pyrolysis, 72, 249-252 (2004).

Tamai, S., T. Kuroki, A. Shibuya and A. Yamaguchi, “Sythesis and Characterization of Thermally Stable Semicrystalline Polyimide Based on 3,4’-Oxydianiline and 3,3’,4,4’-Biphenylteracarboxylic Dianhydride”, Polymer, 42, 2373-2378 (2001).

Tiptipakorn, S., S. Damrongsakkul, S. Ando, K. Hemvichian and S. Rimdusit, “Thermal Degradation Behaviors of Polybenzoxazine and Silicon-containing Polyimide Blends”, Polymer Degradation and Stability, 92, 1265-1278 (2007).

Van Krevelen, D. W, C. Van Heerden and F. J. Huntjens, “Physicochemical Aspects of the Pyrolysis of Coal and Related Organic Compounds”, Fuel, 30, 253-258 (1951).

Vlad, C. D., M. V. Dinu and S. Dragan, ”Thermogravimetric Analysis of Some Crosslinked Acrylamide Copolymers and Ion Exchangers”, Polymer Degradation and Stability, 79, 153-159 (2003).

Vyazovkin, S., “Computional Aspects of Kinetic Analysis. Part C. The ICTAC Kinetics Project – The Light at the End of the Tunnel?”, Thermochimica Acta, 355, 155-163 (2000).

Wu, C. S., Y. L. Liu and K. Y. Hsu, “Maleimide-epoxy Resins: Preparation, Thermal Properties, and Flame Retardance”, Polymer, 44, 565-573 (2003).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top