跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.121) 您好!臺灣時間:2025/12/11 10:29
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳茂杉
研究生(外文):Mao-Shan Chen
論文名稱:以射頻磁控濺鍍法製備鎂氟共摻雜氧化鋅薄膜及其應用於矽薄膜太陽電池之特性研究
論文名稱(外文):Mg, F co-doped zinc oxide thin films deposited by RF magnetron sputtering and their application to silicon thin film solar cells
指導教授:汪芳興
口試委員:江雨龍姬梁文
口試日期:2017-07-16
學位類別:碩士
校院名稱:國立中興大學
系所名稱:電機工程學系所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2018
畢業學年度:106
語文別:中文
論文頁數:131
中文關鍵詞:射頻磁控濺鍍鎂氟共摻雜氧化鋅薄膜矽薄膜太陽電池
外文關鍵詞:RF magnetron sputteringMgF co-doped zinc oxide thin filmssilicon thin film solar cells
相關次數:
  • 被引用被引用:0
  • 點閱點閱:194
  • 評分評分:
  • 下載下載:19
  • 收藏至我的研究室書目清單書目收藏:0
以射頻磁控濺鍍法(Radio Frequency Magnetron Sputtering)製備氧化鋅(ZnO)為基底的透明導電薄膜已經被廣泛應用於各種光電元件。本研究以射頻磁控濺鍍系統沉積鎂氟共摻雜氧化鋅薄膜(MFZO)以及氟摻雜氧化鋅薄膜(FZO)於玻璃基板上。濺鍍靶材以自行壓製摻雜量為3 mol%之MgF2與ZnF2的氧化鋅濺鍍靶材,以改變濺鍍之基板溫度、快速熱退火之溫度及時間於真空中進行快速熱退火處理,研究濺鍍參數以及快速熱退火處理對於MFZO與FZO薄膜之結構、表面形貌、光電特性及組成成分的影響。再使用稀鹽酸溶液蝕刻薄膜表面,最後使用電漿增強式化學氣相沉積法(PECVD)沉積p-i-n結構的氫化非晶矽薄膜太陽電池(α-Si:H SCs),以探討薄膜製程對太陽電池之光電轉換效率的影響。
基板溫度由室溫至200℃沉積時,MFZO及FZO薄膜在基板溫度200℃具有最佳的電阻率,分別為1.18×10-3 Ω-cm、8.57×10-4 Ω-cm,而光學能隙分別為3.803 eV以及3.79 eV。改變快速熱退火溫度由300至500℃及快速熱退火時間15至120 s後,MFZO及FZO薄膜在溫度400℃及時間30 s時有最佳的電阻率分別為1.30×10-3 Ω-cm、7.96×10-4 Ω-cm,並且在可見光區的平均穿透率皆約為93%,光學能隙分別為3.812 eV以及3.831 eV,FOM分別為1.18×10-2 Ω-1以及1.99×10-2 Ω-1。而在所有薄膜經由稀鹽酸蝕刻後,片電阻皆上升。改變稀鹽酸濃度由0.5%至0.7%,室溫沉積薄膜於濃度0.5%時有最佳FOM。基板溫度200℃之MFZO及FZO蝕刻後薄膜,在可見光區的最佳平均霧度分別為55.1%及42.3%。
在太陽電池的部分,稀鹽酸蝕刻MFZO薄膜表面後,太陽電池短路電流密度7.281 mA/cm2、開路電壓0.882 V、填充因子68.77%、轉換效率4.418%。與未蝕刻之MFZO薄膜相比,可提升太陽電池約12 %短路電流密度、13.7%填充因子、3.1%開路電壓以及34.1%轉換效率。相對稀鹽酸蝕刻FZO薄膜太陽電池短路電流密度7.217 mA/cm2、開路電壓0.869 V、填充因子64.55%、轉換效率4.05%,以MFZO薄膜為透明電極的太陽電池效能較好。
ZnO-based transparent conducting thin films prepared by radio frequency (RF) magnetron sputtering have been widely used in various optoelectronic devices. In this study, a magnesium-fluorine co-doped zinc oxide film (MFZO) and a fluorine-doped zinc oxide film (FZO) were deposited on glass substrates by a RF magnetron sputtering system. The sputtering targets are with zinc oxide targets containing 3 mol% of MgF2 and ZnF2, respectively. Effects of substrate temperature, rapid thermal annealing (RTA) temperature and time were investigated on structural, surface morphological, electrical, optical, and composition properties of those films. Hydrogenated amorphous silicon thin films solar cells (α-Si:H SCs) were prepared by plasma enhanced chemical vapor deposition to investigate the influence of the TCO films on efficiency of the solar cells. When the substrates temperature varied from room temperature to 200 ℃, the MFZO and FZO films had an optimum resistivity of 1.18×10-3 Ω-cm and 8.57×10-4 Ω-cm at a substrate temperature of 200 ℃, respectively, and the optical band gap were 3.803 eV and 3.790 eV, respectively. After RTA treatment at temperatures of 300 to 500 ℃ and at times of 15 to 120 s, MFZO and FZO films had optimum resistivities of 1.30×10-3 Ω-cm and 7.96×10-4 Ω-cm, respectively, at an RTA temperature of 400 ℃ for 30 s. The average transmittance in the visible region were both about 93%, the optical band gaps were 3.812 eV and 3.831 eV, respectively, and the FOM were 1.18×10-2 Ω-1 and 1.99×10-2 Ω-1, respectively. These films deposited at room temperature were etched through dilute hydrochloric acid concentration of 0.5% to 0.7%, and the optimum FOM was obtained at 0.5%. The average haze ratio of the etched MFZO and etched FZO films at a substrate temperature of 200 ℃ in the visible region is 55.1% and 42.3%, respectively.
As to the p-i-n α-Si:H SCs prepared on the etched MFZO film, the short-circuit current density, the open circuit voltage, the fill factor, and the efficiency were 7.281 mA/cm2, 0.882 V, 68.77%, and 4.418%, respectively. Compared with the unetched MFZO electrode, it can increase the solar cells 12% short-circuit current density, 13.7% fill factor, 3.1% open circuit voltage and 34.1% efficiency. However, α-Si:H SCs prepared on the etched FZO film achieved the short-circuit current density, the open circuit voltage, the fill factor, and the efficiency of 7.217 mA / cm2, 0.869 V, 64.55%, and 4.05%, respectively. We conclude that α-Si:H SCs with the MFZO front electrode have better performance than those with the FZO one.
致謝 .................................................................................................................. i
摘要 ............................................................................................................... iii
Abstract .......................................................................................................... iv
目錄 ................................................................................................................ vi
圖目錄 ............................................................................................................. x
表目錄 .......................................................................................................... xiv
第一章 緒論 ........................................................................................... 1
1.1 前言 ................................................................................................... 1
1.2 研究動機與目的 ............................................................................... 1
第二章 文獻回顧與基礎理論 .............................................................. 5
2.1 文獻回顧 ........................................................................................... 5
2.2 基礎理論 ........................................................................................... 6
2.2.1 氧化鋅之晶體結構與特性 .................................................... 6
2.2.2 共摻雜鎂氟之氧化鋅(MFZO)薄膜 ...................................... 8
2.2.2.1 電學性質 .................................................................... 8
2.2.2.2 光學性質 .................................................................... 9
2.2.3 電漿基礎原理 ...................................................................... 12
2.2.4 射頻磁控濺鍍 ...................................................................... 13
2.2.4.1 濺鍍原理 ................................................................... 13
2.2.4.2 直流與射頻濺鍍 ....................................................... 14
2.2.4.3 磁控濺鍍 ................................................................... 15
2.2.5 薄膜沉積 .............................................................................. 15
2.2.5.1 薄膜成長機制 ........................................................... 15
2.2.5.2 Thorton 模型 ............................................................ 17
2.2.6 薄膜快速熱退火處理 .......................................................... 18
2.2.7 氫化非晶矽(α-Si:H)薄膜太陽電池 .................................... 18
2.2.7.1 太陽電池 ................................................................... 18
2.2.7.2 電漿增強式化學氣相沈積法 ................................... 21
第三章 實驗步驟與方法 ..................................................................... 22
3.1 實驗製程與流程分析 ..................................................................... 22
3.2 靶材製作流程 ................................................................................. 23
3.2.1 靶材粉末調製 ..................................................................... 23
3.2.2 靶材製程 ............................................................................. 24
3.3 基板切割與清洗流程 ..................................................................... 25
3.4 透明導電薄膜沉積 ......................................................................... 26
3.4.1 薄膜沉積設備 ..................................................................... 26
3.4.2 鎂氟共摻雜之氧化鋅(MFZO)薄膜製程參數 ................... 26
3.5 薄膜快速熱退火製程 .................................................................... 27
3.5.1 薄膜快速熱退火設備 .......................................................... 27
3.5.2 薄膜快速熱退火參數 .......................................................... 28
3.6 薄膜化學濕蝕刻製程與參數 ......................................................... 28
3.7 太陽電池沉積 ................................................................................. 29
3.7.1 太陽電池沉積設備 .............................................................. 29
3.7.2 氫化非晶矽薄膜太陽電池(α-si:H TFSC)製程參數 .......... 29
3.8 太陽電池背電極製程設備與參數 ................................................. 30
3.9 薄膜量測分析 ................................................................................. 31
3.9.1 薄膜結構分析 ..................................................................... 31
3.9.1.1 薄膜SEM 厚度量測 ................................................ 31
3.9.1.2 薄膜XRD 結構分析 ................................................ 31
3.9.1.3 薄膜SEM 表面形貌分析 ........................................ 32
3.9.1.4 薄膜AFM 表面粗糙度分析 .................................... 32
3.9.2 薄膜電性量測 ...................................................................... 33
3.9.2.1 薄膜片電阻量測 ....................................................... 33
3.9.2.2 薄膜霍爾效應量測 ................................................... 33
3.9.3 薄膜光學量測 ...................................................................... 34
3.9.4 薄膜元素成分分析 .............................................................. 35
3.9.4.1 薄膜元素鍵結分析 ................................................... 35
3.9.4.2 薄膜元素縱深分析 .................................................. 36
3.10 太陽電池量測分析 ....................................................................... 36
3.10.1 太陽電池電性與效率量測 ................................................ 36
3.10.2 太陽電池外部量子效率量測 ............................................ 36
第四章 結果與討論 ............................................................................. 37
4.1 濺鍍製程參數對薄膜的影響 ......................................................... 37
4.1.1 沉積溫度對於薄膜特性之影響 ......................................... 37
4.1.1.1 薄膜沉積速率 .......................................................... 37
4.1.1.2 薄膜結構XRD 分析 ............................................... 38
4.1.1.3 薄膜形貌SEM 分析 ............................................... 41
4.1.1.4 薄膜粗糙度AFM 分析 ........................................... 43
4.1.1.5 薄膜電性Hall effect 分析 ....................................... 45
4.1.1.6 薄膜電性穩定性分析 .............................................. 47
4.1.1.7 薄膜光學分析 .......................................................... 48
4.1.1.8 薄膜FOM ................................................................. 52
4.1.1.9 薄膜XPS 分析 ......................................................... 53
4.1.10 薄膜SIMS 分析 ........................................................ 61
4.2 快速熱退火處理對於MFZO 薄膜之影響 .................................. 64
4.2.1 不同RTA 的溫度對於薄膜特性之影響 ............................ 64
4.2.1.1 不同RTA 的溫度之薄膜XRD 分析 ...................... 64
4.2.2.2 不同RTA 的溫度之薄膜SEM 分析 ...................... 66
4.2.2.3 不同RTA 的溫度之薄膜AFM 分析 ..................... 67
4.2.2.4 不同RTA 的溫度之薄膜電性分析 ........................ 68
4.2.2.5 快速熱退火後薄膜電性穩定性分析 ...................... 71
4.2.2.6 不同RTA 的溫度之薄膜光學分析 ........................ 72
4.2.2 不同RTA 的時間對於薄膜特性之影響 ............................ 76
4.2.2.1 不同RTA 的時間之薄膜XRD 分析 ....................... 76
4.2.2.2 不同RTA 的時間之薄膜電性分析 ......................... 78
4.2.2.3 不同RTA 的時間之薄膜光學分析 ......................... 81
4.2.2.4 快速熱退火後XPS 分析 ........................................ 84
4.2.2.5 快速熱退火後SIMS 分析 ....................................... 90
4.3 鹽酸濕蝕刻對薄膜的影響 ............................................................. 92
4.3.1 薄膜濕蝕刻前之特性 .......................................................... 92
4.3.1.1 蝕刻前薄膜SEM 形貌 ............................................ 92
4.3.1.2 蝕刻前薄膜之電性 ................................................... 93
4.3.1.3 蝕刻前薄膜之光學特性 ........................................... 94
4.3.2 不同鹽酸濃度蝕刻對薄膜的影響 ...................................... 97
4.3.2.1 不同鹽酸濃度蝕刻薄膜之蝕刻速率 ..................... 97
4.3.2.2 不同鹽酸濃度蝕刻前後SEM 形貌分析 ............... 98
4.3.2.3 不同鹽酸濃度蝕刻薄膜前後電性分析 ............... 101
4.3.2.4 不同鹽酸濃度濕蝕刻光學分析............................ 102
4.3.3 相同鹽酸濃度蝕刻不同製程薄膜的影響....................... 106
4.3.3.1 相同濃度鹽酸蝕刻薄膜之蝕刻速率 .................... 106
4.3.3.2 薄膜蝕刻後SEM 形貌 .......................................... 107
4.3.3.3 相同濃度鹽酸濕蝕刻薄膜之片電阻電性量測 .... 109
4.3.3.4 相同鹽酸濃度濕蝕刻薄膜光學分析 ................... 110
4.4 應用於氫化非晶矽薄膜太陽電池 .............................................. 115
4.4.1 氫化非晶矽薄膜太陽電池之結構 ................................... 115
4.4.2 太陽電池之外部量子效率 ............................................... 116
4.4.3 太陽電池光電效率量測 ................................................... 117
第五章 結論 ....................................................................................... 119
參考文獻 ..................................................................................................... 121
[1]P. S. Shewale, N. K. Lee, S. H. Lee, K. Y. Kang, and Y. S. Yu, "Ti doped ZnO thin film based UV photodetector: Fabrication and characterization," Journal of Alloys and Compounds, vol. 624, pp. 251-257, 2015.
[2]K. G. Girija, K. Somasundaram, A. Topkar, and R. K. Vatsa, "Highly selective H2 S gas sensor based on Cu-doped ZnO nanocrystalline films deposited by RF magnetron sputtering of powder target," Journal of Alloys and Compounds, vol. 684, pp. 15-20, 2016.
[3]M. Suchea, S. Christoulakis, K. Moschovis, N. Katsarakis, and G. Kiriakidis, "ZnO transparent thin films for gas sensor applications," Thin Solid Films, vol. 515, no. 2, pp. 551-554, 2006.
[4]S. Faÿ, U. Kroll, C. Bucher, E. Vallat-Sauvain, and A. Shah, "Low pressure chemical vapour deposition of ZnO layers for thin-film solar cells: temperature-induced morphological changes," Solar Energy Materials and Solar Cells, vol. 86, no. 3, pp. 385-397, 2005.
[5]C. Becker et al., "Solid-phase crystallization of amorphous silicon on ZnO:Al for thin-film solar cells," Solar Energy Materials and Solar Cells, vol. 93, no. 6-7, pp. 855-858, 2009.
[6]H. Zhu, J. Hüpkes, E. Bunte, and S. M. Huang, "Study of ZnO:Al films for silicon thin film solar cells," Applied Surface Science, vol. 261, pp. 268-275, 2012.
[7]X.-M. Zhang, M.-Y. Lu, Y. Zhang, L.-J. Chen, and Z. L. Wang, "Fabrication of a High-Brightness Blue-Light-Emitting Diode Using a ZnO-Nanowire Array Grown on p-GaN Thin Film," Advanced Materials, vol. 21, no. 27, pp. 2767-2770, 2009.
[8]A. Azens and C. Granqvist, "Electrochromic smart windows: energy efficiency and device aspects," Journal of Solid State Electrochemistry, vol. 7, no. 2, pp. 64-68, 2003.
[9]H. Kim, J. S. Horwitz, W. H. Kim, A. J. Makinen, Z. H. Kafafi, and D. B. Chrisey, "Doped ZnO thin films as anode materials for organic light-emitting diodes," Thin Solid Films, vol. 420, pp. 539-543, 2002.
[10]T.-C. Chen, Y. Kuo, T.-C. Chang, M.-C. Chen, and H.-M. Chen, "Mechanism of a-IGZO TFT device deterioration—illumination light wavelength and substrate temperature effects," Journal of Physics D: Applied Physics, vol. 50, no. 42, p. 42LT02, 2017.
[11]J. Q. Zhao, S. J. Xie, S. H. Han, Z. W. Yang, L. N. Ye, and T. L. Yang, "Organic light-emitting diodes with AZO films as electrodes," SYNTHETIC METALS, vol. 114, no. 3, pp. 251-254, 2000.
[12]J. M. Chung et al., "Enhancement of a-IGZO TFT Device Performance Using a Clean Interface Process via Etch-Stopper Nano-layers," Nanoscale Res Lett, vol. 13, no. 1, p. 164, May 29 2018.
[13]"姜辛, 孙超, 洪瑞江, 戴达煌, “透明导电氧化物薄膜”, 高等教育出版社, 2008年."
[14]L. Raniero et al., "Role of hydrogen plasma on electrical and optical properties of ZGO, ITO and IZO transparent and conductive coatings," Thin Solid Films, vol. 511-512, pp. 295-298, 2006.
[15]H.-S. Chin, L.-S. Chao, and C.-C. Wu, "Crystal, optical, and electrical characteristics of transparent conducting gallium-doped zinc oxide films deposited on flexible polyethylene naphthalate substrates using radio frequency magnetron sputtering," Materials Research Bulletin, vol. 79, pp. 90-96, 2016.
[16]H. Liu and C. Lei, "Low-temperature deposited Titanium-doped zinc oxide thin films on the flexible PET substrate by DC magnetron sputtering," Vacuum, vol. 86, no. 4, pp. 483-486, 2011.
[17]L. Cao, L. Zhu, J. Jiang, R. Zhao, Z. Ye, and B. Zhao, "Highly transparent and conducting fluorine-doped ZnO thin films prepared by pulsed laser deposition," Solar Energy Materials and Solar Cells, vol. 95, no. 3, pp. 894-898, 2011.
[18]K. Ravichandran, R. Anandhi, K. Karthika, P. V. Rajkumar, N. Dineshbabu, and C. Ravidhas, "Effect of annealing on the transparent conducting properties of fluorine doped zinc oxide and tin oxide thin films – A comparative study," Superlattices and Microstructures, vol. 83, pp. 121-130, 2015.
[19]X. Zhang, L. Zhu, H. Xu, L. Chen, Y. Guo, and Z. Ye, "Highly transparent conductive F-doped ZnO films in wide range of visible and near infrared wavelength deposited on polycarbonate substrates," Journal of Alloys and Compounds, vol. 614, pp. 71-74, 2014.
[20]J.-M. Ting and B. S. Tsai, "DC reactive sputter deposition of ZnO:Al thin film on glass," Materials Chemistry and Physics, vol. 72, pp. 273-277, 2011.
[21]Y. Wang, H. Wang, Y. Wang, W. Ding, S. Peng, and W. Chai, "Preparation and properties of surface textured ZnO: Al films by direct current pulse magnetron sputtering," Journal of Materials Science: Materials in Electronics, vol. 24, no. 1, pp. 53-57, 2012.
[22]C. Liu, Z. Xu, Y. Zhang, J. Fu, S. Zang, and Y. Zuo, "Effect of annealing temperature on properties of ZnO:Al thin films prepared by pulsed DC reactive magnetron sputtering," Materials Letters, vol. 139, pp. 279-283, 2015.
[23]T. Minami, T. Hirano, T. Miyata, and J.-i. Nomoto, "Influence of rapid thermal annealing on surface texture-etched Al-doped ZnO films prepared by various magnetron sputtering methods," Thin Solid Films, vol. 520, no. 10, pp. 3803-3807, 2012.
[24]P. Prepelita, V. Craciun, F. Garoi, and A. Staicu, "Effect of annealing treatment on the structural and optical properties of AZO samples," Applied Surface Science, vol. 352, pp. 23-27, 2015.
[25]H.-f. Zhang, R.-j. Liu, H.-f. Liu, C.-x. Lei, D.-t. Feng, and C.-K. Yuan, "Mn-doped ZnO transparent conducting films deposited by DC magnetron sputtering," Materials Letters, vol. 64, no. 5, pp. 605-607, 2010.
[26]G. Chen et al., "Effect of substrate temperature on the structure, electrical and optical properties of Mo doped ZnO films," Materials Science and Engineering: B, vol. 211, pp. 135-140, 2016.
[27]J.-P. Lin and J.-M. Wu, "The effect of annealing processes on electronic properties of sol-gel derived Al-doped ZnO films," Applied Physics Letters, vol. 92, no. 13, p. 134103, 2008.
[28]S. Kitova, R. Kazakov, and G. Danev, "Structural properties of ZnO layers deposited on glass substrates by PECVD," Journal of Physics: Conference Series, vol. 356, p. 012024, 2012.
[29]G. K. Mani and J. B. B. Rayappan, "Facile synthesis of ZnO nanostructures by spray pyrolysis technique and its application as highly selective H2S sensor," Materials Letters, vol. 158, pp. 373-376, 2015.
[30]W. Yang et al., "Room-temperature deposition of transparent conducting Al-doped ZnO films by RF magnetron sputtering method," Applied Surface Science, vol. 255, no. 11, pp. 5669-5673, 2009.
[31]T. Minemoto, T. Negami, S. Nishiwaki, H. Takakura, and Y. Hamakawa, "Preparation of Zn1-xMgxO films by radio frequency magnetron sputtering," Thin Solid Films, vol. 372, pp. 173-176, 2000.
[32]A. Suryanarayana Reddy, P. Prathap, Y. P. V. Subbaiah, K. T. Ramakrishna Reddy, and J. Yi, "Growth and physical behaviour of Zn1−xMgxO films," Thin Solid Films, vol. 516, no. 20, pp. 7084-7087, 2008.
[33]R. R. Zhao, X. Q. Wei, Y. J. Wang, and X. J. Xu, "Annealing effects on structural and optical properties of ZnMgO films grown by RF magnetron sputtering," Journal of Materials Science: Materials in Electronics, vol. 24, no. 11, pp. 4290-4295, 2013.
[34]A. S. Asvarov, S. S. Makhmudov, A. K. Abduev, A. K. Akhmedov, M. A. Aliev, and B. A. Bilalov, "Structural and Optical Properties of Mg Doped ZnO Thin Films Deposited by DC Magnetron Sputtering," Journal of Nano- and Electronic Physics, vol. 8, no. 4(2), pp. 04053-1-04053-4, 2016.
[35]S. W. Shin et al., "Development of transparent conductive Mg and Ga co-doped ZnO thin films: Effect of Mg concentration," Surface and Coatings Technology, vol. 231, pp. 364-369, 2013.
[36]S. W. Shin et al., "Wide band gap characteristic of quaternary and flexible Mg and Ga co-doped ZnO transparent conductive thin films," Journal of Asian Ceramic Societies, vol. 1, no. 3, pp. 262-266, 2018.
[37]S. W. Shin et al., "Development of flexible Mg and Ga co-doped ZnO thin films with wide band gap energy and transparent conductive characteristics," Journal of Alloys and Compounds, vol. 585, pp. 608-613, 2014.
[38]S.-H. Jeong, J.-H. Park, and B.-T. Lee, "Effects of Mg doping rate on physical properties of Mg and Al co-doped Zn 1 − x − 0.02 Mg x Al 0.02 O transparent conducting oxide films prepared by rf magnetron sputtering," Journal of Alloys and Compounds, vol. 617, pp. 180-184, 2014.
[39]X.-l. Chen, J.-m. Liu, J. Ni, Y. Zhao, and X.-d. Zhang, "Wide-spectrum Mg and Ga co-doped ZnO TCO thin films for solar cells grown via magnetron sputtering with H2 introduction," Applied Surface Science, vol. 328, pp. 193-197, 2015.
[40]J. Hüpkes et al., "Surface textured MF-sputtered ZnO films for microcrystalline silicon-based thin-film solar cells," Solar Energy Materials and Solar Cells, vol. 90, no. 18-19, pp. 3054-3060, 2006.
[41]Y. Wang, X. Zhang, L. Bai, Q. Huang, C. Wei, and Y. Zhao, "Effective light trapping in thin film silicon solar cells from textured Al doped ZnO substrates with broad surface feature distributions," Applied Physics Letters, vol. 100, no. 26, p. 263508, 2012.
[42]J.-i. Nomoto, T. Hirano, T. Miyata, and T. Minami, "Preparation of Al-doped ZnO transparent electrodes suitable for thin-film solar cell applications by various types of magnetron sputtering depositions," Thin Solid Films, vol. 520, no. 5, pp. 1400-1406, 2011.
[43]W.-L. Lu, K.-C. Huang, P.-K. Hung, and M.-P. Houng, "RETRACTED: Study of textured ZnO:Al thin film and its optical properties for thin film silicon solar cells," Journal of Physics and Chemistry of Solids, vol. 73, no. 1, pp. 52-56, 2012.
[44]Q. Jiang et al., "Texture surfaces and etching mechanism of ZnO:Al films by a neutral agent for solar cells," Solar Energy Materials and Solar Cells, vol. 130, pp. 264-271, 2014.
[45]K.-H. Hwang, S.-H. Nam, W. S. Jung, Y. M. Lee, H.-S. Yang, and J.-H. Boo, "Wet Chemical Etching of Al-doped ZnO Film Deposited by RF Magnetron Sputtering Method on Textured Glass Substrate for Energy Application," BULLETIN OF THE KOREAN CHEMICAL SOCIETY, vol. 36, pp. 850-854, 2015.
[46]J.-K. Kim and J.-M. Lee, "Wet chemical etching of ZnO films using NH
x-based (NH4)2CO3 and NH4OH alkaline solution," Journal of Materials Science, vol. 52, no. 22, pp. 13054-13063, 2017.
[47]Y.-Z. Tsai, N.-F. Wang, and C.-L. Tsai, "Fluorine-doped ZnO transparent conducting thin films prepared by radio frequency magnetron sputtering," Thin Solid Films, vol. 518, no. 17, pp. 4955-4959, 2010.
[48]A. Ohtomo et al., "MgxZn1−xO as a II–VI widegap semiconductor alloy," Applied Physics Letters, vol. 72, no. 19, pp. 2466-2468, 1998.
[49]A. Kaushal and D. Kaur, "Effect of Mg content on structural, electrical and optical properties of Zn1−xMgxO nanocomposite thin films," Solar Energy Materials and Solar Cells, vol. 93, no. 2, pp. 193-198, 2009.
[50]V. Kumar, O. M. Ntwaeaborwa, T. Soga, V. Dutta, and H. C. Swart, "Rare Earth Doped Zinc Oxide Nanophosphor Powder: A Future Material for Solid State Lighting and Solar Cells," ACS Photonics, vol. 4, no. 11, pp. 2613-2637, 2017.
[51]陸嘯程, 莊晉東, 李再成, 張瑞慶, 葉甄佩, and 林鈞偉, "以射頻磁控法沉積氧化鋅薄膜之機械性質研究," 2008機光電技術與應用研討會, p. 中華民國九十七年十一月甘六日, 2008.
[52]S. Pearton, "Recent progress in processing and properties of ZnO," Progress in Materials Science, vol. 50, no. 3, pp. 293-340, 2005.
[53]J.-B. Lee, H.-J. Lee, S.-H. Seo, and J.-S. Park, "Characterization of undoped and Cu-doped ZnO films for surface acoustic wave applications," Thin Solid Films, vol. 398-399, pp. 641-646, 2011.
[54]Y. C. Lin, C. R. Hong, and H. A. Chuang, "Fabrication and analysis of ZnO thin film bulk acoustic resonators," Applied Surface Science, vol. 254, no. 13, pp. 3780-3786, 2008.
[55]G. Zeng, Q. Liu, R. Gu, L. Zhang, and Y. Li, "Synergy effect of MgO and ZnO in a Ni/Mg–Zn–Al catalyst during ethanol steam reforming for H2-rich gas production," Catalysis Today, vol. 178, no. 1, pp. 206-213, 2011.
[56]J. XL, L. SY, K. DG, L. YC, and D. ZL, "Mg 掺杂ZnO 所致的禁带宽度增大现象研究," Acta Phys Sin, p. 55:4809, 2006.
[57]H. Zhang, T. Zhao, G. Hu, L. Miao, and Y. Yang, "Role of Mg doping on morphology and photoluminescence features of MgxZn1−xO films prepared by ultrasonic spray pyrolysis," Journal of Materials Science: Materials in Electronics, vol. 23, no. 11, pp. 1933-1937, 2012.
[58]G. Sanon, R. Rup, and A. Mansingh, "Band-gap narrowing and band structure in degenerate tin oxide (SnO2) films," Physical Review B, vol. 44, no. 11, pp. 5672-5680, 1991.
[59]E. Burstein, "Anomalous Optical Absorption Limit in InSb," Physical Review, vol. 93, no. 3, pp. 632-633, 1954.
[60]T. S. Moss, "The Interpretation of the Properties of Indium Antimonide," Proceedings of the Physical Society. Section B, vol. 67, no. 10, pp. 775-782, 1954.
[61]H. Park et al., "Electrical mechanism analysis of Al2O3 doped zinc oxide thin films deposited by rotating cylindrical DC magnetron sputtering," Thin Solid Films, vol. 519, no. 20, pp. 6910-6915, 2011.
[62]F.-H. Wang, H.-P. Chang, C.-C. Tseng, and C.-C. Huang, "Effects of H2 plasma treatment on properties of ZnO:Al thin films prepared by RF magnetron sputtering," Surface and Coatings Technology, vol. 205, no. 23-24, pp. 5269-5277, 2011.
[63]K. Ellmer, "Magnetron sputtering of transparent conductive zinc oxide _relation between the sputtering parameters and the electronic properties," J. Phys. D: Appl. Phys., vol. 33, pp. R17-R32, 2000.
[64]S. A. Campbell, "The Science and Engineering of Microelectronic Fabrication," Oxford University Press, 2011.
[65]A. Bogaerts, E. Neyts, R. Gijbels, and J. v. d. Mullen, "Gas discharge plasmas and their applications," Spectrochimica Acta Part B vol. 57, pp. 609-658, 2002.
[66]P. B.BARNA and M. ADAM1K, "GROWTH MECHANISMS OF POLYCRYSTALLINE THIN FILMS."
[67]J. A. Thornton, "Influence of apparatus geometry and deposition conditions on the structure and topography of thick sputtered coatings," Journal of Vacuum Science and Technology, vol. 11, no. 4, pp. 666-670, 1974.
[68]J. Benick et al., "Approaching 22% efficiency with multicrystalline n-type silicon solar cells," the 33rd European PV Solar Energy Conference and Exhibition, pp. 25-29, 2017.
[69]H. Sai, T. Matsui, and K. Matsubara, "Stabilized 14.0%-efficient triple-junction thin-film silicon solar cell," Applied Physics Letters, vol. 109, no. 18, p. 183506, 2016.
[70]D. L. Staebler and C. R. Wronski, "Reversible conductivity changes in discharge‐produced amorphous Si," Applied Physics Letters, vol. 31, no. 4, pp. 292-294, 1977.
[71]H. Sai, T. Matsui, and K. Matsubara, "Key Points in the Latest Developments of High-Efficiency Thin-Film Silicon Solar Cells," physica status solidi (a), vol. 214, no. 12, p. 1700544, 2017.
[72]X. Yan, S. Venkataraj, and A. G. Aberle, "Wet-Chemical Surface Texturing of Sputter-Deposited ZnO:Al Films as Front Electrode for Thin-Film Silicon Solar Cells," International Journal of Photoenergy, vol. 2015, pp. 1-10, 2015.
[73]D. A. Neamen, "Semiconductor physics and devices:basic principles," McGraw-Hill, 2011.
[74]H. Dun, P. Pan, F. R. White, and R. W. Douse, "Mechanisms of Plasma‐Enhanced Silicon Nitride Deposition Using SiH4N 2 Mixture," ELECTRICAL TRANSPORT PROPERTIES, vol. 128, no. 7, pp. 1555-1563, 1981.
[75]P. W. Bohn and R. C. Manz, "A Multiresponse Factorial Study of Reactor Parameters in Plasma‐Enhanced CVD Growth of Amorphous Silicon Nitride," J. Electrochem. Soc.: SOLID-STATE SCIENCE AND TECHNOLOGY, vol. 132, no. 8, pp. 1981-1984, 1985.
[76]H. H. Gatzen, J. Leuthold, and V. Saile, "Micro and Nano Fabrication: Tools and Processes," Springer, 2015.
[77]S. Zhang, "Study of fluorine-doped tin oxide (FTO) thin films for photovoltaics applications," Materials. Université Grenoble Alpes, 2017.
[78]B. D. Cullity and S. R. Stock, "Elements of XRD," Prentice Hall, 2001.
[79]"李芳紜, “超音波輔助化學水浴法製備AgInS2薄膜之電化學阻抗頻譜分析”, 國立中央大學化學工程與材料工程研究所碩士論文, 民國102年六月 p. 51."
[80]Q. Shi et al., "Room temperature preparation of high performance AZO films by MF sputtering," Ceramics International, vol. 39, no. 2, pp. 1135-1141, 2013.
[81]W. Water and S.-Y. Chu, "Physical and structural properties of ZnO sputtered films," Materials Letters, vol. 55, pp. 67-72, 2002.
[82]S. U. Lee, W. S. Choi, and B. Hong, "Synthesis and characterization of SnO2 :Sb film by dc magnetron sputtering method for applications to transparent electrodes," Physica Scripta, vol. T129, pp. 312-315, 2007.
[83]D. TATAR1, G. TURGUT, and B. DÜZGÜN, "EFFECT OF SUBSTRATE TEMPERATURE ON THE CRYSTAL GROWTH ORIENTATION AND SOME PHYSICAL PROPERTIES OF SnO2:F THIN FILMS DEPOSITED BY SPRAY PYROLYSIS TECHNIQUE," Rom. Journ. Phys., vol. 58, no. 1–2, pp. 143-158, 2011.
[84]N. A. Bker, Z. T. Khodair, and A. M. Saleh, "Effect of Substrate Temperature on Structural and Optical Properties of ZnO Thin Films Prepared by APCVD Technique," International Journal of Applied Engineering Research, vol. 13, pp. 10796-10803, 2018.
[85]M. Rouchdi, E. Salmani, B. Fares, N. Hassanain, and A. Mzerd, "Synthesis and characteristics of Mg doped ZnO thin films: Experimental and ab-initio study," Results in Physics, vol. 7, pp. 620-627, 2017.
[86]S. M. Park, G. H. Gu, and C. G. Park, "Effects of Mg doping to optimize properties ZnO:Al for the transparent conductive oxide (TCO)," physica status solidi (a), vol. 208, no. 11, pp. 2688-2691, 2011.
[87]K. Matsubara et al., "Band-gap modified Al-doped Zn1−xMgxO transparent conducting films deposited by pulsed laser deposition," Applied Physics Letters, vol. 85, no. 8, pp. 1374-1376, 2004.
[88]S. Choopun, R. D. Vispute, W. Yang, R. P. Sharma, T. Venkatesan, and H. Shen, "Realization of band gap above 5.0 eV in metastable cubic-phase MgxZn1−xO alloy films," Applied Physics Letters, vol. 80, no. 9, pp. 1529-1531, 2002.
[89]G. Haacke, "New figure of merit for transparent conductors," Journal of Applied Physics, vol. 47, no. 9, pp. 4086-4089, 1976.
[90]B.-Y. Oh, M.-C. Jeong, and J.-M. Myoung, "Stabilization in electrical characteristics of hydrogen-annealed ZnO:Al films," Applied Surface Science, vol. 253, no. 17, pp. 7157-7161, 2007.
[91]D.-K. Kim and H.-B. Kim, "Dependence of the properties of sputter deposited Al-doped ZnO thin films on base pressure," Journal of Alloys and Compounds, vol. 522, pp. 69-73, 2012.
[92]J. F. Moulder, W. F. Stickle, P. E. Sobol, and K. D. Bomben, "Handbook of X-ray Photoelectron Spectroscopy," Perkin-Elmer Corporation, Physical Electronics DIvision, 1992.
[93]H. Y. Xu et al., "F-doping effects on electrical and optical properties of ZnO nanocrystalline films," Applied Physics Letters, vol. 86, no. 12, p. 123107, 2005.
[94]V. Kumari, V. Kumar, D. Mohan, Purnima, B. P. Malik, and R. M. Mehra, "Effect of Surface Roughness on Laser Induced Nonlinear Optical Properties of Annealed ZnO Thin Films," Journal of Materials Science & Technology, vol. 28, no. 6, pp. 506-511, 2012.
[95]J. I. Owen, J. Hüpkes, H. Zhu, E. Bunte, and S. E. Pust, "Novel etch process to tune crater size on magnetron sputtered ZnO:Al," physica status solidi (a), vol. 208, no. 1, pp. 109-113, 2011.
[96]J. Müller, B. Rech, J. Springer, and M. Vanecek, "TCO and light trapping in silicon thin film solar cells," Solar Energy, vol. 77, no. 6, pp. 917-930, 2004.
[97]M. Berginski et al., "The effect of front ZnO:Al surface texture and optical transparency on efficient light trapping in silicon thin-film solar cells," Journal of Applied Physics, vol. 101, no. 7, p. 074903, 2007.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top