跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.88) 您好!臺灣時間:2026/02/15 23:16
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳彥丞
研究生(外文):CHEN,YEN-CHEN
論文名稱:碳化鉭石墨坩堝保護層製程之研究
論文名稱(外文):Study on The Process of TaC-Coated Graphite Crucibles for Protective Layer
指導教授:蘇程裕蘇程裕引用關係
指導教授(外文):SU,CHERNG-YUH
口試委員:蘇程裕馬代良虞邦英
口試委員(外文):SU, CHERNG-YUHMA,DAI-LIANGYU,BANG-YING
口試日期:2019-07-30
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:製造科技研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:75
中文關鍵詞:石墨坩堝保護層漿料燒結製程
外文關鍵詞:Graphite crucibleProtective LayerSlurrySinter process
相關次數:
  • 被引用被引用:0
  • 點閱點閱:832
  • 評分評分:
  • 下載下載:25
  • 收藏至我的研究室書目清單書目收藏:0
本研究係利用濕式陶瓷技術、真空脫脂、無壓燒結系統與直流濺鍍系統,製備碳化鉭石墨坩堝保護層。本研究為石墨坩堝碳化鉭保護層製程技術之開發,旨在增加物理氣相傳輸生長單晶碳化矽晶圓之石墨坩堝壽命,將分為漿料條配、塗佈方式與保護層燒結,探討不同燒結溫度與具備鍵結層對於保護層之影響。
漿料調配階段,探討定重量百分比時,不同自製溶劑型高分子黏劑,對於漿料黏度之影響;塗佈階段,探討不同塗佈方式對於保護層緻密度與機械性質之影響;保護層燒結階段,探討於1800oC、2000oC與2100oC對於保護層C/Ta之影響、微觀結構與機械性質之差異;薄膜製程階段,探討具備鍵結層對於保護層接合性之影響。
研究結果顯示,鉭粉於1800°C、2000oC與2100°C皆充分碳化為TaC相,其中2100°C提供更為足夠能量使保護層緻密化,其強度達到548.5Hv0.05。開發之塗佈方式,可製備超過100μm且與石墨坩堝無分離之保護層,且平均收縮率為2.08%。

In this study, Tantalum carbide graphite crucible protective layer was prepared by wet ceramic technology, vacuum debinding, pressureless sintering system and DC sputtering system. This study is the development of tantalum carbide protective layer for graphite crucible process integration technology. It is designed to reduce graphite crucible consumption. Which is divided into slurry blending, coating method and sintering to explore the physical properties of protective layer at all stages.
In this paper, the effect of different polymer binders adhesives on the viscosity of slurry is discussed. The coating method, the effects of different coating methods on density and mechanical properties for protective layer were discussed. For the protective layer sintering at 1800oC, 2000oC, 2100oC, For the phase, micro-morphology and mechanical properties analysis.
The results show that the tantalum powder is fully carbonized into TaC phase at 1800 °C, 2000oC and 2100 °C, furthermore 2100 °C provided more sintering energy to densify the protective layer, and its strength reaches 548.5Hv0.05. The coating method was developed to prepare a tantalum carbide protective layer thickness more than 100 μm and no separated with graphite crucible, and average shrinkage ratio was 2.08%.

摘要 i
ABSTRACT ii
誌謝 iv
目錄 v
表目錄 viii
圖目錄 ix
第一章 緒論 1
1.1前言 1
1.2研究動機與目的 2
第二章 文獻回顧 3
2.1碳化矽塊材製備方式 3
2.1.1化學氣相沉積法(Chemcial vapor depositon, CVD) 3
2.1.2物理氣相傳輸法(Physical vapour transport, PVT) 3
2.1.3物理氣相傳輸法生長碳化矽晶圓之缺陷 5
2.1.4傳統石墨坩堝之應用 7
2.2碳化鉭(Tantalum Carbide)性質 8
2.3碳化鉭應用於石墨坩堝保護層 10
2.4使用鉭粉末固體滲碳機制 13
2.5漿料調配 15
2.5.1粉體形狀與潤濕性對於漿料之影響 15
2.5.2黏結劑對於塗層之影響 16
2.6脫脂 17
2.7燒結理論 18
2.7.1原子移動 19
2.7.2燒結驅動力 22
2.7.3燒結機制 23
2.7.4固相燒結(Solid Phase Sintering) 25
2.8小結 26
第三章 實驗步驟與方法 27
3.1實驗流程 27
3.2石墨坩堝製備 28
3.3製程之漿料調配 28
3.3.1碳化鉭粉末 28
3.3.2自製溶劑型高分子黏結劑 29
3.3.3漿料調配之實驗流程 30
3.3.4碳化鉭漿料之流動性 31
3.4鍵結層製備 31
3.5保護層製備 33
3.6脫脂製程 35
3.7燒結製程 36
3.8實驗儀器及原理 38
3.8.1 X-Ray繞射儀(XRD) 38
3.8.2 場發射掃描式電子顯微鏡(FESEM) 38
3.8.3熱重分析 39
3.8.4聚焦離子束顯微系統(FIB) 39
3.8.5穿透式電子顯微鏡(TEM) 39
3.8.6維克氏硬度量測( Vicker Hardness ) 40
3.8.7孔隙率-影像分析法 40
第四章 結果與討論 41
4.1製程漿料分析 41
4.1.1粉末特性 41
4.1.2黏結劑之流變性 42
4.2熱脫脂與燒結 45
4.2.1熱脫脂分析 45
4.2.2真空熱脫脂 46
4.2.3燒結巨觀分析 47
4.3碳化鉭保護層性質分析 53
4.3.1碳化鉭保護層晶相分析 53
4.3.2碳化鉭保護層微觀結構分析 56
4.3.2.1製程對於保護層微觀結構之影響分析 56
4.3.2.2鍵結層對於保護層微觀結構之影響分析 58
4.3.2.3溫度對於保護層微觀結構之影響 60
4.3.2.4鍵結層相態變化分析 62
4.3.3維克氏硬度分析 66
4.3.4收縮率量測 67
4.3.5緻密度量測 68
第五章結論 70
參考文獻 71

[1]J. A. Lely, Ber. dtsch. Keram. Gesellschaft, vol. 32, 1955, p. 229.
[2]Y. M. Tairov and V. J. J. o. c. g. Tsvetkov, "Investigation of growth processes of ingots of silicon carbide single crystals," vol. 43, no. 2, 1978, pp. 209-212.
[3]E. Jung, "Synthesis of V-doped SiC powder for growth of semi-insulating SiC crystals," Ceramics International, vol. 44, no. 18, 2018, pp. 22632-22637.
[4]Y.-g. Shi, P.-y. Dai, J.-f. Yang, Z.-h. Jin, and H.-l. Liu, "Effect of 6H-SiC crystal growth shapes on thermo-elastic stress in the growing crystal," International Journal of Minerals, Metallurgy, and Materials, vol. 19, no. 7, 2012, pp. 622-627.
[5]G. Augustine, M. Hobgood, V. Balakrishna, G. Dunne, and R. Hopkins, "Physical vapor transport growth and properties of SiC monocrystals of 4H polytype," physica status solidi (b), vol. 202, no. 1, 1997, pp. 137-148.
[6]F. C. Frank, "Capillary equilibria of dislocated crystals," Acta Crystallogr., vol. 4, 1951, pp. 497-501.
[7]J. Heindl, H. P. Strunk, V. D. Heydemann, and G. Pensl, "Micropipes: Hollow tubes in silicon carbide," Physica Status Solidi (A) Applied Research, Article vol. 162, no. 1, 1997, pp. 251-262.
[8]K. Kusunoki, "Top-seeded solution growth of three-inch-diameter 4H-SiC using convection control technique," Journal of Crystal Growth, Article vol. 395, 2014, pp. 68-73.
[9] J. Takahashi, "Sublimation growth and characterization of SiC single crystalline ingots on faces perpendicular to the (OOOl) basal plane," in Inst. Phys. Conf. Ser., , no. 137 1994, pp. 13-16.
[10]J. Liu, J. Gao, J. Cheng, J. Yang, and G. Qiao, "Effects of graphitization degree of crucible on SiC single crystal growth process," Diamond and Related Materials, Article vol. 15, no. 1, 2006, pp. 117-120.
[11]X. Liu, E. W. Shi, L. X. Song, and Z. Z. Chen, "Effects of graphitization of the crucible on silicon carbide crystal growth," Journal of Crystal Growth, Article vol. 310, no. 19, 2008, pp. 4314-4318.
[12]N. Ohtani, M. Katsuno, J. Takahashi, H. Yashiro, and M. Kanaya, "Impurity incorporation kinetics during modified-Lely growth of SiC," Journal of Applied Physics, vol. 83, no. 8, 1998, pp. 4487-4490.
[13] D. Schulz, "Study of nitrogen incorporation in 6H-SiC single crystals grown by PVT," in Materials Science Forum, vol. 338, 2000, pp. 87-90.
[14]J. Drowart, G. De Maria, and M. G. Inghram, "Thermodynamic study of SiC utilizing a mass spectrometer," The Journal of Chemical Physics, vol. 29, no. 5, 1958, pp. 1015-1021.
[15]A. I. Gusev, A. S. Kurlov, and V. N. Lipatnikov, "Atomic and vacancy ordering in carbide ζ-Ta4C3-x(0.28≤x≤0.40) and phase equilibria in the Ta-C system," Journal of Solid State Chemistry, Article vol. 180, no. 11, pp. 3234-3246, 2007.
[16]B. K. Kim, G. H. Ha, G. G. Lee, and D. W. Lee, "Structure and properties of nanophase WC/Co/VC/TaC hardmetal," Nanostructured Materials, Article vol. 9, no. 1-8, 1997, pp. 233-236.
[17]S. Michon, P. Berthod, L. Aranda, C. Rapin, R. Podor, and P. Steinmetz, "Application of thermodynamic calculations to study high temperature behavior of TaC-strengthened Co-base superalloys," Calphad: Computer Coupling of Phase Diagrams and Thermochemistry, Article vol. 27, no. 3, 2003, pp. 289-294.
[18]R. Schlesser, R. Dalmau, D. Zhuang, R. Collazo, and Z. Sitar, "Crucible materials for growth of aluminum nitride crystals," Journal of Crystal Growth, Conference Paper vol. 281, no. 1, 2005, pp. 75-80.
[19] D. H. Lee, "Effect of TaC-coated Crucible on SiC Single Crystal Growth," in Materials Science Forum, vol. 778, 2014, pp. 26-30.
[20]H. I. Helava et al. Growth of low-defect SiC and AlN crystals in refractory metal crucibles, Materials Science Forum, vol. 740-742, 2013, pp. 85-90.
[21]M. Syväjärvi, R. Yakimova, R. R. Ciechonski, and E. Janzén, "Comparison of SiC sublimation epitaxial growth in graphite and TaC coated crucibles," Diamond and Related Materials, Article vol. 12, no. 10-11, 2003, pp. 1936-1939.
[22]D. Nakamura, "Simple and quick enhancement of SiC bulk crystal growth using a newly developed crucible material," Applied Physics Express, vol. 9, no. 5, 2016, p. 055507.
[23]D. Nakamura, T. Kimura, T. Narita, A. Suzumura, T. Kimoto, and K. Nakashima, "TaC-coated graphite prepared via a wet ceramic process: Application to CVD susceptors for epitaxial growth of wide-bandgap semiconductors," Journal of Crystal Growth, Article vol. 478, 2017, pp. 163-173.
[24]D. Nakamura and K. Shigetoh, "Fabrication of large-sized TaC-coated carbon crucibles for the low-cost sublimation growth of large-diameter bulk SiC crystals," Japanese Journal of Applied Physics, Article vol. 56, no. 8, 2017, Art no. 085504.
[25]D. Nakamura, K. Shigetoh, and A. Suzumura, "Tantalum carbide coating via wet powder process: From slurry design to practical process tests," Journal of the European Ceramic Society, Article vol. 37, no. 4, 2017, pp. 1175-1185.
[26]D. Nakamura, A. Suzumura, and K. Shigetoh, "Sintered tantalum carbide coatings on graphite substrates: Highly reliable protective coatings for bulk and epitaxial growth," Applied Physics Letters, Article vol. 106, no. 8, 2015, Art no. 082108.
[27]Z. Zhao, "Fabrication of TaC coating on tantalum by interstitial carburization," Journal of Alloys and Compounds, Article vol. 790, 2019, pp. 189-196.
[28]H. Bai, "Microstructure and impact properties of Ta-TaC core–shell rod-reinforced iron-based composite fabricated by in situ solid-phase diffusion," Journal of Alloys and Compounds, Article vol. 768, 2018, pp. 340-348.
[29]J. Suwanprateeb, R. Sanngam, and T. Panyathanmaporn, "Influence of raw powder preparation routes on properties of hydroxyapatite fabricated by 3D printing technique," Materials Science and Engineering: C, vol. 30, no. 4, 2010, pp. 610-617.
[30]A. Butscher, "Printability of calcium phosphate powders for three-dimensional printing of tissue engineering scaffolds," Acta Biomaterialia, vol. 8, no. 1, 2012, pp. 373-385.
[31]E. Sachs, "Three-Dimensional Printing: The Physics and Implications of Additive Manufacturing," CIRP Annals, vol. 42, no. 1, 1993, pp. 257-260.
[32]R. Aliasgarian, M. Naderi, S. E. Mirsalehi, and S. Safi, "The Ablation and Oxidation Behaviors of SiC Coatings on Graphite Prepared by Slurry Sintering and Pack Cementation," Journal of Materials Engineering and Performance, Article vol. 27, no. 8, 2018, pp. 3900-3910.
[33]A. Fayyaz, N. Muhamad, and A. B. Sulong, "Microstructure and physical and mechanical properties of micro cemented carbide injection moulded components," Powder Technology, Article vol. 326, 2018, pp. 151-158.
[34]M. D. Hayat and P. Cao, '' Development of PEG/PMMA based binders for ti-metal injection moulding,'' Key Engineering Materials, vol. 704, 2016, pp. 130-138.
[35]M. Khakbiz, A. Simchi, and R. Bagheri, "Analysis of the rheological behavior and stability of 316L stainless steel-TiC powder injection molding feedstock," Materials Science and Engineering A, Article vol. 407, no. 1-2, 2005, pp. 105-113.
[36]M. D. Hayat, P. P. Jadhav, H. Zhang, S. Ray, and P. Cao, "Improving titanium injection moulding feedstock based on PEG/PPC based binder system," Powder Technology, Article vol. 330, 2018, pp. 304-309.
[37]S. V. Atre, T. J. Weaver, and R. M. German, "Injection molding of metals and ceramics," SAE Technical Paper, 1998, pp. 0148-7191.
[38]K.-S. Hwang, "Fundamentals of debinding processes in powder injection molding," Reviews in particulate Materials, vol. 4, 1996, pp. 71-104.
[39]K. Hwang, H. Lin, and S. Lee, "Thermal, solvent, and vacuum debinding mechanisms of PIM compacts," Material and Manufacturing Process, vol. 12, no. 4, 1997, pp. 593-608.
[40]L. Xiaowei, R. Jean-Charles, and Y. Suyuan, "Effect of temperature on graphite oxidation behavior," Nuclear Engineering and design, vol. 227, no. 3, 2004, pp. 273-280.
[41]R. L. Coble, "Sintering crystalline solids. II. Experimental test of diffusion models in powder compacts," Journal of Applied Physics, vol. 32, no. 5, 1961, pp. 793-799.
[42]徐仁輝, 粉末冶金概論. 新文京開發, 2002.
[43]G. C. Kuczynski, "Self-diffusion in sintering of metallic particles," in Sintering Key Papers: Springer, 1990, pp. 509-527.
[44]R. M. German, "Sintering Theory and Practice," Wiley Interscience Publication, 1996.
[45]H. Hinssen, W. Katcher, and R. Moormann, "Kinetics der Graphite/Sauerstoff Reaction," Juel, 1983, p. 1875.
[46]C. Velasquez, G. Hightower, and R. Burnette, "Oxidation of H-451 graphite by steam. Part I. Reaction kinetics," General Atomic Co., 1978.
[47]Z. Zhao, "New strategy to grow TiC coatings on titanium alloy: Contact solid carburization by cast iron," Journal of Alloys and Compounds, vol. 745, 2018, pp. 637-643.
[48]Z. Zhao, "Fabrication of Mo2C coating on molybdenum by contact solid carburization," Applied Surface Science, vol. 462, 2018, pp. 48-54.
[49]V. Maslov, "Thermodynamic basis of the principle of least action," Soviet Physics Journal, vol. 34, no. 5, 1991, pp. 426-431.
[50]D. M. Li, R. Hernberg, and T. Mäntylä, "Catalytic dissociation of hydrogen on a tantalum carbide filament in the HFCVD of diamond," Diamond and Related Materials, vol. 7, no. 11, 1998, pp. 1709-1713.
[51]M. Vargas, H. A. Castillo, E. Restrepo-Parra, and W. De La Cruz, "Stoichiometry behavior of TaN, TaCN and TaC thin films produced by magnetron sputtering," Applied Surface Science, vol. 279, 2013, pp. 7-12.
[52]H. Xiang, Y. Xu, L. Zhang, and L. Cheng, "Synthesis and microstructure of tantalum carbide and carbon composite by liquid precursor route," Scripta Materialia, vol. 55, no. 4, 2006, pp. 339-342.
[53]H. Preiss, D. Schultze, and P. Klobes, "Formation of NbC and TaC from gel-derived precursors," Journal of the European Ceramic Society, vol. 17, no. 12 1997, pp. 1423-1435,.
[54]M. N. Rahaman, Sintering of ceramics. CRC press, 2007.
[55]W. F. Brizes, "Diffusion of carbon in the carbides of tantalum," Journal of Nuclear Materials, vol. 26, no. 2, 1968, pp. 227-231.
[56]F. Rezaei, M. G. Kakroudi, V. Shahedifar, N. P. Vafa, and M. Golrokhsari, "Densification, microstructure and mechanical properties of hot pressed tantalum carbide," Ceramics International, Article vol. 43, no. 4, 2017, pp. 3489-3494.
[57]G. Samsonov and R. Y. Petrikina, "SINTERING OF METALS, CARBIDES, AND OXIDES BY HOT-PRESSING," Inst. for Development of Materials, Kiev, 1970.
[58]X. Zhang, G. E. Hilmas, and W. G. Fahrenholtz, "Densification and mechanical properties of TaC-based ceramics," Materials Science and Engineering: A, vol. 501, no. 1, 2009, pp. 37-43.
[59]K. Hackett, S. Verhoef, R. A. Cutler, and D. K. Shetty, "Phase constitution and mechanical properties of carbides in the Ta-C system," Journal of the American Ceramic Society, Article vol. 92, no. 10, 2009, pp. 2404-2407.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top