|
1.M. S. Shur, “GaN-based devices”, Electron Devices, vol. 63, pp. 115–118, 2005.
2.T. Yamamoto and K.Y. Hiroshi, “Materials design for the fabrication of low-resistivity p-type GaN using a codoping method,” Jpn. J. Appl. Phys., vol. 36, pp. L180~L183, 1997.
3.K.Y. Hiroshi, and T. Yamamoto, "Materials design of the codoping for the fabrication of low-resistivity p-type ZnSe and GaN by ab-initio electronic structure calculations," Phys. Stat. Sol., vol. 202, pp. 763-773, 1997.
4.T. Yamamoto, and K.Y. Hiroshi, “Electronic structures of p-type GaN codoped with Be or Mg as the acceptors and Si or O as the donor codopants,” Journal of crystal growth, vol. 189/190, pp. 532-536, 1998.
5.G. Kipshidze, V. Kuryatkov, B. Borisov, Y. Kuryavtsev, R. Asomoza, S. Nikishin, and H. Temkin, “Mg and O codoping in p-type GaN and AlxGa1–xN (0 6.T. Yamamoto, "Codoping method for solutions to doping problems in wide-band-gap semiconductors," Phys. Stat. Sol., vol. 193, pp.577-579, 2002.
7.O. Brandt, H. Yang, H. Kostial, and K. H. Ploog, “High p-type conductivity in cubic GaN/GaAs(113)A by using Be as the acceptor and O as the codopant,” Appl. Phys. Lett., vol. 69, pp. 199-202, 1996.
8.K.Y. Hiroshi, T. Nishimatsu, T. Yamamoto, and N. Orita, "Codoping method for the fabrication of low-resistivity wide band-gap semiconductors in p-type GaN, p-type AlN and n-type diamond: prediction versus experiment," J. Phys. Condens Matter, vol. 13, pp. 8901-8914, 2001.
9.R.Y. Korokov, J.M. Gregie, and B.W. Wessels, “Electrical properties of p-type GaN:Mg codoped with oxygen”, Appl. Phys. Lett., vol. 78, pp.2301-2304, 2001.
10.H. Katayama-Youshida, R.Kato, and T. Yamamoto, "New valence control and spin control method in GaN and AlN by codoping and transition atom doping," Journal of crystal growth, vol. 231, pp. 428-436, 2001.
11.R.Y. Korotkov, J.M. Gregie, and B.W. Wessels, “Electrical properties of oxygen doped GaN grown by metalorganic vapor phase epitaxy,” Opto-Electronics Review, vol. 10, pp.5430-5434, 2002.
12.S. D. Lester, F. A. Ponce, M.G. Craford and D. A. Steigerwald, ”High dislocation densities in high efficiency GaN-based light-emitting diodes ,” Appl. Phys. Lett., vol. 66, pp.772-775, 1995.
13.C.L. Wang, J.R. Gong, M.F. Yeh, B.J. Wu, W.T. Liao, T.Y. Lin, and C.K. Lin, “Improvement in the Characteristics of GaN-Based Light-Emitting Diodes by inserting AlGaN-GaN short-period superlattices in GaN underlayers,” IEEE Photonics Technology Letters, vol. 18, pp.312-315, 2006.
14.R. Huang, H. Dong, D. Wang, K. Chen, H. Ding, X. Wang, W. Li, J. Xu, and Z. Ma, ”Role of barrier layers in electroluminescence from SiN-based multilayer light-emitting devices,” Appl. Phys. Lett., vol. 92, pp. 181106, 2008.
15.K. N. Bourdakos, D. M. N. M. Dissanayake, T. Lutz, S. R. P. Silva, and R. J. Curry ,”Highly efficient near-infrared hybrid organic-inorganic nanocrystal electroluminescence device,” Appl. Phys. Lett., vol. 92, pp. 153311, 2008.
16.E. H. Park, I. T. Ferguson, S. K. Jeon, J. S. Park, and T. K. Yoo, ”The effect of silicon doping in the selected barrier on the electroluminescence of InGaN/GaN multiquantum well light emitting diode,” Appl. Phys. Lett., vol. 90, pp. 031102, 2007.
17.C. F. Huang, C. Y. Chen, C. F. Lu, and C. C. Yang, “Reduced injection current induced blueshift in an InGaN/GaN quantum-well light-emitting diode of prestrained growth,” Appl. Phys. Lett., vol. 91, pp. 051121, 2007.
18.M. S. Ferdous, X. Wang, M. N. Fairchild, and S. D. Hersee, “ Effect of threading defects on InGaN/GaN multiple quantum well light emitting diodes,” Appl. Phys. Lett., vol. 91, pp. 231107, 2007.
19.H. P. Maruska and J.J. Tietjen, “The preparation and properties of vapor-deposited single-crystal-line GaN,” Appl. Phys. Lett., vol. 15, pp. 327, 1969.
20.J. I. Pankov, E.A. Miller, D. Richman, J.E. Berkeyheiser, “Electroluminescence in GaN,” Journal of Luminescence, vol. 4, pp. 63-66, 1971.
21.H. P. Maruska, D.A. Stevenson, J. I. Pankov, “Violet luminescence of Mg-doped GaN,” Appl. Phys. Lett., vol. 22, pp.1003-1006, 1973.
22.H. Amano, M. Kito, K. Hiramatsu, I. Akasaki, “Effect of the structure of a photoactive compound on the dissolution inhibition effect,” Jpn. J. Appl. Phys., vol. 28, pp. L2112, 1989.
23.S. Nakamura, M. Kito, K. Hiramatsu, I.Akasaki, “Reducing reverse-bias current in 450°C-annealed n+p junction by hydrogen radical sintering,” Jan. J. Appl. Phys., vol. 34, pp. L797, 1995.
24.H. P. Maruska, ”A brief history of GaN blue light-emitting diodes,” http://www.sslighting.net/lightimes/features/maruska_blue_led_history.pdf
25.S. I. Na, G. Y. Ha, D. S. Han, S. S. Kim, J. Y. Kim, J. H. Lim, D. J. Kim, K. I. Min, and S. J. Park, “Selective wet etching of p-GaN for efficient GaN-based light-emitting diodes,” IEEE Photonics Technology Letter, vol. 18, pp.7709-7711, 2006.
26.J. L. Weyher, P. D. Brown, J. L. Rouviere, T. Wosinski, A. R.. Zauner, and I. Grzegory, “Recent advances in defect-selective etching of GaN,” Journal of Crystal Growth, vol. 210, pp. 151-156, 2000.
27.C. F. Lin, Z. J. Yang, J, H. Zheng, J. J. Dai, “Enhanced light output in nitride-based light-emitting diodes by roughening the mesa sidewall,” IEEE Photonics Technology Letters, vol. 17, pp. 2038-2040, 2005.
28.F. I. Lai, H. W. Huang, C. H. Chiu, C. F. Lai, T.C. Lu, H. C. Kuo, S. C. Wang, ”InGaN/GaN MQW nanorods LED fabricated by ICP-RIE and PEC oxidation processes,” Lasers and Electro-Optics, vol.10, pp. 1012-1013, 2007.
29.C. F. Lin, Z. J. Yang, J, H. Zheng, “Photoelectrochemical oxidation enhances optical output power in GaN -based light emitting diodes,” Lasers and Electro-Optics, vol. 8, pp. 4410-4412, 2005. 30.K. Yegin, L.W. Pearson, ”Experimental validation of electromagnetic edge waves on a PEC wedge,” IEEE Antennas and Propagation, vol. 51, pp 1578-1580, 2003.
31.T. Chiang, W. C. Chew, “A coupled PEC-TDS surface integral equation approach for electromagnetic scattering and radiation from composite metallic and thin dielectric objects”, IEEE Antennas and Propagation, vol. 54, pp. 337-339, 2006.
32.C. F. Wang, F. G. Hu, Y. B. Gan, ”Numerical modeling of the effect of cavity wall profile on interior scattering from large PEC cavity”, IEEE Antennas and Propagation, vol. 55, pp. 398-340, 2007.
33.F. I. Lai, C. C. Kao, C.F. Lin, H. C. Kuo, S. C. Wang, “Enhancement of light-output of GaN-based light-emitting diodes by bias-assisted photoelectrochemical oxidation of p-GaN in H2O,” Lasers and Electro-Optics, vol. 13, pp. 7665-7667, 2005.
34. Y. Morel, “Characteristic current decomposition for RCS analysis,” IEEE Antennas and Propagation Society International Symposium, vol. 3A, pp. 1998-2000, 2005.
35.K. Y. Hwang, “Development of nano-scale etching technique on GaN by CPAWE,” http://140.114.72.28/handle/987654321/7334, 2004.
36.Y. Z. Sheu, “The study of the etching and metal’s contact in GaN material,” Institute of Electro-Optical Science and Engineering, National Cheng Kung University, Tainan, Taiwan, ROC, 2004.
37.W. Schmid, “ Infrared light-emitting diodes with lateral outcoupling taper for high extraction efficiency,” Proc. SPIE, vol. 3621, pp.198-205, 1999.
38.S. J. Lee, S. W. Song, “Efficiency improvement on light-emitting diodes based on geometrically deformed chips,” Proc. SPIE, vol. 3621, pp.237-248, 1999.
39.C.S. Chang, S.J. Chang, Y.K. Su, C.T. Lee, Y.C. Lin, W.C. Lai, S. C. Chei, J. C. Ke, H.M. Lo, “Nitride-based LEDs with textured sidewalls,” IEEE Photon. Technol. Lett., vol.16, pp. 750-752, 2004.
40.M. R. Krames, M. O. Holcomb, G. E. Höfler, E. I. Chen, I. H. Tan, P. Grillot, N. F. Gardner, H. C. Chui, J. W. Huang, S. A. Stockman, F. A. Kish, and M. G. Craford, “High-power truncated-inverted-pyramid (AlxGa1–x)0.5In0.5P/GaP light-emitting diodes exhibiting >50 external quantum efficiency,” Appl. Phys. Lett., vol. 75, pp. 2365, 1999.
41.D. Eisert, V. Härle, “Simulations in the developement process of GaN-based LEDs and laser diodes,” International Conference on Numerical Simulation of Semiconductor Optoelectronic Devices, vol. 21, pp.1012-1014, 2002.
42.C. C. Kao, H. C. Kuo, H. W. Huang, J. T. Chu, Y. C. Peng, Y. L. Hsieh, C. Y. Luo, S. C. Wang, C. C. Yu, and C. F. Lin, “Lighting-output enhancement in a nitride-based light-emitting diode with 22°undercut sidewalls”, IEEE Photonics Technology Letters, vol. 17, pp.19-21, 2005.
43.M. Itoh, T. Kinoshita, C. Koike, M. Takeuchi, K. KAWASAKI and Y. Aoyagi, “Straight and smooth etching of GaN plane by combination of reactive ion etching techniques ”, Japanese Journal of Applied Physics, vol.45, pp. 3988-3991, 2006.
44.J.R. Mileham, S.J. Pearton, C.R. Abernathy, and J.D. Mackenzie, “Patterning of AlN, InN, and GaN in KOH based solutions,” J. Vac. Sci. Technol., vol. A14, pp. 836~839, 1995.
45.T. S. Choy, J. Chen, S. Hershfield, ”A superlattice effect in the resistivity of multilayers,” IEEE Magnetics, vol. 34, pp. 933–935, 1998,
46.C. L. Wang, J. R. Gong, M. F. Yeh, B. J. Wu, W. T. Liao, T. Y. Lin, C. K. Lin, “Improvement in the characteristics of GaN-based light-emitting diodes by inserting AlGaN-GaN short-period superlattices in GaN underlayers,” IEEE Photonics Technology Letters, vol. 18, pp. 1497–1499, 2006.
47.M. Jain, H. Appel, A. Meier, W. Wegscheider, K. F. Renk, ”Semiconductor-superlattice oscillator with superlattices connected in parallel and series as active elements for generation of millimetre waves,” IEE Microwaves, Antennas and Propagation, vol. 153, pp. 441 – 446, 2006.
48.L. Kolodziejski, R. Gunshor, S. Datta, W. Becker, A. Nurmikko, ”Wide-gap II-VI superlattices,” IEEE Quantum Electronics, vol. 22, pp. 1666–1676, 1986.
49.J. K. Sheu, J. M. Tsai, S. C. Shei, W. C. Lai, T. C. Wen, C. H. Kou, Y. K. Su, S.J. Chang, G. C. Chi, ”Low-operation voltage of InGaN-GaN light-emitting diodes with Si-doped In0.3Ga0.7N/GaN short-period superlattice tunneling contact layer,” IEEE Electron Device Letters, vol. 22, pp. 460–462, 2001.
50.H. C. Wang, Y. K. Su, “Investigation and fabrication of AlGaInP and InGaN-based lighting emitting diodes,” 2004 .
51.A. Yasan, M. Razeghi, “Very high quality p-type AlGaN/GaN superlattice,” Solid-State Electronics, vol. 47, pp. 303-306, 2003.
52. E. F. Schubert, W. Grieshaberand, I.D. Goepfert, ”Enhancement of deep acceptor activation in semiconductors by superlattice doping,” Appl. Phys. Lett., vol. 69, pp. 3737-3739, 1996.
53.L. Zhou, F. Khan , A.T. Ping, A. Osinski and I. Adesida, ”Characteristics of Ti/Pt/Au ohmic contacts on p-type GaN/AlGaN superlattices.” Appl. Phys. Lett., vol. 15, pp. 145-147, 1985.
54.T. C. Wen, S. J. Chang, Y. K. Su, L. W. Wu, C. H. Kuo, Y. P. Hsu, W. C. Lai, J. K. Sheu , “Improved ESD reliability by using a modulation doped AlGaN/GaN superlattice in nitride-based LED,” Semiconductor Device Research Symposium, vol. 19, pp. 77–78, 2003.
55.J. R. Gong, S. F. Tseng, C. W. Huang, Y. L. Tsai, W. T. Liao, C. L. Wang, B. H. Shi, and T. Y. Lin, ”Effects of Al-containing intermediate Ⅲ-nitride strained multilayers on the threading dislocation density and optical properties of GaN films,” Jan. J. Appl. Phys., vol. 42, pp. 6823-6826, 2003.
56.C.L. Wang, J.R. Gong, M.F. Yeh, B.J. Wu, W.T. Liao, T.Y. Lin, and C.K. Lin, “Improvement in the characteristics of GaN-based light-emitting diodes by inserting AlGaN-GaN short-period superlattices in GaN underlayers,” IEEE Photonics Technology Letters, vol. 18, pp.733-735, 2006.
57.Y. H. Sun, Z. G. Li, Y. H. Cheng, J. Yuan, “Joule heating effect on evaluation of lifetime in electromigration experiment,” Solid-State and Integrated Circuit Technology, vol. 3, pp.211-213, 1998.
58. A. Yasuda, H. Yamaguchi, Y. Tanabe, N. Owada, “Direct measurement of localized joule heating in silicon devices by means of newly developed high resolution IR microscopy,” Reliability Physics Symposium, vol. 15, pp. 191-193, 1991.
59.J. H. Lee, Y. D. Lee, Y. B. Park, S. T. Yang, M. S. Suh, Q. H. Chung, K. Y. Byun, “Joule heating effect on the electromigration lifetimes and failure mechanisms of Sn-3.5Ag solder bump,” Electronic Components and Technology Conference, vol. 22, pp. 55-57, 2007.
60.C. L. Wang, J.R. Gong, M.F. Yeh, B.J. Wu, W.T. Liao, T.Y. Lin and C.K. Lin, “Improvement in the characteristics of GaNbased light-emitting diodes by inserting AlGaN/GaN short-period superlattices in GaN underlayers,” IEEE Photonics Technology Letters, vol. 18, pp. 1497-1499, 2006.
61.X.A. Cao, E.B. Stokes, P.M. Sandivk, S.F. Leboeuf, J. Kretchmer, and D. Walker, “Diffusion and tunneling currents in GaN/InGaN multiple quantum well light-emitting diodes”, IEEE Electron Device Letters, vol. 23, pp. 535-537, 2002.
62.S. H. Chiu, S.W. Liang, Y. C. Chen, Y.C. Liu, K.H. Chen, S.H. Lin, “Joule heating effect under accelerated electromigration in flip-chip solder joints,” Electronic Components and Technology Conference, vol. 10, pp. 443-445, 2006.
63.L. W. Ji, Y. K. Su , S. J. Chang, S. C. Hung, C. S. Chang, L.W. Wu, ”Nitride-based light-emitting diodes with InGaN/GaN SAQD active layers,” Circuits, IEE Devices and Systems, vol. 151, pp. 486–488, 2004.
64.S. J. Chang, Y. K. Su, L. W. Ji, S. J. Chang, L. W. Wu, W. C. Lai, T. H. Fag, K. T. Lam, ”Nitride-based QD LEDs,” Semiconductor Device Research Symposium, vol. 5, pp. 81–82, 2003. 65.J. C. Lin, Y. K. Su, S. J. Chang, W. H. Lan, K. C. Huang, W. R. Chen, Y. C. Cheng, W. J. Lin, ”GaN-based light-emitting diodes prepared on vicinal sapphire substrates,” IET Optoelectronics, vol. 1, pp. 23–26, 2007.
66.P. G. Eliseev, J. Lee, M. Osinski, “InGaN-based quantum-well LEDs: explanation of anomalous electro-optical characteristics,” vol. 1, pp. 147-149, Lasers and Electro-Optics, 2005.
67.N. Stavitski, V. Dal, A. Lauwers, C. Vrancken, A.Y. Kovalgin, R. A. M. Wolters, “Systematic TLM measurements of NiSi and PtSi specific contact resistance to n- and p-type Si in a broad doping range,” IEEE Electron Device Letters, vol. 29, pp. 378–381, 2008.
68.N. Stavitski, V. Dal, R. A. M. Wolters, A.Y. Kovalgin, J. Schmitz, “Specific contact resistance measurements of metal-semiconductor junctions,” Microelectronic Test Structures, vol. 17, pp. 19-21, 2006.
69.L. Zhou, F. Khan, A.T. Ping, A. Osinski and I. Aesida, ”Characteristics of Ti/Pt/Au ohmic contacts on p-type GaN/AlGaN superlattices,” Microelectronics Laboratory, Department of Electrical and Computer Engineering, vol. 13, pp. 141-143, 1999.
70.D. J. Dumin and G. J. Pearson,“ Properties of Gallium Arsenide diodes between 4.2K and 300K,” J. Appl. Phys., vol. 36, pp. 3418-3426, 1965.
71.C. A. Kumar, M. Shatalov, V. Adivarahan, A. Lunev, J. W. Yang, G. Simin, M. A. Khan, R. Gaska, and M. Shur, ”High-quality p–n junctions with quaternary AlInGaN/InGaN quantum wells,” Appl. Phys. Lett., vol. 77, pp. 3800, 2000.
72.M. Rodrigues ,”Extraction of schottky diode parameters from current-voltage data for a chemical-vapor-deposited diamond/silicon structure over a wide temperature range,” J. Appl. Phys., vol. 103, pp. 083708, 2008.
73.C. L. Reynolds, Jr. and A. Patel, “Tunneling entity in different injection regimes of InGaN light emitting diodes,” J. Appl. Phys., vol. 103, pp. 086102, 2008 .
74.V. Butenko, R. Kahatabi, E. Mogilko, R. Strul, V. Sandomirsky, Y. Schlesinger, Z. Dashevsky, V. Kasiyan, and S. Genikhov, “Characterization of high-temperature PbTe p-n junctions prepared by thermal diffusion and by ion implantation,” J. Appl. Phys., vol. 103, pp. 024506, 2008.
75.L. X. Zhao, E. J. Thrush, C. J. Humphreys, and W. A. Phillips, “Degradation of GaN-based quantum well light-emitting diodes,” J. Appl. Phys., vol. 103, pp. 024501, 2008.
76.F. Iucolano, F. Roccaforte, F. Giannazzo, and V. Raineri, “Barrier inhomogeneity and electrical properties of Pt/GaN Schottky contacts,” J. Appl. Phys., vol. 102, pp.113701, 2007.
77.J. Osvald, “Influence of lateral current spreading on the apparent barrier parameters of inhomogeneous Schottky diodes”, J. Appl. Phys., vol. 99, pp. 033708, 2006.
78.J. M. Shah, Y. L. Li, T. Gessmann, and E. F. Schubert, “Experimental analysis and theoretical model for anomalously high ideality factors (n2.0) in AlGaN/GaN p-n junction diodes,” J. Appl. Phys., vol. 94, pp. 2627, 2003.
79.X. A. Cao, P. M. Sandvik, E. B. Stokes, S.F. Leboeuf, J. Kretchmer, and D. Walker, “Diffusion and tunneling currents in GaN/InGaN multiple quantum well light-emitting diodes,” IEEE Electron Device Letters, vol. 23, pp. 2231-2233, 2002.
80.H. C. Wang, Y. K. Su, “Investigation and Fabrication of AlGaInP and InGaN-based light-emitting diodes,” Institute of Microelectronics, National Cheng Kung University, Tainan, Taiwan, 2004.
81.J. C. Tseng and J. G. Hwu, “Effects of electrostatic discharge high-field current impulse on oxide breakdown,” J. Appl. Phys., vol. 101, pp. 014103, 2007.
82.S. C. Shei, J. K. Sheu, C. F. Shen, “Improved reliability and ESD characteristics of flip-chip GaN-based LEDs with internal inverse-parallel protection diodes,” IEEE Electron Device Letters, vol. 28, pp. 346–349, 2007.
83.A. M. Fallah, R. M. Nelson,“ Effect of lead length on the response of ESD protection devices”, IEEE Electromagnetic Compatibility, vol. 2, pp. 998–1003, 1999.
84.J. J. Horng, Y. K. Su, S. J. Chang, W. S. Chen, S. C. Shei, “GaN-based power LEDs with CMOS ESD protection circuits,” IEEE Device and Materials Reliability, vol. 7, pp. 340–346, 2007.
85.Y. K. Su, S. J. Chang, S. C. Wei, S. M. Chen, W. L. Li, “ESD engineering of nitride-based LEDs,” IEEE Device and Materials Reliability, vol. 5, pp. 277–281, 2005.
|