跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.103) 您好!臺灣時間:2025/11/22 04:53
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:李亨
研究生(外文):Heng Lee
論文名稱:基於向量量化之卷積神經網路處理器架構設計
論文名稱(外文):Convolutional Neural Network Accelerator with Vector Quantization
指導教授:簡韶逸
指導教授(外文):Shao-Yi Chien
口試委員:劉宗德盧奕璋賴伯承
口試委員(外文):Tsung-Te LiuYi-Chang LuBo-Cheng Lai
口試日期:2019-01-28
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:電子工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:39
中文關鍵詞:神經網路加速器向量量化模型壓縮
DOI:10.6342/NTU201900441
相關次數:
  • 被引用被引用:0
  • 點閱點閱:217
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
深度神經網路在許多邊緣端的電腦視覺任務上已經展現了令人印象深刻的表現,使得在手機上或是物聯網裝置上的深度神經網路加速器需求越來越多。然而,巨量的能量消耗與儲存量的需求使得硬體設計越來越困難。因此,在這篇論文中,我們提出了一個基於壓縮技術(向量量化)來同時減少的神經網路模型的大小與計算量的神經網路加速器。此外,我們設計了一種特化的處理單元與資料流,前者有不同的靜態隨機存取記憶體配置,後者則是可以使加速器支援不同的卷積濾波器的大小,並在輸入或輸出的維度極小時亦保持高度的使用率。與現今最佳的神經網路加速器相比,我們提出的加速器可以減少3.94倍的動態隨機存取記憶體存取量以及在單批次的神經網路推論下減少1.2倍的時間。
Deep neural networks (DNNs) have demonstrated impressive performance in many edge computer vision tasks, causing the increasing demand for DNN accelerator on mobile and internet of things (IoT) devices. However, the massive power consumption and storage requirement make the hardware design challenging. In this paper, we introduce a DNN accelerator based on a model compression technique vector quantization (VQ), which can reduce the network model size and computation cost simultaneously. Moreover, a specialized processing element (PE) is designed with various SRAM bank configurations as well as dataflows such that it can support different codebook/kernel sizes, and keep high utilization under small input or output channel numbers. Compared to the state-of-the-art, the proposed accelerator architecture achieves 3.94 times reduction in memory access and 1.2 times in latency for batch-one inference.
Abstract ... i
List of Figures ... v
List of Tables ... vii
1 introduction ... 1
1.1 Motivation ... 1
1.2 Challenges ... 1
1.3 Keynote ... 2
1.3.1 Model compression ... 2
1.3.2 Batch size ... 3
1.3.3 Dataflow ... 3
1.4 Contribution ...4
1.5 Thesis Organization ... 4
2 Background Knowledge and Related Work ... 5
2.1 Model Compression Method ... 6
2.1.1 Pruning ... 6
2.1.2 Quantization ... 7
2.2 Neural Network Accelerators ... 8
2.2.1 Convolutional Layer ... 9
2.2.2 Co-design with Algorithm ... 10
2.3 Vector Quantization ... 12
3 Proposed Architecture ... 17
3.1 Overview ... 17
3.2 Processing Element -Baseline ... 19
3.2.1 Precompute Stage ... 20
3.2.2 Dispatch Stage ... 22
3.2.3 Accumulation Stage ... 22
3.2.4 SRAM in PE ... 22
3.3 Processing Element - Improved ... 24
3.3.1 Dispatch Stage ... 24
3.3.2 Precompute Stage ... 24
3.3.3 Accumulation Stage ... 25
3.4 On-Chip SRAM ... 25
3.4.1 Input SRAM ... 25
3.4.2 Output SRAM ... 26
3.5 Dataflow ... 27
3.5.1 Weight Stationary ... 27
3.5.2 Row Stationary-like ... 28
4 Implementation and Experimental Results ... 31
4.1 Implementation ... 31
4.1.1 Processing Element ... 31
4.1.2 Proposed Architecture ... 31
4.2 Experimental result ... 32
5 Conclusions ... 37
Reference ... 39
S. Han, H. Mao, and W. J. Dally, “Deep compression: Compressing deepneural networks with pruning, trained quantization and huffman coding,”arXiv preprint arXiv:1510.00149, 2015.
A. Zhou, A. Yao, Y. Guo, L. Xu, and Y. Chen, “Incremental network quan-tization: Towards lossless cnns with low-precision weights,”arXiv preprintarXiv:1702.03044, 2017.
Y.-H. Chen, T. Krishna, J. S. Emer, and V. Sze, “Eyeriss: An energy-efficientreconfigurable accelerator for deep convolutional neural networks,”IEEEJournal of Solid-State Circuits, vol. 52, no. 1, pp. 127–138, 2017.
S. Han, X. Liu, H. Mao, J. Pu, A. Pedram, M. A. Horowitz, and W. J. Dally,“Eie: efficient inference engine on compressed deep neural network,” inComputer Architecture (ISCA), 2016 ACM/IEEE 43rd Annual InternationalSymposium on. IEEE, 2016, pp. 243–254.
A. Ardakani, C. Condo, and W. J. Gross, “Sparsely-connected neural net-works: towards efficient vlsi implementation of deep neural networks,”arXivpreprint arXiv:1611.01427, 2016.
J. Cheng, J. Wu, C. Leng, Y. Wang, and Q. Hu, “Quantized cnn: a unifiedapproach to accelerate and compress convolutional networks,”IEEE Transactions on Neural Networks and Learning Systems, 2017.
A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification withdeep convolutional neural networks,” inProc. Advances in neural informationprocessing systems, 2012, pp. 1097–1105.
J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional networks forsemantic segmentation,” inProc. IEEE Conference on Computer Vision andPattern Recognition (CVPR), 2015, pp. 3431–3440.
C. Dong, C. C. Loy, K. He, and X. Tang, “Learning a deep convolutionalnetwork for image super-resolution,” inProc. European Conference on Com-puter Vision (ECCV). Springer, 2014, pp. 184–199.
J. Kim, J. Kwon Lee, and K. Mu Lee, “Accurate image super-resolution usingvery deep convolutional networks,” inProc. IEEE Conference on ComputerVision and Pattern Recognition (CVPR), 2016, pp. 1646–1654.
K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for imagerecognition,” inProceedings of the IEEE conference on computer vision andpattern recognition, 2016, pp. 770–778.
S. Wang, D. Zhou, X. Han, and T. Yoshimura, “Chain-NN: An energy-efficient 1d chain architecture for accelerating deep convolutional neuralnetworks,” inProc. 2017 Design, Automation & Test in Europe Conference& Exhibition (DATE), 2017, pp. 1032–1037.
A. Ardakani, C. Condo, M. Ahmadi, and W. J. Gross, “An architectureto accelerate convolution in deep neural networks,”IEEE Transactions onCircuits and Systems I: Regular Papers, vol. 65, no. 4, pp. 1349–1362, 2018.
Y. Guo, A. Yao, and Y. Chen, “Dynamic network surgery for efficient dnns,”inProc. Advances In Neural Information Processing Systems, 2016, pp.1379–1387.
I. Hubara, M. Courbariaux, D. Soudry, R. El-Yaniv, and Y. Bengio, “Quan-tized neural networks: Training neural networks with low precision weightsand activations.”Journal of Machine Learning Research, vol. 18, pp. 187–1,2017.
Y. Gong, L. Liu, M. Yang, and L. Bourdev, “Compressing deep convolutionalnetworks using vector quantization,”arXiv preprint arXiv:1412.6115, 2014.
A. Polino, R. Pascanu, and D. Alistarh, “Model compression via distillationand quantization,”arXiv preprint arXiv:1802.05668, 2018.
T.-J. Yang, Y.-H. Chen, and V. Sze, “Designing energy-efficient con-volutional neural networks using energy-aware pruning,”arXiv preprintarXiv:1611.05128, 2016.
H. Li, A. Kadav, I. Durdanovic, H. Samet, and H. P. Graf, “Pruning filters forefficient convnets,”arXiv preprint arXiv:1608.08710, 2016.
Y. He, X. Zhang, and J. Sun, “Channel pruning for accelerating very deepneural networks,” in2017 IEEE International Conference on Computer Vision(ICCV). IEEE, 2017, pp. 1398–1406.
G. Hinton, O. Vinyals, and J. Dean, “Distilling the knowledge in a neuralnetwork,”arXiv preprint arXiv:1503.02531, 2015.
Z. Cai, X. He, J. Sun, and N. Vasconcelos, “Deep learning with low precisionby half-wave gaussian quantization,” in2017 IEEE Conference on ComputerVision and Pattern Recognition (CVPR). IEEE, 2017, pp. 5406–5414.
M. Rastegari, V. Ordonez, J. Redmon, and A. Farhadi, “Xnor-net: Imagenetclassification using binary convolutional neural networks,” inEuropean Con-ference on Computer Vision. Springer, 2016, pp. 525–542.
J. Albericio, P. Judd, T. Hetherington, T. Aamodt, N. E. Jerger, andA. Moshovos, “Cnvlutin: Ineffectual-neuron-free deep neural network com-puting,” inACM SIGARCH Computer Architecture News, vol. 44, no. 3.IEEE Press, 2016, pp. 1–13.
T. Chen, Z. Du, N. Sun, J. Wang, C. Wu, Y. Chen, and O. Temam, “Diannao: Asmall-footprint high-throughput accelerator for ubiquitous machine-learning,”ACM Sigplan Notices, vol. 49, no. 4, pp. 269–284, 2014.
K. Simonyan and A. Zisserman, “Very deep convolutional networks forlarge-scale image recognition,”arXiv preprint arXiv:1409.1556, 2014.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top