跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.176) 您好!臺灣時間:2025/09/08 02:54
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:王群雄
研究生(外文):Chun-Hsiung Wang
論文名稱:非正交多工接取之子頻帶公平排程設計與實作
論文名稱(外文):Subband Allocation for Proportional Fair Scheduling in Non-Orthogonal Multiple Access
指導教授:謝宏昀
指導教授(外文):Hung-Yun Hsieh
口試委員:周俊廷林風
口試委員(外文):Chun-Ting ChouP Lin
口試日期:2018-08-14
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:電信工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2018
畢業學年度:106
語文別:英文
論文頁數:51
中文關鍵詞:非正交多工接取排程資源管理
相關次數:
  • 被引用被引用:0
  • 點閱點閱:204
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在本篇論文中,我們調查非正交多工接取 (NOMA) 之子平頻帶公平排程技 術並實作。非正交多工的核心概念是在發射端波束中重疊多個用戶的信號,並在 接收端使用連續消除的技巧解開信號。為了研究 NOMA 的效能表現,我們將此概 念實作在維也納鏈級模擬器和系統級模擬器上。我們首先呈現修改了哪些維也納 模擬器中的模型,使得 NOMA 技術能在其環境下實行。在鏈級模擬器中,我們得 以研究不同功率和不同的調變與編碼方式所對應的資料傳輸量。在系統級模擬器 中,則得以如 LTE 標準下傳輸資料並研究排程技術。在同時考慮公平性與整體的 傳輸量下,我們採用比例公平調度的模型作為最佳化的目標函數。我們首先提出 了基於交叉熵的觀念建立的啟發式排程演算法來解決最佳化的資源分配問題。接 下來,我們同時考慮到在 LTE 標準下,下行控制資訊必須要做到哪些調整。在我 們的模擬結果中,提出的 NOMA 架構相比於傳統的正交方式能達到更佳的公平性, 同時在整體的資料傳輸量上能夠達到更好的效益。在寬頻排程使用時,整體的資 料量可以上上升到 25%而在使用子頻帶排程時,則可以上升到 29%的效能。我們 提出的演算法相比於全區域搜尋演算法能節省超過 50%的執行時間,相比於貪婪 式演算法則有 5%的總資料量增益。基於這些結果,我們進一步討論了使用 NOMA 之子頻帶排程技術的權衡與效益。
In this thesis, we investigate subband allocation for proportionally fair schedul- ing for non-orthogonal multiple acess (NOMA). The key concept of NOMA is to transmit composition of multi-user signals in a beam at the transmitter and de- code with successive interfernece cancellation (SIC) at the reciever. We simulate NOMA to investigate perfromance with the Vienna link-level simulator and the Vienna system-level simulator. We first present how to modify the structure of Vienna simulator in order to build a NOMA simulation environment. In the link-level simulator, we can have the real performance to investigate the impact of power ratio modulation coding scheme. In the system-level simulator, we simulate with the LTE standard-compliant environment which implemented with iterative scheduling and subband allocation to research the e↵ect of scheduling algorithms. For the sake of maximizing total throughput and fairness, the proportionally fair (PF) scheduling model is adopted to evaluate system performance. We propose a meta-heuristic algorithm based on cross entropy method to solve the optimiza- tion problem for subband allocation PF scheduling. In addition, downlink control information constraints for scheduling in realistic system such as LTE/LTE-A is also taken into account. Simulation results show that NOMA can achieve higer fariness and performance benifits over OMA about 25% for wideband scheduling and 29% for subband scheduling. Compared with other subband allocation al- gorithm, the proposed algorithm have more than 50% lower executing time than full-search and 5% performance gain of greedy approach. With these results, we further discuss benefits and trade-o↵ of NOMA with subband scheduling.
ABSTRACT .................................. ii
LISTOFTABLES .............................. v
LISTOFFIGURES ............................. vi
CHAPTER1 INTRODUCTION .................... 1
CHAPTER 2 BACKGROUND AND RELATED WORK . . . . . 4
2.1 NOMA with SIC System ....................... 4
2.2 Vienna Simulator ........................... 5
2.2.1 Vienna Link-level Simulator ................. 6
2.2.2 Vienna System-level Simulator ................ 7
2.3 Related Work ............................. 8
2.3.1 Application of the Vienna LTE Simulator. . . . . . . . . . 8
2.3.2 Non-orthogonal multiple access................ 9
2.3.3 Scheduling in NOMA scheme................. 10
CHAPTER 3 MODIFIED MODEL FOR NOMA UNDER SUBBAND IN VIENNA SIMULATOR.................. 12
3.1 Extension of Vienna Link Level Simulator . . . . . . . . . . . . . . 12
3.1.1 Validation of Link Level.................... 13
3.1.2 Bit Error Rate Characteristic of NOMA . . . . . . . . . . . 16
3.2 Extension of the Vienna System Level Simulator . . . . . . . . . . 19
3.2.1 Details of the Vienna System Level Simulator . . . . . . . . 19
3.2.2 Extension for subband support................ 20
3.2.3 Extension for NOMA support ................ 23
3.2.4 Modelling Practical Receiver in System-level simulator . . . 24
3.2.5 BICM capacity......................... 25
3.2.6 Overview of the Vienna SL simulator with NOMA . . . . . 26
CHAPTER 4 SCHEDULER OF THE VIENNA SYSTEM-LEVEL SIMULATOR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.1 Estimate spectral efficiency...................... 28
4.1.1 MCSmap ........................... 28
4.1.2 Mapping function based on OMA .............. 29
4.1.3 BICMcapacity......................... 30
4.2 Improved method to construct MCS map . . . . . . . . . . . . . . 31
4.3 Scheduling Algorithm ......................... 32
4.3.1 Proportional Fair Scheduling for OMA . . . . . . . . . . . 32
4.3.2 Proportional Fair Scheduling for NOMA. . . . . . . . . . . 33
CHAPTER5 SCHEDULING PROBLEM .............. 35
5.1 Cross Entropy Method ........................ 35
5.2 Solving the scheduling problem.................... 37
5.3 Greedy Approaches to Scheduling .................. 39
5.3.1 Traditional Greedy Approach................. 39
5.3.2 Iterative Greedy Approach .................. 40
CHAPTER6 PERFORMANCE EVALUATION . . . . . . . . . . 41
6.1 Simulation Settings .......................... 41
6.2 Simulation Results........................... 41
6.2.1 Network scenario and comparison to OMA . . . . . . . . . 41
6.2.2 Performance of the proposed method . . . . . . . . . . . . 43
6.2.3 Resolution design of MCS map................ 45
CHAPTER 7 CONCLUSION AND FUTURE WORK . . . . . . 47
REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
[1] Y. Saito, Y. Kishiyama, A. Benjebbour, T. Nakamura, A. Li, and K. Higuchi, “Non-orthogonal multiple access (noma) for cellular future radio access,” in 2013 IEEE 77th Vehicular Technology Conference (VTC Spring), June 2013, pp. 1–5.
[2] N. Baldo, M. Miozzo, M. Requena, and J. N. Guerrero, “An open source product-oriented lte network simulator based on ns-3,” in Proc. of ACM MSWiM’ll Miami US, Nov 2001.
[3] G. Piro, L. A. Grieco, G. Boggia, F. Capozzi, and P. Camarda, “Simulat- ing lte cellular systems: An open-source framework,” IEEE Transactions on Vehicular Technology, vol. 60, no. 2, 2011.
[4] C. Mehlfuhrer, J. C. Ikuno, M. Simko, S. Schwarz, M. Wrulich, and M. Rupp, “The vienna lte simulators - enabling reproducibility in wireless communica- tions research,” EURASIP J. Adv. Signal Process., vol. 2011, no. 1, pp. 2–, Jul 2011.
[5] M. Taranetz, T. Blazek, T. Kropfreiter, M. K. Mller, S. Schwarz, and M. Rupp, “Runtime precoding: Enabling multipoint transmission in lte- advanced system-level simulations,” IEEE Access, vol. 3, pp. 725–736, 2015.
[6] Vienna simulators. Technische Universitt Wien Institute of Telecommunica- tions. Online Available at: http://www.nt.tuwien.ac.at/ltesimulator
[7] A. A. A. Rahman, A. Man, A. K. Samingan, C. Y. Yeoh, and I. Suleiman, “Fair boundary scheduler for lte system,” in 2016 IEEE Symposium on Com- puter Applications Industrial Electronics (ISCAIE), May 2016, pp. 11–15.
[8] R. Khdhir, K. Mnif, A. Belghith, and L. Kamoun, “Tabu approach for adap- tive resource allocation and selection carrier aggregation in lte-advanced net- work,” in 2016 IEEE International Conference on Computer and Information Technology (CIT), Dec 2016, pp. 347–353.
[9] F. Ademaj, M. Taranetz, and M. Rupp, “Implementation, validation and application of the 3gpp 3d mimo channel model in open source simulation tools,” in 2015 International Symposium on Wireless Communication Sys- tems (ISWCS), Aug 2015, pp. 721–725.
[10] A. S. W. Marzuki, I. Ahmad, D. Habibi, and Q. V. Phung, “Mobile small cells: Broadband access solution for public transport users,” IEEE Communications Magazine, vol. 55, no. 6, pp. 190–197, 2017.
[11] B. J. Chang, S. H. Liou, and Y. H. Liang, “Cooperative communication in ultra-dense small cells toward 5g cellular communication,” in 2017 8th IEEE Annual Information Technology, Electronics and Mobile Communication Conference (IEMCON), Oct 2017, pp. 365–371.
[12] R. Hoshyar, F. P. Wathan, and R. Tafazolli, “Novel low-density signature for synchronous cdma systems over awgn channel,” IEEE Transactions on Signal Processing, vol. 56, no. 4, pp. 1616–1626, April 2008.
[13] R. Razavi, R. Hoshyar, M. A. Imran, and Y. Wang, “Information theoretic analysis of lds scheme,” IEEE Communications Letters, vol. 15, no. 8, pp. 798–800, August 2011.
[14] H. Nikopour and H. Baligh, “Sparse code multiple access,” in 2013 IEEE 24th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC), Sept 2013, pp. 332–336.
[15] H. Nikopour, E. Yi, A. Bayesteh, K. Au, M. Hawryluck, H. Baligh, and J. Ma, “Scma for downlink multiple access of 5g wireless networks,” in 2014 IEEE Global Communications Conference, Dec 2014, pp. 3940–3945.
[16] L. Ping, L. Liu, K. Wu, and W. K. Leung, “Interleave division multiple- access,” IEEE Transactions on Wireless Communications, vol. 5, no. 4, pp. 938–947, April 2006.
[17] S. Chen, B. Ren, Q. Gao, S. Kang, S. Sun, and K. Niu, “Pattern division multiple accessa novel nonorthogonal multiple access for fifth-generation radio networks,” IEEE Transactions on Vehicular Technology, vol. 66, no. 4, pp. 3185–3196, April 2017.
[18] J. Zeng, B. Li, X. Su, L. Rong, and R. Xing, “Pattern division multiple access (pdma) for cellular future radio access,” in 2015 International Conference on Wireless Communications Signal Processing (WCSP), Oct 2015, pp. 1–5.
[19] R. H. Roy, “Spatial division multiple access technology and its application to wireless communication systems,” in 1997 IEEE 47th Vehicular Technology Conference. Technology in Motion, vol. 2, May 1997, pp. 730–734 vol.2.
[20] J. Schaepperle and A. Regg, “Enhancement of throughput and fairness in 4g wireless access systems by non-orthogonal signaling,” Bell Labs Technical Journal, vol. 13, no. 4, pp. 59–77, Winter 2009.
[21] J. Umehara, Y. Kishiyama, and K. Higuchi, “Enhancing user fairness in non- orthogonal access with successive interference cancellation for cellular down- link,” in 2012 IEEE International Conference on Communication Systems (ICCS), Nov 2012, pp. 324–328.
[22] Q. Sun, S. Han, C. I, and Z. Pan, “Energy eciency optimization for fading mimo non-orthogonal multiple access systems,” in 2015 IEEE International Conference on Communications (ICC), June 2015, pp. 2668–2673.
[23] F. Fang, H. Zhang, J. Cheng, S. Roy, and V. C. M. Leung, “Joint user schedu ing and power allocation optimization for energy-efficient noma systems with imperfect csi,” IEEE Journal on Selected Areas in Communications, vol. 35, no. 12, pp. 2874–2885, Dec 2017.
[24] A. Benjebbour, A. Li, Y. Kishiyama, H. Jiang, and T. Nakamura, “System- level performance of downlink noma combined with su-mimo for future lte enhancements,” in 2014 IEEE Globecom Workshops (GC Wkshps), Dec 2014, pp. 706–710.
[25] A. Li, Y. Lan, X. Chen, and H. Jiang, “Non-orthogonal multiple access (noma) for future downlink radio access of 5g,” China Communications, vol. 12, no. Supplement, pp. 28–37, December 2015.
[26] L. Margolin, “On the convergence of the cross-entropy method,” Annals of Operations Research, vol. 134, no. 1, pp. 201–214, 2005.
[27] R. Rubinstein, “The cross-entropy method for combinatorial and continuous optimization,” in Methodology And Computing In Applied Probability, vol. 1, no. 2, 1999, pp. 127–1190.
[28] S. M. P.-T. De Boer, D. Kroese and R. Rubinstein, “A tutorial on the cross- entropy method,” Annals of Operations Research, no. 1, pp. 19–67, 2005.
[29] G. Sebastiani and G. L. Torrisi, “The cross-entropy method for combinato- rial and continuous optimization,” in Methodology and Computing in Applied Probability, vol. 7, no. 2, 2005, pp. 249–263.
[30] O. D. J. A. Costa and D. Kroese, “Convergence properties of the cross-entropy method for discrete optimization,” in Operational Research Letter, vol. 35, no. 5, Sept 2007, pp. 573–580.
[31] G. Caire, G. Taricco, and E. Biglieri, “Bit-interleaved coded modulation,” IEEE Transactions on Information Theory, vol. 44, no. 3, pp. 927–946, May 1998.
[32] T. S and S. A, “E↵ective-snr mapping for modeling frame error rates in multiple-state channels,” 3GPP2, Tech. Rep. 3GPP2-C30-20030429-010, 2003.
[33] Technical Specification Group Radio Access Network; Evolved Universal Ter- restrial Radio Access (E-UTRA); Physical layer prcedure, 3rd Generation Partnership Project, 9 2015, release 12.
[34] Technical Specification Group Radio Access Network; Study on Downlink Mul- tiuser Superpostion Transmission (MUST) for LTE, 3rd Generation Partner- ship Project, 11 2015, release 13.
[35] “3GPP TSG RAN WG1 Meeting #82: Link-abstraction method for ML re- ceiver in MUST, R1-154458,” MediaTek Inc, Fukuoka, Japan, Tech. Rep., May 2015.
[36] E. Zehavi, “8-psk trellis codes for a rayleigh channel,” IEEE Transactions on Communications, vol. 40, no. 5, pp. 873–884, May 1992.
[37] G. Ungerboeck, “Channel coding with multilevel/phase signals,” IEEE Trans- actions on Information Theory, vol. 28, no. 1, pp. 55–67, Jan 1[38] M. Rupp, S. Schwarz, and M. Taranetz, The Vienna LTE-Advanced Sim- ulators - Up and Downlink, Link and System Level Simulation. New York:Springer-Verlag, 2016.
[39] S. L. C. R. C. H. E. Cline, W. E. Lorensen and B. C. Teeter, “Two al- gorithms for the three-dimensional reconstruction of tomograms,” Medical Physics, vol. 15, no. 3, pp. 320–327, 1988.
[40] A. K. M. F. P. Kelly and D. K. H. Tan., “Rate control in communication networks: shadow prices, proportional fairness and stability,” Journal of the Operational Research Society, vol. 49, no. 1, pp. 237–252, April 1998.
[41] P. Viswanath, D. N. C. Tse, and R. Laroia, “Opportunistic beamforming using dumb antennas,” IEEE Transactions on Information Theory, vol. 48, no. 6, pp. 1277–1294, Jun 2002.
[42] H. Kim, K. Kim, Y. Han, and S. Yun, “A proportional fair scheduling for multicarrier transmission systems,” in IEEE 60th Vehicular Technology Con- ference, 2004. VTC2004-Fall. 2004, vol. 1, Sept 2004, pp. 409–413 Vol. 1.
[43] Z. Sun, C. Yin, and G. Yue, “Reduced-complexity proportional fair scheduling for ofdma systems,” in 2006 International Conference on Communications, Circuits and Systems, vol. 2, June 2006, pp. 1221–1225.982.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top