跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.41) 您好!臺灣時間:2026/01/13 14:04
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:簡世桓
研究生(外文):Shih-Huan Chien
論文名稱:具有良好選擇度的寬頻吸收式帶止濾波器
論文名稱(外文):Wideband Absorptive Bandstop Filters with Good Selectivity
指導教授:林祐生林祐生引用關係
指導教授(外文):Yo-Shen Lin
學位類別:碩士
校院名稱:國立中央大學
系所名稱:電機工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:70
中文關鍵詞:寬頻
相關次數:
  • 被引用被引用:2
  • 點閱點閱:172
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文提出一種新型寬頻吸收式帶止濾波器,可達到比既有相關研究增加數倍的止帶頻寬,同時具有高頻率選擇度及良好通帶特性。本研究於傳統寬頻帶止濾波器之共振器中放入適當電阻,成功地消耗掉止帶訊號,達到吸收止帶之功能,並提供一套完整的設計流程。為了驗證所提出之設計流程,本研究於印刷電路板實現一吸收式帶止濾波器,其中心頻率為2 GHz,比例頻寬為50%,漣波常數為0.1005 (即為0.044 dB等漣波響應)。於中心頻率2 GHz實測之衰減量為60.7 dB,30-dB止帶頻寬為23.5%,形狀因子 (Shape factor = RBW3-dB /RBW30-dB) 為2.1,>95%功率損耗頻寬為35.6%,以及在8 GHz之前的最大反射係數為-11.2 dB,具有良好吸收式止帶特性。又為拓展此寬頻吸收式帶止濾波器可實現之規格範圍,本研究亦提出兩種修正電路設計,並實作比例頻寬由30%至70%的吸收式帶止濾波器,其30-dB止帶頻寬為11.9%至42%,止帶內反射損耗均優於10 dB,超過90%的止帶內訊號皆能夠有效地消耗掉。本論文所提出之新型寬頻吸收式帶止濾波器具有高設計彈性,止帶頻寬以及止帶頻率選擇度均可依所需規格設計,並提出一套簡潔的設計流程,只需依據系統規格得到設計參數後,即可快速地設計寬頻吸收式帶止濾波器,將可應用於吸收非線性主動元件的諧波輸出,從而提升系統效能。
This study presents a new type of wideband absorptive bandstop filter (ABSF) design whose stopband bandwidth is several times wider than those in the other related previous works. In addition, high frequency selectivity and good passband response are achieved. The proposed wideband ABSF is based on adding one additional resistor to a conventional wideband bandstop filter to absorb the input power. A complete design procedure is proposed to realize the circuit design under given specifications. To validate the proposed design method, a proposed wideband ABSF with a center frequency of 2 GHz, a fractional bandwidth (FBW) of 50% and a Chebyshev response with a ripple constant ɛ = 0.1005 is implemented on a printed circuit board. The measured stopband rejection is 60.7 dB at 2 GHz. The measured 30-dB rejection bandwidth is 23.5% and the shape factor, i.e., RBW3-dB /RBW30-dB is 2.1. The measured bandwidth for better than 95% power dissipation is 35.6%. In addition, the measured input reflection coefficient is better than 11.2 dB from dc to 8 GHz and good stopband performance is achieved. This study also presents two modified design methods for expanding the realizable range on stopband bandwidth and filter order of the proposed wideband ABSF. Wideband ABSFs with FBWs ranging from 30% to 70% are implemented, and the corresponding measured 30-dB rejection band-width ranges from 11.9% to 42%. The measured input return losses are all better than 10 dB. Larger than 90% of the input power within the stopband can be successfully dissi-pated. The proposed ABSF features a complete design procedure with high design flexi-bility. The stopband bandwidth and frequency selectivity can all be designed according to the desired specifications. They can be applied to the harmonic suppression of nonlinear active devices to improve the system performance.
論文摘要 I
Abstract II
目錄 III
圖形列表 V
表格列表 VI
第一章 緒論 1
1 1 研究動機 1
1 2 文獻回顧 1
1 3 章節介紹 4
第二章 寬頻吸收式帶止濾波器 5
2 1 電路架構 5
2 2 電路設計 7
2 2 1 設計流程 7
2 2 2 設計流程的驗證 8
2 2 3 電阻對於響應的影響 11
2 2 4 電路實作及性能 18
2 3 設計參數對響應的影響 22
2 3 1 頻寬對止帶特性之影響 22
2 3 2 階數對止帶特性之影響 25
2 4 小結 27
第三章 寬頻吸收式帶止濾波器之設計改良 28
3 1 頻寬偏窄時的設計改良 28
3 1 1 電路架構及設計流程 29
3 1 2 電路實作及性能 31
3 2 阻抗匹配的改善 35
IV
3 2 1 電路架構及設計流程 35
3 2 2 電路實作及性能 42
第四章 結論 51
參考文獻 57
[1] D. R. Jachowski, “Passive enhancement of resonator Q in microwave notch fil-ters,” in IEEE MTT-S Int. Microw. Symp. Dig., 2004, pp. 1315-1318.
[2] A. C. Guyette, I. C. Hunter, R. D. Pollard, and D. R. Jachowski, “Perfect-ly-matched bandstop filters using lossy resonators,” in IEEE MTT-S Int. Microw. Symp. Dig., Jun. 2005, pp. 517–520.
[3] M. A. Morgan and T. A. Boyd, “Theoretical and experimental study of a new class of reflectionless filter,” IEEE Trans. Microw. Theory Tech., vol. 59, no. 5, pp. 1214–1221, May 2011.
[4] M. A. Morgan and T. A. Boyd, “Reflectionless filter structures,” IEEE Trans. Mi-crow. Theory Techn., vol. 63, no. 4, pp. 1263–1271, April 2015.
[5] J. Lee, T. C. Lee, and W. J. Chappell, “Lumped-element realization of absorptive bandstop filter with anomalously high spectral isolation,” IEEE Trans. Microw. Theory Tech., vol. 60, no. 8, pp. 2424–2430, Aug. 2012.
[6] Y. Morimoto, T. Yuasa, T. Owada, and M. Miyazaki, “Multi-harmonic absorption filter using quasi-multilayered striplines,” in IEEE MTT-S Int. Microw. Symp. Dig., 2014.
[7] J.-Y. Shao and Y.-S. Lin, “Millimeter-wave bandstop filter with absorptive
stopband,” in IEEE MTT-S Int. Microw. Symp. Dig., June 2014.
[8] J.-Y. Shao and Y.-S. Lin, “Narrowband coupled-line bandstop filter with absorp-tive stopband,” IEEE Trans. Microw. Theory Techn., vol. 63, no.10, pp. 3469–3478, Oct. 2015.
[9] D. Psychogiou, R. Gomex-Garcia, and D. Peroulis, “Acoustic wave resona-tor-based
absorptive bandstop filters with ultra-narrow bandwidth,” IEEE Microw. Wireless
Comp. Lett., vol. 25, no. 9, pp. 570–572, Sept. 2015.
[10] D. Psychogiou, R. Gomex-Garcia, and D. Peroulis, “Acous-tic-wave-lumped-element-resonator filters with equi-ripple absorptive stopbands,” IEEE Microw. Wireless Comp. Lett., vol. 26, no. 3, pp. 177-179, Mar. 2016.
[11] D. R. Jachowski, “Compact frequency-agile, absorptive bandstop filters,” in IEEE
MTT-S Int. Microw. Symp. Dig., June 2005, pp. 513-516.
[12] T. Snow, J. Lee, and W. J. Chappell, “Tunable high quality-factor absorptive
bandstop filter design,” in IEEE MTT-S Int. Microw. Symp. Dig., 2012.
[13] B. Kim, J. Lee, J. Lee, B. Jung, and W. J. Chappell, “RF CMOS integrated on-chip tunable absorptive bandstop filter using Q-tunable resonators,” IEEE Trans. Electron Device., vol. 60, no. 5, pp. 1730-1737, May 2013.
[14] T.-C. Lee, J. Lee, E. J. Naglich, and D. Peroulis, “Octave tunable lumped-element notch filter with resonator-Q-independent zero reflection coefficient,” in IEEE MTT-S Int. Microw. Symp. Digest, June 2014.
[15] D. R. Jachowski, “Octave tunable lumped-element notch filter,” in IEEE MTT-S
Int. Microw. Symp. Digest, June 2012.
[16] T.-H. Lee, B. Kim, K. Lee, W. J. Chappell, and J. Lee, “Frequency-Tunable Low-Q Lumped-Element Resonator Bandstop Filter With High Attenuation,” IEEE Microw. Mag., vol. 64, no. 11, pp. 3549-3556, Nov. 2016.
[17] I. Hunter, A. Guyette, and R. D. Pollard, “Passive microwave receive filter
networks using low-Q resonators,” IEEE Microw. Mag., vol. 6, no. 3, pp. 46-53, Sept.
2005.
[18] D. R. Jachowski, “Cascadable lossy passive biquad bandstop filter,” in IEEE MTT-S. Int. Microw. Symp. Dig., pp. 1213-1216, June 2006.
[19] D. Psychogiou, R. Mao, and D. Perlious, “Series-cascaded absorptive notch-
filters for 4G-LTE radios,” in IEEE Radio Wireless Symp. Dig., pp. 177-179, Jan. 2015.
[20] J.-S. Hong and M. J. Lancaster, Microstrip Filters for RF/Micro-wave Applica-tions. New York: Wiley, 2001.
[21] W. F. Egan, Practical RF System Design. New York: Wiley, 2003.
[22] T. Hirota, A. Minakawa and M. Muraguchi, "Reduced-size branch-line and rat-race hybrids for uniplanar MMIC's," in IEEE Transactions on Microwave Theory and Techniques, vol. 38, no. 3, pp. 270-275, Mar 1990.
[23] T.-S. Horng, J.-M. Wu, L.-Q. Yang and S.-T. Fang, "A novel modified-T equiva-lent circuit for modeling LTCC embedded inductors with a large bandwidth," in IEEE Transactions on Microwave Theory and Techniques, vol. 51, no. 12, pp. 2327-2333, Dec. 2003.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top