跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.118) 您好!臺灣時間:2025/12/01 01:12
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:吳哲賢
研究生(外文):Jer-Shyan Wu
論文名稱:k-out-of-n系統及K端點網路上之可靠度分析
論文名稱(外文):Reliability Analyses on k-out-of-n Systems and K-terminal Networks
指導教授:陳榮傑陳榮傑引用關係
指導教授(外文):Rong-Jaye Chen
學位類別:博士
校院名稱:國立交通大學
系所名稱:資訊工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:1994
畢業學年度:82
語文別:英文
論文頁數:110
外文關鍵詞:k-out-of-n 系統K 端點網路可靠度分析演算法圖形理論多邊形到鏈化簡法k-out-of-n Sys.K-terminal Net.Reliability Analy.Algori.
相關次數:
  • 被引用被引用:0
  • 點閱點閱:202
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文研究在 k-out-of-n 系統及 K 端點網路上之可靠度分析。從
1981 年起,在 k-out-of-n 系統上可靠度的研究,有三大系統被廣泛地
討論: (1) k-out-of-n:G 系統,(2) 連續 k-out-of-n:F系統,及 (3)
環形連續 k-out-of-n:F 系統。在本論文中,我們提出一個更一般化的模
組:權重 k-out-of-n 系統,產生在以下三個系統上之可靠度評估問題
: (1) 權重 k-out-of-n:G系統,(2) 連續權重 k-out-of-n:F系統,
及(3) 環形連續權重 k-out-of-n:F系統。我們設計出有效率的演算法來
計算這三個系統可靠度,並且得到和原來系統的演算法相同的時間複雜度
。在 K 端點網路上之可靠度的分析,早期的研究只考慮邊線會折損而結
點不會折損的新模組。在本論文中,我們提出一個邊線和結點均會折損的
新模組。並且設計出有一個可利用多邊形行程鏈形化簡法的演算法,來計
算當邊線和結點均折損時, K 端點網路上的可靠度。
In this dissertation, we study reliability analyses on both k-
out-of-n systems and K-terminals networks. For k-out-of-n
systems, computing reliabilities of k-out-of-n:G system,
consecutive-k-out-of-n:F system, and circular-consecutive-out-
of-n:F system has been widely discussed since 1981. Here, we
propose a more general model of :weighted k-out-of-n systems,
which lead to new reliability evaluation problems on three
systems: (1) weighted-k-out-of-n:G system, (2) consecutive-
weighted-k-out-of-n:F system, and (3) circular consecutive-
weighted-k-out-of-n:F system. To compute these system
reliabilities, we design efficient algorithms with the same
time complexities as the algorithms for the original model. For
K-terminal networks reliability, the early studies consider
that only edges may fail while vertices always function. In
this dissertation, we propose a new model: both edges and
vertices may fail. An algorithm using polygon-to-chain
reductions is constructed for computing the K-terminal networks
reliability with both edge and vertex failures.
Covers
Chinese Abstract
English Abstract
Acknowledgements
Contents
List of Figures
1 Introduction
1.1 Definitions
1.2 History
1.3 Outline of the Dissertation
2 Original k-out-of-n:G Systems
2.1 Introduction
2.2 Assumptions and Notation
2.3 k-out-of-n:G Systems
2.3.1 MaGrady''s Exponential Algorithm
2.3.2 Barlow and Heidtmann''s o(n2)Algorithm
2.3.3 Sarje and Prasd''so(nk)Algorithm
2.4 Consecutive-k-out-of-n:F Systems
2.4.1 Shanthikumar''so(nk)Algorithm
2.4.2 Hwang''s o(n)Algorithm
2.5 Circular Consecutive-k-out-of-n:F Systems
2.5.1 Hwang''so(nk2)Algorithm
2.5.2 Antonopoulou and Papastarvidis''s o(n2k)Algorithm
2.5.3 Our o(nk)Algorithm
2.5.4 Hwang''s o(nk)Algorithm
2.5.5 Our Another o(nk)Algorithm
3 Weighted k-out-of-n Systems
3.1 Introduction
3.2 Assumptions and Notation
3.3 Weighted-k-out-of-n:G Systems
3.3.1 An O(nk)Algorithm
3.3.2 An Example System
3.4 Consecutive-weighted-k-out-of-n:F Systems
3.4.1 An o(n)Algorithm
3.4.2 An System Example
3.5 Circular Consecutive-weighted-k-out-of-n:F Systems
3.5.1 An o(n.min(n,k)) Algorithm
4 K-terminal Networks Reliability
4.1 Introduction
4.2 Assumptions and Notation
4.3 A Factoring Algorithm
4.4 Reductions Methods
4.4.1 Parallel Reduction Method
4.4.2 Degree-1 Reduction Method
4.4.3 Degree-2 Reduction Method
4.4 Polygon-to-chain Reduction Methods
4.5 An Example Network
5 Conclusions
Bibliography
Vita
Publications List
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top