跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.59) 您好!臺灣時間:2025/10/11 23:04
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:劉熔清
研究生(外文):Jung-Ching Liu
論文名稱:考慮退化性商品以產品到期日為固定週期以及需求函數受價格與時間影響之最佳存貨策略
論文名稱(外文):Optimal inventory policy for a deterioration item with expiration date as the cycle time and demand function sensitive to price and time
指導教授:李強笙
指導教授(外文):Chiang-Sheng Lee
口試委員:李強笙林希偉吳清炎
口試委員(外文):Chiang-Sheng LeeShi-Woei LinChing-Yan Wu
口試日期:2018-7-11
學位類別:碩士
校院名稱:國立臺灣科技大學
系所名稱:工業管理系
學門:商業及管理學門
學類:其他商業及管理學類
論文種類:學術論文
論文出版年:2018
畢業學年度:106
語文別:中文
論文頁數:44
中文關鍵詞:退化性商品產品到期日確定性需求價格彈性
外文關鍵詞:Deterioration itemExpiration dateDeterministic demandPrice elasticity
相關次數:
  • 被引用被引用:0
  • 點閱點閱:117
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在本研究中提出退化性商品在產品剩餘到期日及價格因素影響需求率,並考慮以產品到期日為固定週期下的最佳存貨策略。退化性商品在生活中隨處可見,而退化性商品需在到期日結束前使用掉,否則會造成商品本身失去使用價值,造成企業承擔額外的成本,而隨著產品剩餘壽命的減少,消費者對於產品的需求度也會隨之減少,因此我們針對這種情況,建立第一種存貨模型,也就是當產品在消費者已知的產品到期日的期限內,考慮時間的推移,各時點的需求率會逐漸減少,以此特性先建立需求率模型。另外,消費者在選購商品時,價格往往是主要選購因素,當價格有變動,消費者對於該產品購買慾望也會有所改變;在第一種存貨需求率函數模型之中,加入考慮價格變動的影響,此情形下我們建立第二種存貨模型,也就是需求同時受到價格考量及產品剩餘壽命的影響,而在這兩種模型研究中,當存貨提早消耗完就會有缺貨的發生。我們根據這兩種需求率模型找出該存貨模型的最佳消耗時間、最佳訂購量、每單位時間最高利潤及最佳定價,並討論各種參數變動下,最佳解的改變情況。
This study provides us an optimal policy for a deterioration item under the expiration date as the fixed cycle time and the demand function sensitive to the price and time. The deterioration items can be found everywhere in our life and they should be used before the expiration date, otherwise, they will create an additional cost to the enterprise.
The customer’s demand will be decreasing when the products approach to their expiration date, therefore, our first model (model I) will be based on the time-dependent demand function and the expiration date as the ordering time.
In addition, the price is another factor to effect the customer’s demand. Usually, people will tend to purchase the same quality products with the lower price, thus our second model (model II) is to consider the same situations as model I but the demand function is effected by the price and time
Besides above, the shortage problem is also considered in both models. In our study, we will provide the optimal solutions for those two models such as the optimal quantity, the optimal price, the optimal profit per unit time and some other sensitive analyses.
目錄
摘要 I
ABSTRACT II
致謝 III
目錄 IV
圖目錄 VI
表目錄 VII
第一章 緒論 1
1.1 研究背景與動機 1
1.2 研究目的 2
1.3 研究範圍與限制條件 2
1.4 研究方法與步驟 3
第二章 文獻探討 4
2.1 傳統存貨模型 4
2.2 定價策略下存貨模型 4
2.3 考慮時間需求變化下存貨模型 5
2.4 考慮價格與時間變化下存貨模型 5
第三章 模型建立 7
3.1 基本假設與符號定義 7
3.1.1 基本假設 7
3.1.2 符號定義 7
3.2 Model 1 8
3.2.1 模式推導 8
3.2.2 最佳定購策略 11
3.2.3 最佳解之演算法 13
3.3 Model 2 14
3.3.1 模式推導 14
3.3.2 最佳定購策略 15
第四章 數值分析 20
4.1 數值範例 20
4.1.1 Model 1 20
4.1.2 Model 2 21
4.2 數值分析 22
4.2.1 Model 1 22
4.2.2 Model 2 26
第五章 結論及未來研究建議與方向 31
5.1 結論 31
5.2 未來研究建議與方向 31
參考文獻 32
參考文獻

[1]. Harris, F.W., How many parts to make at once. THE MAGAZINE OF MANAGEMENT, 1913. 10: p. 135-136.
[2]. Sarker, B.R., S. Mukherjee, and C.V. Balan, An order-level lot size inventory model with inventory-level dependent demand and deterioration. International Journal of Production Economics, 1997. 48(3): p. 227-236.
[3]. Bose, S., A. Goswami, and K. Chaudhuri, An EOQ model for deteriorating items with linear time-dependent demand rate and shortages under inflation and time discounting. Journal of the Operational Research Society, 1995. 46(6): p. 771-782.
[4]. Baker, R.a. and T.L. Urban, A deterministic inventory system with an inventory-level-dependent demand rate. Journal of the Operational Research Society, 1988. 39(9): p. 823-831.
[5]. Avinadav, T. and T. Arponen, An EOQ model for items with a fixed shelf-life and a declining demand rate based on time-to-expiry technical note. Asia-Pacific Journal of Operational Research, 2009. 26(06): p. 759-767.
[6]. Avinadav, T., A. Herbon, and U. Spiegel, Optimal inventory policy for a perishable item with demand function sensitive to price and time. International Journal of Production Economics, 2013. 144(2): p. 497-506.
[7]. Whitin, T.M., Inventory control and price theory. Management science, 1955. 2(1): p. 61-68.
[8]. Mills, E.S., Uncertainty and price theory. The Quarterly Journal of Economics, 1959. 73(1): p. 116-130.
[9]. Zabel, E., Monopoly and uncertainty. The Review of Economic Studies, 1970. 37(2): p. 205-219.
[10]. Zabel, E., Multiperiod monopoly under uncertainty. Journal of Economic Theory, 1972. 5(3): p. 524-536.
[11]. Young, L., Price, inventory and the structure of uncertain demand. New Zealand Operations Research, 1978. 6(2): p. 157-177.
[12]. Polatoglu, L.H., Optimal order quantity and pricing decisions in single-period inventory systems. International Journal of Production Economics, 1991. 23(1-3): p. 175-185.
[13]. Petruzzi, N.C. and M. Dada, Pricing and the newsvendor problem: A review with extensions. Operations research, 1999. 47(2): p. 183-194.
[14]. Hua, G., S. Wang, and T. Cheng, Optimal pricing and order quantity for the newsvendor problem with free shipping. International Journal of Production Economics, 2012. 135(1): p. 162-169.
[15]. Silver, E.A., A simple inventory replenishment decision rule for a linear trend in demand. Journal of the Operational Research society, 1979. 30(1): p. 71-75.
[16]. Nahmias, S., Perishable inventory theory: A review. Operations research, 1982. 30(4): p. 680-708.
[17]. Weatherford, L.R. and S.E. Bodily, A taxonomy and research overview of perishable-asset revenue management: Yield management, overbooking, and pricing. Operations research, 1992. 40(5): p. 831-844.
[18]. Gallego, G. and G. Van Ryzin, Optimal dynamic pricing of inventories with stochastic demand over finite horizons. Management science, 1994. 40(8): p. 999-1020.
[19]. Chun, Y.H., Optimal pricing and ordering policies for perishable commodities. European Journal of Operational Research, 2003. 144(1): p. 68-82.
[20]. Herbon, A., U. Spiegel, and J. Templeman, Simulation study of the price differentiation effect in a stochastic deteriorating inventory with heterogeneous consumers–freshness sensitivity. Applied Economics, 2012. 44(24): p. 3101-3119.
[21]. Bahari-Kashani, H., Replenishment schedule for deteriorating items with time-proportional demand. Journal of the operational research society, 1989. 40(1): p. 75-81.
[22]. Benkherouf, L., On an inventory model with deteriorating items and decreasing time-varying demand and shortages. European Journal of Operational Research, 1995. 86(2): p. 293-299.
[23]. Teng, J.-T., A deterministic inventory replenishment model with a linear trend in demand. Operations Research Letters, 1996. 19(1): p. 33-41.
[24]. Balkhi, Z.T. and L. Benkherouf, On an inventory model for deteriorating items with stock dependent and time-varying demand rates. Computers & Operations Research, 2004. 31(2): p. 223-240.
[25]. Urban, T.L., Inventory models with inventory-level-dependent demand: A comprehensive review and unifying theory. European Journal of Operational Research, 2005. 162(3): p. 792-804.
[26]. Wu, K.-S., L.-Y. Ouyang, and C.-T. Yang, An optimal replenishment policy for non-instantaneous deteriorating items with stock-dependent demand and partial backlogging. International Journal of Production Economics, 2006. 101(2): p. 369-384.
[27]. Devangan, L., et al., Individually rational buyback contracts with inventory level dependent demand. International Journal of Production Economics, 2013. 142(2): p. 381-387.
[28]. You, P.-S. and Y.-C. Hsieh, An EOQ model with stock and price sensitive demand. Mathematical and Computer Modelling, 2007. 45(7-8): p. 933-942.
[29]. Chang, C.-T., J.-T. Teng, and S.K. Goyal, Optimal replenishment policies for non-instantaneous deteriorating items with stock-dependent demand. International Journal of Production Economics, 2010. 123(1): p. 62-68.
[30]. You, P.-S, Inventory policy for products with price and time-dependent demands. Journal of the Operational Research Society, 2005. 56(7): p. 870-873.
[31]. Valliathal, M. and R. Uthayakumar, Optimal pricing and replenishment policies of an EOQ model for non-instantaneous deteriorating items with shortages. The International Journal of Advanced Manufacturing Technology, 2011. 54(1-4): p. 361-371.
[32]. Maihami, R. and I.N. Kamalabadi, Joint pricing and inventory control for non-instantaneous deteriorating items with partial backlogging and time and price dependent demand. International Journal of Production Economics, 2012. 136(1): p. 116-122.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top