|
S. Han, H. Mao, and W. J. Dally, “Deep compression: Compressing deepneural networks with pruning, trained quantization and huffman coding,”arXiv preprint arXiv:1510.00149, 2015. A. Zhou, A. Yao, Y. Guo, L. Xu, and Y. Chen, “Incremental network quan-tization: Towards lossless cnns with low-precision weights,”arXiv preprintarXiv:1702.03044, 2017. Y.-H. Chen, T. Krishna, J. S. Emer, and V. Sze, “Eyeriss: An energy-efficientreconfigurable accelerator for deep convolutional neural networks,”IEEEJournal of Solid-State Circuits, vol. 52, no. 1, pp. 127–138, 2017. S. Han, X. Liu, H. Mao, J. Pu, A. Pedram, M. A. Horowitz, and W. J. Dally,“Eie: efficient inference engine on compressed deep neural network,” inComputer Architecture (ISCA), 2016 ACM/IEEE 43rd Annual InternationalSymposium on. IEEE, 2016, pp. 243–254. A. Ardakani, C. Condo, and W. J. Gross, “Sparsely-connected neural net-works: towards efficient vlsi implementation of deep neural networks,”arXivpreprint arXiv:1611.01427, 2016. J. Cheng, J. Wu, C. Leng, Y. Wang, and Q. Hu, “Quantized cnn: a unifiedapproach to accelerate and compress convolutional networks,”IEEE Transactions on Neural Networks and Learning Systems, 2017. A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification withdeep convolutional neural networks,” inProc. Advances in neural informationprocessing systems, 2012, pp. 1097–1105. J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional networks forsemantic segmentation,” inProc. IEEE Conference on Computer Vision andPattern Recognition (CVPR), 2015, pp. 3431–3440. C. Dong, C. C. Loy, K. He, and X. Tang, “Learning a deep convolutionalnetwork for image super-resolution,” inProc. European Conference on Com-puter Vision (ECCV). Springer, 2014, pp. 184–199. J. Kim, J. Kwon Lee, and K. Mu Lee, “Accurate image super-resolution usingvery deep convolutional networks,” inProc. IEEE Conference on ComputerVision and Pattern Recognition (CVPR), 2016, pp. 1646–1654. K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for imagerecognition,” inProceedings of the IEEE conference on computer vision andpattern recognition, 2016, pp. 770–778. S. Wang, D. Zhou, X. Han, and T. Yoshimura, “Chain-NN: An energy-efficient 1d chain architecture for accelerating deep convolutional neuralnetworks,” inProc. 2017 Design, Automation & Test in Europe Conference& Exhibition (DATE), 2017, pp. 1032–1037. A. Ardakani, C. Condo, M. Ahmadi, and W. J. Gross, “An architectureto accelerate convolution in deep neural networks,”IEEE Transactions onCircuits and Systems I: Regular Papers, vol. 65, no. 4, pp. 1349–1362, 2018. Y. Guo, A. Yao, and Y. Chen, “Dynamic network surgery for efficient dnns,”inProc. Advances In Neural Information Processing Systems, 2016, pp.1379–1387. I. Hubara, M. Courbariaux, D. Soudry, R. El-Yaniv, and Y. Bengio, “Quan-tized neural networks: Training neural networks with low precision weightsand activations.”Journal of Machine Learning Research, vol. 18, pp. 187–1,2017. Y. Gong, L. Liu, M. Yang, and L. Bourdev, “Compressing deep convolutionalnetworks using vector quantization,”arXiv preprint arXiv:1412.6115, 2014. A. Polino, R. Pascanu, and D. Alistarh, “Model compression via distillationand quantization,”arXiv preprint arXiv:1802.05668, 2018. T.-J. Yang, Y.-H. Chen, and V. Sze, “Designing energy-efficient con-volutional neural networks using energy-aware pruning,”arXiv preprintarXiv:1611.05128, 2016. H. Li, A. Kadav, I. Durdanovic, H. Samet, and H. P. Graf, “Pruning filters forefficient convnets,”arXiv preprint arXiv:1608.08710, 2016. Y. He, X. Zhang, and J. Sun, “Channel pruning for accelerating very deepneural networks,” in2017 IEEE International Conference on Computer Vision(ICCV). IEEE, 2017, pp. 1398–1406. G. Hinton, O. Vinyals, and J. Dean, “Distilling the knowledge in a neuralnetwork,”arXiv preprint arXiv:1503.02531, 2015. Z. Cai, X. He, J. Sun, and N. Vasconcelos, “Deep learning with low precisionby half-wave gaussian quantization,” in2017 IEEE Conference on ComputerVision and Pattern Recognition (CVPR). IEEE, 2017, pp. 5406–5414. M. Rastegari, V. Ordonez, J. Redmon, and A. Farhadi, “Xnor-net: Imagenetclassification using binary convolutional neural networks,” inEuropean Con-ference on Computer Vision. Springer, 2016, pp. 525–542. J. Albericio, P. Judd, T. Hetherington, T. Aamodt, N. E. Jerger, andA. Moshovos, “Cnvlutin: Ineffectual-neuron-free deep neural network com-puting,” inACM SIGARCH Computer Architecture News, vol. 44, no. 3.IEEE Press, 2016, pp. 1–13. T. Chen, Z. Du, N. Sun, J. Wang, C. Wu, Y. Chen, and O. Temam, “Diannao: Asmall-footprint high-throughput accelerator for ubiquitous machine-learning,”ACM Sigplan Notices, vol. 49, no. 4, pp. 269–284, 2014. K. Simonyan and A. Zisserman, “Very deep convolutional networks forlarge-scale image recognition,”arXiv preprint arXiv:1409.1556, 2014.
|