|
Chapter 1. (1) Van Oort, B.; Ter Veer, M. J. T.; Groot, M. L.; Van Stokkum, I. H. M. Phys. Chem. Chem. Phys. 2012, 14, 8852-8858. (2) Rafiq, S.; Rajbongshi, B. K.; Nair, N. N.; Sen, P.; Ramanathan, G. J. Phys. Chem. A. 2011, 115, 13733-13742. (3) Doerr, A. Nat Methods. 2011, 8, 790-791. (4)Paige, J. S.; Wu, K. Y.; Jaffrey, S. R. Science. 2011, 333, 642-646. (5) Clark, J.; Grznarova, P.; Stansell, E.; Diehl, W.; Lipov, J.; Spearman, P.; Ruml, T.; Hunter, E. Plos One. 2013, 8, 1-16. (6) Saha, R.; Verma, P. K.; Rakshit, S.; Saha, S.; Mayor, S.; Pal, S. K. Sci Rep-Uk. 2013, 3:1580, 1-7. (7) Donner, J. S.; Thompson, S. A.; Kreuzer, M. P.; Baffou, G.; Quidant, R. Nano Lett. 2012, 12, 2107-2111. (8) Cheng, P.-H.; Li, C.-L.; Her, L.-S.; Chang, Y.-F.; Chan, A. W. S.; Chen, C.-M.; Yang, S.-H. Brain Struct Funct. 2013, 218, 283-294. (9) Pan, Y.; Leifert, A.; Graf, M.; Schiefer, F.; Thoroe-Boveleth, S.; Broda, J.; Halloran, M. C.; Hollert, H.; Laaf, D.; Simon, U.; Jahnen-Dechent, W. Small. 2013, 9, 863-869. (10) Addison, K.; Heisler, I. A.; Conyard, J.; Dixon, T.; Page, P. C. B.; Meech, S. R. Faraday Discuss. 2013, 163, 277-296. (11) Losfeld, M.-E.; Soncin, F.; Ng, B. G.; Singec, I.; Freeze, H. H. FASEB. 2012, 26, 4210-4217. (12) Chen, K. Y.; Cheng, Y. M.; Lai, C. H.; Hsu, C. C.; Ho, M. L.; Lee, G. H.; Chou, P. T. J. Am. Chem. Soc. 2007, 129, 4534-4535. (13) Hsieh, C. C.; Chou, P. T.; Shih, C. W.; Chuang, W. T.; Chung, M. W.; Lee, J.; Joo, T. J. Am. Chem. Soc. 2011, 133, 2932-2943. (14) Chuang, W. T.; Hsieh, C. C.; Lai, C. H.; Lai, C. H.; Shih, C. W.; Chen, K. Y.; Hung, W. Y.; Hsu, Y. H.; Chou, P. T. J. Org. Chem. 2011, 76, 8189-8202. (15) Zhao, J. Z.; Ji, S. M.; Chen, Y. H.; Guo, H. M.; Yang, P. Phys. Chem. Chem. Phys. 2012, 14, 8803-8817. (16) Wu, L. X.; Burgess, K. J. Am. Chem. Soc. 2008, 130, 4089-4096. (17) Baldridge, A.; Solntsev, K. M.; Song, C.; Tanioka, T.; Kowalik, J.; Hardcastle, K.; Tolbert, L. M. Chem. Commun. 2010, 46, 5686-5688. (18) Sharma, V.; Lansdell, T. A.; Jin, G. Y.; Tepe, J. J. J. Med. Chem. 2004, 47, 3700-3703. (19) Sharma, V.; Tepe, J. J. Bioorg. Med. Chem. Lett. 2004, 14, 4319-4321. (20) Papeo, G.; Poster, H.; Borghi, D.; Varasi, M. Org. Lett. 2005, 7, 5641-5644. (21) Tang, K. C.; Chang, M. J.; Lin, T. Y.; Pan, H. A.; Fang, T. C.; Chen, K. Y.; Hung, W. Y.; Hsu, Y. H.; Chou, P. T. J. Am. Chem. Soc. 2011, 133, 17738-17745. (22) Demchenko, A. P.; Tang, K. C.; Chou, P. T. Chem. Soc. Rev. 2013, 42, 1379-1408. (23) Lin, T. Y.; Tang, K. C.; Yang, S. H.; Shen, J. Y.; Cheng, Y. M.; Pan, H. A.; Chi, Y.; Chou, P. T. J. Phys. Chem. A. 2012, 116, 4438-4444. (24) Chou, P.; Mcmorrow, D.; Aartsma, T. J.; Kasha, M. J. Phys. Chem. 1984, 88, 4596-4599. (25) Varghese, S.; Park, S. K.; Casado, S.; Fischer, R. C.; Resel, R.; Milian-Medina, B.; Wannemacher, R.; Park, S. Y.; Gierschner, J. J. Phys. Chem. Lett. 2013, 4, 1597-1602. (26) Rosch, U.; Yao, S.; Wortmann, R.; Wurthner, F. Angew. Chem. Int. Ed. 2006, 45, 7026-7030. (27) Choi, S.; Bouffard, J.; Kim, Y. Chem. Sci. 2014, 5, 751-755. (28) Liu, R. S. H.; Hammond, G. S. PNAS. 2000, 97, 11153-11158. (29) Baldo, M. A.; Lamansky, S.; Burrows, P. E.; Thompson, M. E.; Forrest, S. R. Appl. Phys. Lett. 1999, 75, 4-6. (30) Tang, C. W.; Vanslyke, S. A. Appl. Phys. Lett. 1987, 51, 913-915. (31) Yeh, S. J.; Wu, M. F.; Chen, C. T.; Song, Y. H.; Chi, Y.; Ho, M. H.; Hsu, S. F.; Chen, C. H. Adv. Mater. 2005, 17, 285-289. (32) Yang, J.-S.; Huang, G.-J.; Liu, Y.-H.; Peng, S.-M. Chem. Commun. 2008, 1344-1346. Appendix References: 1.Wu, L.; Burgess, K. J. Am. Chem. Soc. 2008, 130, 4089-4096. 2.De Gonzalo, G.; Gotor, V.; Rioz-Martinez, A. Synthesis. 2010, 45, 110-114.
Chapter 2. (1) Chou, P.-T. The Host/Guest Type of Excited-State Proton Transfer; A General Review. J. Chin. Chem. Soc. 2001, 48, 651−682. (2) Kwon, J. E.; Park, S. Y. Advanced Organic Optoelectronic Materials: Harnessing Excited-State Intramolecular Proton Transfer (ESIPT) Process. Adv. Mater. 2011, 23, 3615−3642. (3) Demchenko, A. P.; Tang, K.-C.; Chou, P.-T. Excited-State Proton Coupled Charge Transfer Modulated by Molecular Structure and Media Polarization. Chem. Soc. Rev. 2013, 42, 1379−1408. (4) Carter, T. P.; Van Benthem, M. H.; Gillispie, G. D. Fluorescence and Fluorescence Excitation Spectra of 1-Aminoanthraquinone in an n-Heptane Shpol’skii Matrix. J. Phys. Chem. 1983, 87, 1891−1898. (5) Allen, N. S.; Harwood, B.; McKellar, J. F. Lightfastness and Spectroscopic Properties of N-Substituted 1-Aminoanthraquinones. J. Photochem. 1979, 10, 187−192. (6) Allen, N. S.; Harwood, B.; McKellar, J. F. Lightfastness and Spectroscopic Properties of Aminocarboxyanthraquinones. J. Photochem. 1979, 10, 193−197. (7) Smith, T. P.; Zaklika, K. A.; Thakur, K.; Barbara, P. F. Excited-State Intramolecular Proton-Transfer in 1-(Acylamino)-anthraquinones. J. Am. Chem. Soc. 1991, 113, 4035−4036. (8) Santra, S.; Krishnamoorthy, G.; Dogra, S. K. Excited State Intramolecular Proton Transfer in 2-(2′-Benzamidophenyl)-benzimidazole: Effect of Solvents. Chem. Phys. Lett. 1999, 311, 55−61. (9) Fahrni, C. J.; Henary, M. M.; Van Derveer, D. G. Excited-State Intramolecular Proton Transfer in 2-(2′-Tosylaminophenyl)-benzimidazole. J. Phys. Chem. A 2002, 106, 7655−7663. (10) Nayak, M. K. Synthesis, Characterization and Optical Properties of Aryl and Diaryl Substituted Phenanthroimidazoles. J. Photochem. Photobiol., A 2012, 241, 26−37. (11) Ciuciu, A. I.; Skonieczny, K.; Koszelewski, D.; Gryko, D. T.; Flamigni, L. Dynamics of Intramolecular Excited State Proton Transfer in Emission Tunable, Highly Luminescent Imidazole Derivatives. J. Phys. Chem. C 2013, 117, 791−803. (12) Santra, S.; Krishnamoorthy, G.; Dogra, S. K. Excited-State Intramolecular Proton Transfer in 2-(2′-Acetamidophenyl)-benzimidazole. J. Phys. Chem. A 2000, 104, 476−482. (13) Joule, J. A.; Mills, K. Heterocyclic Chemistry, 5th ed.; Wiley-Blackwell: West Sussex, U.K., 2010. (14) Haynes, W. M. CRC Handbook of Chemistry and Physics, 95th ed.; CRC Press: Boca Raton, FL, 2014; pp 5−97. (15) Rodriguez-Prieto, F.; Penedo, J. C.; Mosquera, M. Solvent Control of Molecular Structure and Excited-State Proton-Transfer Processes of 1-Methyl-2-(2′-hydroxyphenyl)benzimidazole. J. Chem. Soc., Faraday Trans. 1998, 94, 2775−2782. (16) Vazquez, S. R.; Rodriguez, M. C. R.; Mosquera, M.; Rodriguez-Prieto, F. Excited-State Intramolecular Proton Transfer in 2-(3′-Hydroxy-2′-pyridyl)benzoxazole. Evidence of Coupled Proton and Charge Transfer in the Excited State of Some o-Hydroxyarylbenzazoles. J. Phys. Chem. A 2007, 111, 1814−1826. (17) Vazquez, S. R.; Rodriguez, M. C. R.; Mosquera, M.; Rodriguez-Prieto, F. Rotamerism, Tautomerism, and Excited-State Intramolecular Proton Transfer in 2-(4′-N,N-Diethylamino-2′-hydroxyphenyl)-benzimidazoles: Novel Benzimidazoles Undergoing Excited-State Intramolecular Coupled Proton and Charge Transfer. J. Phys. Chem. A 2008, 112, 376−387. (18) Tsai, H.-H. G.; Sun, H.-L. S.; Tan, C.-J. TD-DFT Study of the Excited-State Potential Energy Surfaces of 2-(2′-Hydroxyphenyl)-benzimidazole and Its Amino Derivatives. J. Phys. Chem. A 2010, 114, 4065−4079. (19) Yang, G.; Dreger, Z. A.; Li, Y.; Drickamer, H. G. Pressure-Induced Isomerization of 2-(2′-Hydroxyphenyl)benzoxazole in Solid Media. J. Phys. Chem. A 1997, 101, 7948−7952. (20) Wang, H.; Zhang, H.; Abou-Zied, O. K.; Yu, C.; Romesberg, F. E.; Glasbeek, M. Femtosecond Fluorescence Upconversion Studies of Excited-State Proton-Transfer Dynamics in 2-(2′-Hydroxyphenyl)-benzoxazole (HBO) in Liquid Solution and DNA. Chem. Phys. Lett. 2003, 367, 599−608. (21) Chu, Q.; Medvetz, D. A.; Pang, Y. A Polymeric Colorimetric Sensor with Excited-State Intramolecular Proton Transfer for Anionic Species. Chem. Mater. 2007, 19, 6421−6429. (22) Kim, C. H.; Park, J.; Seo, J.; Park, S. Y.; Joo, T. Excited State Intramolecular Proton Transfer and Charge Transfer Dynamics of a 2-(2′-Hydroxyphenyl)benzoxazole Derivative in Solution. J. Phys. Chem. A 2010, 114, 5618−5629. (23) Rodembusch, F. S.; Campo, L. F.; Stefani, V.; Rigacci, A. The First Silica Aerogels Fluorescent by Excited State Intramolecular Proton Transfer Mechanism (ESIPT). J. Mater. Chem. 2005, 15, 1537−1541. (24) Zheng, J. J.; Guo, Y. X.; Li, X. P.; Zhang, G. L.; Chen, W. J. Two-Photon-Induced Excited State Intramolecular Proton Transfer Process and Nonlinear Optical Properties of HBT in Cyclohexane Solution. J. Opt. A: Pure Appl. Opt. 2006, 8, 835−839. (25) Wang, R. J.; Liu, D.; Xu, K.; Li, J. Y. Substituent and Solvent Effects on Excited State Intramolecular Proton Transfer in Novel 2-(2′-Hydroxyphenyl)benzothiazole Derivatives. J. Photochem. Photobiol., A 2009, 205, 61−69. (26) Chou, P.-T.; Pu, S.-C.; Cheng, Y.-M.; Yu, W.-S.; Yu, Y.-C.; Hung, F.-T.; Hu, W.-P. Femtosecond Dynamics on Excited-State Proton/Charge-Transfer Reaction in 4′-N,N-Diethylamino-3-hydroxyflavone. The Role of Dipolar Vectors in Constructing a Rational Mechanism. J. Phys. Chem. A 2005, 109, 3777−3787. (27) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; et al. Gaussian 09, revision A.02; Gaussian, Inc.: Wallingford, CT, 2009. (28) Meghdadi, S.; Amirnasr, M.; Ford, P. C. A Robust One-Pot Synthesis of Benzothiazoles from Carboxylic Acids Including Examples with Hydroxyl and Amino Substituents. Tetrahedron Lett. 2012, 53, 6950−6953. (29) Tang, K.-C.; Chang, M.-J.; Lin, T.-Y.; Pan, H.-A.; Fang, T.-C.; Chen, K.-Y.; Hung, W.-Y.; Hsu, Y.-H.; Chou, P.-T. Fine Tuning the Energetics of Excited-State Intramolecular Proton Transfer (ESIPT): White Light Generation in A Single ESIPT System. J. Am. Chem. Soc. 2011, 133, 17738−17745. (30) Hsieh, C.-C.; Chou, P.-T.; Shih, C.-W.; Chuang, W.-T.; Chung, M.-W.; Lee, J.; Joo, T. Comprehensive Studies on an Overall Proton Transfer Cycle of the ortho-Green Fluorescent Protein Chromophore. J. Am. Chem. Soc. 2011, 133, 2932−2943.
Chapter 3. [1] A. Weller, Z. Elektrochem. 1956, 60, 1144 –1147. [2] a) P. T. Chou, W. S. Yu, Y. M. Cheng, S. C. Pu, Y. C. Yu, Y. C. Lin, C. H. Huang, C. T. Chen, J. Phys. Chem. A 2004, 108, 6487 – 6498; b) Y. M. Cheng, S. C. Pu, C. J. Hsu, C. H. Lai, P. T. Chou, Chem. Phys. Chem. 2006, 7, 1372 –1381; c) A. P. Demchenko, K. C. Tang, P. T. Chou, Chem. Soc. Rev. 2013, 42, 1379 –1408; d) R. Ghosh, D. K. Palit, Photochem. Photobiol. Sci. 2013, 12, 987– 995. [3] a) M. W. Chung, J. L. Liao, K. C. Tang, C. C. Hsieh, T. Y. Lin, C. Liu, G. H. Lee, Y. Chi, P. T. Chou, Phys. Chem. Chem. Phys. 2012, 14, 9006 –9015; b) J. Z. Zhao, S. M. Ji, Y. H. Chen, H. M. Guo, P. Yang, Phys. Chem. Chem. Phys. 2012, 14, 8803 – 8817; c) G. A. Parada, T. F. Markle, S. D. Glover, L. Hammarstrom, S. Ott, B. Zietz, Chem. Eur. J. 2015, 21, 6362 –6366. [4] a) P. T. Chou, Y. C. Chen, W. S. Yu, Y. H. Chou, C. Y. Wei, Y. M. Cheng, J. Phys. Chem. A 2001, 105, 1731 –1740; b) S. Ameer-Beg, S. M. Ormson, R. G. Brown, P. Matousek, M. Towrie, E. T. J. Nibbering, P. Foggi, F. V. R. Neuwahl, J. Phys. Chem. A 2001, 105, 3709 – 3718; c) M. Barbatti, A. J. A. Aquino, H. Lischka, C. Schriever, S. Lochbrunner, E. Riedle, Phys. Chem. Chem. Phys. 2009, 11, 1406 – 1415; d) J. Piechowska, K. Virkki, B. Sadowski, H. Lemmetyinen, N. V. Tkachenko, D. T. Gryko, J. Phys. Chem. A 2014, 118, 144– 151. [5] A. J. Stasyuk, P. Bultinck, D. T. Gryko, M. K. Cyranski, J. Photochem. Photobiol. A 2016, 314, 198 –213. [6] a) T. P. Smith, K. A. Zaklika, K. Thakur, P. F. Barbara, J. Am. Chem. Soc. 1991, 113, 4035 –4036; b) S. Santra, G. Krishnamoorthy, S. K. Dogra, Chem. Phys. Lett. 1999, 311, 55– 61; c) S. Santra, G. Krishnamoorthy, S. K. Dogra, J. Phys. Chem. A 2000, 104, 476– 482; d) C. J. Fahrni, M. M. Henary, D. G. VanDerveer, J. Phys. Chem. A 2002, 106, 7655– 7663; e) M. M. Henary, Y. G. Wu, C. J. Fahrni, Chem. Eur. J. 2004, 10, 3015 –3025; f) Y. G. Wu, P. V. Lawson, M. M. Henary, K. Schmidt, J. L. Bredas, C. J. Fahrni, J. Phys. Chem. A 2007, 111, 4584 –4595; g) M. K. Nayak, J. Photochem. Photobiol. A 2012, 241, 26–37; h) A. I. Ciuciu, K. Skonieczny, D. Koszelewski, D. T. Gryko, L. Flamigni, J. Phys. Chem. A 2013, 117, 791 –803; i) H. W. Tseng, J. Q. Liu, Y. A. Chen, C. M. Chao, K. M. Liu, C. L. Chen, T. C. Lin, C. H. Hung, Y. L. Chou, T. C. Lin, T. L. Wang, P. T. Chou, J. Phys. Chem. Lett. 2015, 6, 1477 –1486; j) H. W. Tseng, T. C. Lin, C. L. Chen, T. C. Lin, Y. A. Chen, J. Q. Liu, C. H. Hung, C. M. Chao, K. M. Liu, P. T. Chou, Chem. Commun. 2015, 51, 16099–16102; k) C. L. Chen, H. W. Tseng, Y. A. Chen, J. Q. Liu, C. M. Chao, K. M. Liu, T. C. Lin, C. H. Hung, Y. L. Chou, T. C. Lin, P. T. Chou, J. Phys. Chem. A 2016, 120, 1020 – 1028. [7] G. S. Hammond, J. Am. Chem. Soc. 1955, 77, 334 –338. [8] a) K. Y. Chen, Y. M. Cheng, C. H. Lai, C. C. Hsu, M. L. Ho, G. H. Lee, P. T. Chou, J. Am. Chem. Soc. 2007, 129, 4534 –4535; b) C. C. Hsieh, P. T. Chou, C. W. Shih, W. T. Chuang, M. W. Chung, J. Lee, T. Joo, J. Am. Chem. Soc. 2011, 133, 2932 – 2943. [9] Y. H. Chen, W. J. Lo, K. S. Sung, J. Org. Chem. 2013, 78, 301– 310. [10] L. X. Wu, K. Burgess, J. Am. Chem. Soc. 2008, 130, 4089 –4096. [11] L. Munoz, M. E. Kavanagh, A. F. Phoa, B. Heng, N. Dzamko, E. J. Chen, M. R. Doddareddy, G. J. Guillemin, M. Kassiou, Eur. J. Med. Chem. 2015, 95, 29 –34. [12] W. J. Lo, Y. H. Chen, K. S. Sung, J. Org. Chem. 2013, 78, 5925– 5931. [13] K. C. Tang, M. J. Chang, T. Y. Lin, H. A. Pan, T. C. Fang, K. Y. Chen, W. Y. Hung, Y. H. Hsu, P. T. Chou, J. Am. Chem. Soc. 2011, 133, 17738– 17745. [14] P. Konold, C. K. Regmi, P. P. Chapagain, B. S. Gerstman, R. Jimenez, J. Phys. Chem. A 2014, 118, 2940– 2948. [15] a) S. Nagaoka, U. Nagashima, N. Ohta, M. Fujita, T. Takemura, J. Phys. Chem. 1988, 92, 166– 171; b) S. Nagaoka, J. Kusunoki, T. Fujibuchi, S. Hatakenaka, K. Mukai, U. Nagashima, J. Photochem. Photobiol. A 1999, 122, 151– 159.
Chapter 4. 1. Farinola, G. M.; Ragni, R., Electroluminescent materials for white organic light emitting diodes. Chem. Soc. Rev. 2011, 40 (7), 3467-3482. 2. Kamtekar, K. T.; Monkman, A. P.; Bryce, M. R., Recent Advances in White Organic Light-Emitting Materials and Devices (WOLEDs). Adv. Mater. 2010, 22 (5), 572-582. 3. Mukherjee, S.; Thilagar, P., Organic white-light emitting materials. Dyes. Pigm. 2014, 110, 2-27. 4. Reineke, S.; Thomschke, M.; Lüssem, B.; Leo, K., White organic light-emitting diodes: Status and perspective. Rev. Mod. Phys. 2013, 85 (3), 1245-1293. 5. Giansante, C.; Raffy, G.; Schäfer, C.; Rahma, H.; Kao, M.-T.; Olive, A. G. L.; Del Guerzo, A., White-Light-Emitting Self-Assembled NanoFibers and Their Evidence by Microspectroscopy of Individual Objects. J. Am. Chem. Soc. 2011, 133 (2), 316-325. 6. Kwon, J. E.; Park, S.; Park, S. Y., Realizing Molecular Pixel System for Full-Color Fluorescence Reproduction: RGB-Emitting Molecular Mixture Free from Energy Transfer Crosstalk. J. Am. Chem. Soc. 2013, 135 (30), 11239-11246. 7. Tsai, Y.-T.; Tseng, K.-P.; Chen, Y.-F.; Wu, C.-C.; Fan, G.-L.; Wong, K.-T.; Wantz, G.; Hirsch, L.; Raffy, G.; Del Guerzo, A.; Bassani, D. M., Electroluminescence from Spontaneously Generated Single-Vesicle Aggregates Using Solution-Processed Small Organic Molecules. ACS Nano 2016, 10 (1), 998-1006. 8. Zhu, L.; Trinh, M. T.; Yin, L.; Zhang, Z., Sequential oligodiacetylene formation for progressive luminescent color conversion via co-micellar strategy. Chem. Sci. 2016, 7 (3), 2058-2065. 9. Park, M.-J.; Kwak, J.; Lee, J.; Jung, I. H.; Kong, H.; Lee, C.; Hwang, D.-H.; Shim, H.-K., Single Chain White-Light-Emitting Polyfluorene Copolymers Containing Iridium Complex Coordinated on the Main Chain. Macromolecules 2010, 43 (3), 1379-1386. 10. Park, S.; Kwon, J. E.; Kim, S. H.; Seo, J.; Chung, K.; Park, S.-Y.; Jang, D.-J.; Medina, B. M.; Gierschner, J.; Park, S. Y., A White-Light-Emitting Molecule: Frustrated Energy Transfer between Constituent Emitting Centers. J. Am. Chem. Soc. 2009, 131 (39), 14043-14049. 11. Layek, A.; Stanish, P. C.; Chirmanov, V.; Radovanovic, P. V., Hybrid ZnO-Based Nanoconjugate for Efficient and Sustainable White Light Generation. Chem. Mater. 2015, 27 (3), 1021-1030. 12. Chen, Y.-H.; Tang, K.-C.; Chen, Y.-T.; Shen, J.-Y.; Wu, Y.-S.; Liun, S.-H.; Li, C.-S.; Chen, C. H.; Lai, T.-Y.; Tung, S.-H.; Jeng, R.-J.; Hung, W.-Y.; Jiao, M.; Wu, C.-C.; Chou, P.-T., Insight into the Mechanism and Outcoupling Enhancement of the Excimer Associated White Light Generation. Chem. Sci. 2016., 7 (6), 3556-3563. 13. Liu, Y.; Nishiura, M.; Wang, Y.; Hou, Z., π-Conjugated Aromatic Enynes as a Single-Emitting Component for White Electroluminescence. J. Am. Chem. Soc. 2006, 128 (17), 5592-5593. 14. Wang, L.; Wong, W.-Y.; Lin, M.-F.; Wong, W.-K.; Cheah, K.-W.; Tam, H.-L.; Chen, C. H., Novel host materials for single-component white organic light-emitting diodes based on 9-naphthylanthracene derivatives. J. Mater. Chem. 2008, 18 (38), 4529-4536. 15. Adhikari, R. M.; Duan, L.; Hou, L.; Qiu, Y.; Neckers, D. C.; Shah, B. K., Ethynylphenyl-Linked Carbazoles as a Single-Emitting Component for White Organic Light-Emitting Diodes. Chem. Mater. 2009, 21 (19), 4638-4644. 16. Chen, P.; Li, Q.; Grindy, S.; Holten-Andersen, N., White-Light-Emitting Lanthanide Metallogels with Tunable Luminescence and Reversible Stimuli-Responsive Properties. J. Am. Chem. Soc. 2015, 137 (36), 11590-11593. 17. Coppo, P.; Duati, M.; Kozhevnikov, V. N.; Hofstraat, J. W.; De Cola, L., White-Light Emission from an Assembly Comprising Luminescent Iridium and Europium Complexes. Angew. Chem. Int. Ed. 2005, 44 (12), 1806-1810. 18. Liu, Y.; Pan, M.; Yang, Q.-Y.; Fu, L.; Li, K.; Wei, S.-C.; Su, C.-Y., Dual-Emission from a Single-Phase Eu–Ag Metal–Organic Framework: An Alternative Way to Get White-Light Phosphor. Chem. Mater. 2012, 24 (10), 1954-1960. 19. Sava, D. F.; Rohwer, L. E. S.; Rodriguez, M. A.; Nenoff, T. M., Intrinsic Broad-Band White-Light Emission by a Tuned, Corrugated Metal–Organic Framework. J. Am. Chem. Soc. 2012, 134 (9), 3983-3986. 20. Trindade, F. d. J.; Triboni, E. R.; Castanheira, B.; Brochsztain, S., Color-Tunable Fluorescence and White Light Emission from Mesoporous Organosilicas Based on Energy Transfer from 1,8-Naphthalimide Hosts to Perylenediimide Guests. J. Phys. Chem. C 2015, 119 (48), 26989-26998. 21. Tu, G. L.; Mei, C. Y.; Zhou, Q. G.; Cheng, Y. X.; Geng, Y. H.; Wang, L. X.; Ma, D. G.; Jing, X. B.; Wang, F. S., Highly Efficient Pure-White-Light-Emitting Diodes from a Single Polymer: Polyfluorene with Naphthalimide Moieties. Adv. Funct. Mater. 2006, 16 (1), 101-106. 22. Demchenko, A. P.; Tang, K.-C.; Chou, P.-T., Excited-state proton coupled charge transfer modulated by molecular structure and media polarization. Chem. Soc. Rev. 2013, 42 (3), 1379-1408. 23. Kwon, J. E.; Park, S. Y., Advanced Organic Optoelectronic Materials: Harnessing Excited-State Intramolecular Proton Transfer (ESIPT) Process. Adv. Mater. 2011, 23 (32), 3615-3642. 24. Padalkar, V. S.; Seki, S., Excited-state intramolecular proton-transfer (ESIPT)-inspired solid state emitters. Chem. Soc. Rev. 2016, 45 (1), 169-202. 25. Azarias, C.; Budzak, S.; Laurent, A. D.; Ulrich, G.; Jacquemin, D., Tuning ESIPT fluorophores into dual emitters. Chem. Sci. 2016, 7 (6), 3763-3774. 26. Li, B.; Lan, J.; Wu, D.; You, J., Rhodium(III)-Catalyzed ortho-Heteroarylation of Phenols through Internal Oxidative CH Activation: Rapid Screening of Single-Molecular White-Light-Emitting Materials. Angew. Chem. Int. Ed. 2015, 54 (47), 14008-14012. 27. Benelhadj, K.; Muzuzu, W.; Massue, J.; Retailleau, P.; Charaf-Eddin, A.; Laurent, A. D.; Jacquemin, D.; Ulrich, G.; Ziessel, R., White Emitters by Tuning the Excited-State Intramolecular Proton-Transfer Fluorescence Emission in 2-(2′-Hydroxybenzofuran)benzoxazole Dyes. Chem. Eur. J. 2014, 20 (40), 12843-12857. 28. Tang, K.-C.; Chang, M.-J.; Lin, T.-Y.; Pan, H.-A.; Fang, T.-C.; Chen, K.-Y.; Hung, W.-Y.; Hsu, Y.-H.; Chou, P.-T., Fine Tuning the Energetics of Excited-State Intramolecular Proton Transfer (ESIPT): White Light Generation in A Single ESIPT System. J. Am. Chem. Soc. 2011, 133 (44), 17738-17745. 29. Tseng, H.-W.; Liu, J.-Q.; Chen, Y.-A.; Chao, C.-M.; Liu, K.-M.; Chen, C.-L.; Lin, T.-C.; Hung, C.-H.; Chou, Y.-L.; Lin, T.-C.; Wang, T.-L.; Chou, P.-T., Harnessing Excited-State Intramolecular Proton-Transfer Reaction via a Series of Amino-Type Hydrogen-Bonding Molecules. J. Phys. Chem. Lett. 2015, 6 (8), 1477-1486. 30. Barbara, P. F.; Brus, L. E.; Rentzepis, P. M., Intramolecular proton transfer and excited-state relaxation in 2-(2-hydroxyphenyl)benzothiazole. J. Am. Chem. Soc. 1980, 102 (17), 5631-5635. 31. Chou, P.-T.; Cooper, W. C.; Clements, J. H.; Studer, S. L.; Pin Chang, C., A comparative study. The photophysics of 2-phenylbenzoxazoles and 2-phenylbenzothiazoles. Chem. Phys. Lett. 1993, 216 (3), 300-304. 32. Kim, J.; Wu, Y.; Brédas, J.-L.; Batista, V. S., Quantum Dynamics of the Excited-State Intramolecular Proton Transfer in 2-(2′-Hydroxyphenyl)benzothiazole. Isr. J. Chem. 2009, 49 (2), 187-197. 33. Ikegami, M.; Arai, T., Photoinduced intramolecular hydrogen atom transfer in 2-(2-hydroxyphenyl)benzoxazole and 2-(2-hydroxyphenyl)benzothiazole studied by laser flash photolysis. J. Chem. Soc., Perkin Trans. 2 2002, (7), 1296-1301. 34. Mamada, M.; Nishida, J.-i.; Kumaki, D.; Tokito, S.; Yamashita, Y., n-Type Organic Field-Effect Transistors with High Electron Mobilities Based on Thiazole−Thiazolothiazole Conjugated Molecules. Chem. Mater. 2007, 19 (22), 5404-5409. 35. Subramaniyan, S.; Xin, H.; Kim, F. S.; Murari, N. M.; Courtright, B. A. E.; Jenekhe, S. A., Thiazolothiazole Donor–Acceptor Conjugated Polymer Semiconductors for Photovoltaic Applications. Macromolecules 2014, 47 (13), 4199-4209. 36. Wakioka, M.; Ishiki, S.; Ozawa, F., Synthesis of Donor–Acceptor Polymers Containing Thiazolo[5,4-d]thiazole Units via Palladium-Catalyzed Direct Arylation Polymerization. Macromolecules 2015, 48 (22), 8382-8388. 37. Yang, M.; Peng, B.; Liu, B.; Zou, Y.; Zhou, K.; He, Y.; Pan, C.; Li, Y., Synthesis and Photovoltaic Properties of Copolymers from Benzodithiophene and Thiazole. J. Phys. Chem. C 2010, 114 (41), 17989-17994. 38. Subramaniyan, S.; Kim, F. S.; Ren, G.; Li, H.; Jenekhe, S. A., High Mobility Thiazole–Diketopyrrolopyrrole Copolymer Semiconductors for High Performance Field-Effect Transistors and Photovoltaic Devices. Macromolecules 2012, 45 (22), 9029-9037. 39. Osaka, I.; Zhang, R.; Liu, J.; Smilgies, D.-M.; Kowalewski, T.; McCullough, R. D., Highly Stable Semiconducting Polymers Based on Thiazolothiazole. Chem. Mater. 2010, 22 (14), 4191-4196. 40. Osaka, I.; Zhang, R.; Sauvé, G.; Smilgies, D.-M.; Kowalewski, T.; McCullough, R. D., High-Lamellar Ordering and Amorphous-Like π-Network in Short-Chain Thiazolothiazole−Thiophene Copolymers Lead to High Mobilities. J. Am. Chem. Soc. 2009, 131 (7), 2521-2529. 41. Ando, S.; Nishida, J.-i.; Tada, H.; Inoue, Y.; Tokito, S.; Yamashita, Y., High Performance n-Type Organic Field-Effect Transistors Based on π-Electronic Systems with Trifluoromethylphenyl Groups. J. Am. Chem. Soc. 2005, 127 (15), 5336-5337. 42. Knighton, R. C.; Hallett, A. J.; Kariuki, B. M.; Pope, S. J. A., A one-step synthesis towards new ligands based on aryl-functionalised thiazolo[5,4-d]thiazole chromophores. Tetrahedron Lett. 2010, 51 (41), 5419-5422. 43. Zhu, X.; Tian, C.; Jin, T.; Wang, J.; Mahurin, S. M.; Mei, W.; Xiong, Y.; Hu, J.; Feng, X.; Liu, H.; Dai, S., Thiazolothiazole-linked porous organic polymers. Chem. Commun. 2014, 50 (95), 15055-15058. 44. Lin, C.-I.; Selvi, S.; Fang, J.-M.; Chou, P.-T.; Lai, C.-H.; Cheng, Y.-M., Pyreno[2,1-b]pyrrole and Bis(pyreno[2,1-b]pyrrole) as Selective Chemosensors of Fluoride Ion: A Mechanistic Study. J. Org. Chem. 2007, 72 (9), 3537-3542. 45. Uoyama, H.; Goushi, K.; Shizu, K.; Nomura, H.; Adachi, C., Highly efficient organic light-emitting diodes from delayed fluorescence. Nature 2012, 492 (7428), 234-238. 46. Jiang, W.; Ge, Z.; Cai, P.; Huang, B.; Dai, Y.; Sun, Y.; Qiao, J.; Wang, L.; Duan, L.; Qiu, Y., Star-shaped dendritic hosts based on carbazole moieties for highly efficient blue phosphorescent OLEDs. J. Mater. Chem. 2012, 22 (24), 12016-12022. 47. Holmes, R.; Forrest, S.; Tung, Y.-J.; Kwong, R.; Brown, J.; Garon, S.; Thompson, M., Blue organic electrophosphorescence using exothermic host-guest energy transfer. Appl. Phys. Lett. 2003, 82 (15), 2422-2424. 48. Tsai, M. H.; Lin, H. W.; Su, H. C.; Ke, T. H.; Wu, C. c.; Fang, F. C.; Liao, Y. L.; Wong, K. T.; Wu, C. I., Highly Efficient Organic Blue Electrophosphorescent Devices Based on 3,6-Bis(triphenylsilyl)carbazole as the Host Material. Adv. Mater. 2006, 18 (9), 1216-1220. 49. Yoo, S.-J.; Chang, J.-H.; Lee, J.-H.; Moon, C.-K.; Wu, C.-I.; Kim, J.-J., Formation of perfect ohmic contact at indium tin oxide/N,N′-di(naphthalene-1-yl)-N,N′-diphenyl-benzidine interface using ReO3. Sci. Rep. 2014, 4, 3902. 50. Chen, S.; Wu, Q.; Kong, M.; Zhao, X.; Yu, Z.; Jia, P.; Huang, W., On the origin of the shift in color in white organic light-emitting diodes. J. Mater. Chem. C 2013, 1 (22), 3508-3524.
Chapter 5. (1) Lewis, N. S.; Nocera, D. G. P. Natl. Acad. Sci. USA, 2006, 103, 15729. (2) Cook, T. R.; Dogutan, D. K.; Reece, S. Y.; Surendranath, Y.; Teets, T. S.; Nocera, D. G. Chem. Rev. 2010, 110, 6474. (3) Stein, G. Israel. J. Chem, 1975, 14, 213. (4) Jones, G.; Reinhardt, T. E.; Bergmark, W. R. Sol. Energy, 1978, 20, 241. (5) Hartley, G. S. Nature, 1937, 140, 281. (6) Hartley, G. S. J. Chem. Soc. 1938, 633. (7) Broman, S. L.; Petersen, M. A.; Tortzen, C. G.; Kadziola, A.; Kilsa, K.; Nielsen, M. B. J. Am. Chem. Soc. 2010, 132, 9165. (8) Cristol, S. J.; Snell, R. L. J. Am. Chem. Soc. 1958, 80, 1950. (9) Hammond, G. S.; Turro, N. J.; Fischer, A. J. Am. Chem. Soc. 1961, 83, 4674. (10) Caia, V.; Cum, G.; Gallo, R.; Mancini, V.; Pitoni, E. Tetrahedron Lett. 1983, 24, 3903. (11) Vollhardt, K. P. C.; Weidman, T. W. J. Am. Chem. Soc. 1983, 105, 1676. (12) Dreos, A.; Borjesson, K.; Wang, Z. H.; Roffey, A.; Norwood, Z.; Kushnir, D.; Moth-Poulsen, K. Energ. Environ. Sci. 2017, 10, 728. (13) Yoshida, Z. I. J. Photo. Chem. 1985, 29, 27. (14) Qian Hong Wu, B. W. Z., Yang Fu Ming and Yi Caot J. Photochem. Photobiol. A: Chem., 1991, 61, 53. (15) Tanaka, H.; Shizu, K.; Miyazaki, H.; Adachi, C. Chem. Commun. 2012, 48, 11392.
|