1.Abu-Mostafa, Y.S., Magdon-Ismail, M., and Lin, H.T., “Learning from data”, AML publication, (2012).
2.Dawson, C.W., Wilby, R., “An artificial neural network approach to rainfall– runoff modelling”, Hydrological Sciences Journal 43, 47–66, (1998).
3.Dawson, C.W., Wilby, R.L., “A comparison of artificial neural networks used for river flow forecasting”, Hydrology and Earth System Sciences 3, 529–540, (1999).
4.De Vos, N.J., Rientjes, T.H.M., “Constraints of artificial neural networks for rainfall–runoff modelling: trade-offs in hydrological state representation and model evaluation”, Hydrology and Earth System Sciences 9, 111–126, (2005).
5.Jang, J.S.R., “ANFIS: Adaptive-Network-Based Fuzzy Inference System, IEEE Transactions on Systems, Man, and Cybernetics”, 23(3):665-685, (1993).
6.MATLAB, 2013a. MATLAB Fuzzy Logic Toolbox Reference Manual, Version 8.1.0. The Math Works Inc., Natick, Mass.
7.Nayak, P.C., Sudheer, K.P., Jain, S.K., “Rainfall–runoff modeling through hybrid intelligent system”, Water Resources Research 43, (2007).
8.Nayak, P.C., Sudheer, K.P., Ramasastri, K.S., “Fuzzy computing based rainfall-runoff model for real time flood forecasting”, Hydrological Processes 19, 955– 968, (2005).
9.Nayak, P.C., Sudheer, K.P., Ramasastri, K.S., “Short-term flood forecasting with a neurofuzzy model”, Water Resources Research 41, 1–16, (2005).
10.Nayak, P.C., Sudheer, K.P., Rangan, D.M., Ramasastri, K.S., “A neuro-fuzzy computing technique for modeling hydrological time series”, Journal of Hydrology 291, 52–66, (2004).
11.Quah, K.H., Quek, C., “FITSK: online local learning with generic fuzzy input Takagi–Sugeno–Kang fuzzy framework for nonlinear system estimation. IEEE Transactions on Systems, Man, and Cybernetics”, Part B: Cybernetics 36, 166-178, (2006).
12.Rajurkar, M.P., Kothyari, U.C., Chaube, U.C., “Artificial neural networks for daily rainfall–runoff modelling”, Hydrological Sciences Journal 47, 865–878, (2002).
13.Robert, Hecht-Nielsen, R., “Counter-propagation networks”, ICNN-87,Π, pp. 19-32, (1989).
14.Takagi, T., Sugeno, M., “Fuzzy identification of systems and its applications to modeling and control. IEEE Transactions on Systems”, Man and Cybernetics 15, 116–132, (1985).
15.Talei, A., Chua, H.C, “Influence of lag time on event-based rainfall–runoff modeling using the data driven approach” Journal of Hydrology, Vol.438-439., pp. 223-233, (2012).
16.Talei, A., Chua, H.C, Quek, C., “A novel application of a neuro-fuzzy computational technique in event-based rainfall–runoff modeling” Expert Systems with Applications, Vol.37, pp.7456-7468, (2010).
17.Talei, A., Chua, H.C, Wong, S.W., “Evaluation of rainfall and discharge inputs used by Adaptive Network-based Fuzzy Inference Systems (ANFIS) in rainfall–runoff modeling” Journal of Hydrology, Vol.391., pp. 248-262, (2010).
18.Zedach, L. A., “Fuzzy sets”, Inform. And Contr., Vol.8, pp. 338~353, (1985).
19.申瑞玲,模糊控制理論在經濟預測中的運用,科技經濟市場,2009。
20.李光敦,水文學,五南出版社,2005。
21.李瓈穎,地區性即時淹水調查,國立宜蘭大學土木工程研究所碩士論文,2013。22.林承賢,以類神經網路建構濁水溪流域地下水位推估模式,臺灣大學生物環境系統工程學研究所碩士論文,2012。23.林春欉,應用類神經模糊理論推論系統於銑床加工模型之預測,國立高雄第一科技大學系統資訊與控制研究所碩士論文,2006。24.林浩維,洪水位預報敏感度分析之研究,中國科技大學土木與防災設計研究所碩士論文,2012。25.林偉立,結合ANFIS模式與WebGIS技術於雨水下水道水位預測,中原大學土木工程研究所碩士論文,2009。26.泊森總和環境設計顧問有限公司,易淹水地區水患治理計畫-縣管區域排水美福排水系統規劃報告,經濟部水利署第一河川局,2011。
27.張文匯,模糊控制理論淺析,伊犁教育學院學報,2002。
28.張衍祥,利用適應性模糊類神經系統預測核三廠冷卻水流失事故之破口大小,國立清華大學核子工程與科學研究所碩士論文,2010。29.張智星,MATLAB程式設計與應用,清蔚科技,2000。
30.陳怡君,應用ARX與ARMAX模型探討颱風期間淹水水位之及時預測-以宜蘭美福地區為例,國立宜蘭大學土木工程學系研究所碩士論文,2014。31.陳泓碩,應用ARIMAX及ANFIS模型於福山森林集水區逕流模擬之研究,臺灣大學森林環境暨資源學研究所碩士論文,2012。32.黃洽訓,應用類神經網路與模糊推論系統於水田灌區地下水位變化推估,僑光科技大學資訊科技研究所碩士論文,2009。33.歐陽慧濤、徐輝明、陳松靖,宜蘭縣自計式水位監測系統設立雨淹水災損地利資訊系統整合規劃計畫,經濟部水利署第一河川局,2011。
34.歐陽慧濤、徐輝明、陳松靖,蘭陽溪流域淹水範圍監測系統設置計畫,經濟部水利署第一河川局,2012。
35.蘇漢昌,應用適應性模糊推論系統改善類神經網路預測工業廢水廠出流水水質之研究,朝陽科技大學環境工程與管理系碩士班碩士論文,2008。36.中央氣象局全球資訊網站,http://www.cwb.gov.tw/V7/index.htm。
37.經濟部水利署第一河川局,http://www.wra01.gov.tw/。