跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.23) 您好!臺灣時間:2025/10/26 07:08
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:柯拉飛
研究生(外文):Rafael Kaliski
論文名稱:一個用於支持長期演進多媒體廣播多播服務與設備對設備服務的賽局理論方法
論文名稱(外文):A game theoretic approach to sponsored LTE MBMS & D2D services
指導教授:魏宏宇魏宏宇引用關係
指導教授(外文):Hung-Yu Wei
口試日期:2017-06-29
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:電機工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:英文
論文頁數:179
中文關鍵詞:無線網路移動電視資源分配賽局理論多媒體廣播多播服 務本地化廣告設備對設備頻譜拍賣
外文關鍵詞:wireless networksmobile TVresource allocationgame theoryMBMSlocalized advertisingD2Dspectrum auctions
相關次數:
  • 被引用被引用:1
  • 點閱點閱:314
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
第三代合作夥伴項目(3GPP)的兩個主要目標是展開長期演進(LTE)多媒體廣播多播服務與商業設備對設備(D2D)近端服務(ProSe)。因為行動通訊市場已經接近飽和狀態,加上可買的頻譜少之又少,所有行動服務業著(SPs)已經開始在尋找新的額外收入來源。
目前MBMS與D2D服務皆缺乏應用在廣大地區可行的經濟模式。在此論文裡,
我們提出兩個可行的經濟模式(一個是和MBMS有關,另外一個是和商業D2D服務有關),兩個都是用來解決資源分配的問題,而頻譜即是被上述服務所分配的資源,這些服務都是由廣告公司支持的。
無線網路資源分配的問題通常是組合最佳化的問題,也被視為非確定性多項式難題(NP-hard),其可透過窮舉搜尋法來解答問題。進一步說,當想獲取資源的主體有理性時,他們可能自私地回報假的私人信息以來操縱資源分配機制進而最大化自身被分配到的資源或最小化其所需付出的錢,結果即是所謂資源分配的問題變得更為複雜。傳統資源分配方法都需要主體真實地回報私人信息,但當考慮到主體的理性時,就有可能遭遇到無法做有效資源分配的情況。依賽局理論的
分析,我們識別主體的自私行為及提出新的解決方法來鼓勵主體真實地回報私人信息,加上以模擬結果來分析解決方法的效率。
首先,我們看到最近公開的LTE MBMS,那就是第十四LTE版本,即增
強MBMS(FeMBMS),其對MBMS服務可佔用更多細胞容量提供更多可能性,更有跨行動網路服務業的基地台雙連技術(Inter-MNO Dual Connectivity),動態MBMS,與非簽署顧客接收MBMS服務。此外,還可以共有MBMS網絡(SEN)分發共享內容,以及內容提供商也能決定分發內容的方法(單播或多播)。
對於即時串流影像,既快又有效率的資源分配是必須的,因此即時影像可利用基於需求要之MBMS運行(MooD)。為了在介質訪問控制層(MAC層)做MBMS資源分配,可以用正數線性規劃(ILP)來最佳化多個影像流資源分配,而ILP也被理解為NP-hard。我們觀察MAC層的資源分配,完整傳輸一個影像幀需佔用多種MAC分配時段,進而發現到基於梯度的資源分配方式能達到ILP類似的效果,就運算複雜度而言,不像ILP,我們提出的基於梯度的資源分
配方式只花費多項式時間(P-time)。
關於MBMS服務,我們提出一個行動電視系統,其中廣告業者支持這個行動電視服務。我們首先研究分析電視台收視如何影響到電視台的頻寬與每一個廣告業對電視台的計價。透過機制設計,我們設計一套鼓勵真誠投票的機制以準確得知每一個行動用戶在收看什麼電視台,因為每一個電視台分配的頻寬是根據目前對串流視頻的資源需求與收視率統計。基於預測的收視率與分配給電視台的頻寬,
我們設計一個鼓勵真價拍賣機制來分配每一塊廣告時段給廣告業,從而以分配廣告塊來支持所謂的MBMS服務。
最後,針對商業D2D服務,我們發現到SPs有機會"貨幣化"無法充分利用的頻譜。我們調查研究可被歸於子分區的商業D2D服務如何可利用SP控制的無法充分利用的頻譜。這個無法充分利用頻譜資源分配的問題可視為分配SP控制傳輸空間(Gaps)的問題,其用於商業D2D服務。因D2D的傳數據距離有限,所以在同一個地區裡一個Gap可分給幾個D2D基地台(一個D2D基地台即是一個傳播D2D服務的UE)。根據每一個D2D基地台的通道狀態,相關的頻寬是拍賣給對本地化
市場有興趣的廣告公司。為了在合理的時間內完成頻寬分配,我們設計一個只有P-time複雜度的鼓勵真實拍賣機制,而其利潤表現與理論最佳化的VCG拍賣機制結果類似。
Abstract
Two of the goals of the 3rd Generation Partnership Project (3GPP) are to deploy Long Term Evolution (LTE) Multimedia Broadcast/Multicast Service (MBMS) and commercial Device to Device (D2D) Proximity Services (ProSe). As the mobile market is nearing saturation, and additional spectrum is scarce, Service Providers (SPs) are searching for additional sources of revenue. Currently, both MBMS and D2D services lack feasible economic models for wide-spread deployment. We present two economically feasible models for MBMS and commercial D2D services. Both of these models can be viewed as solving resource allocation problems, where the bandwidth is the resource being allocated by each of the aforementioned services and the advertisers are the sponsors of said service.
Wireless Networking Resource Allocation problems are often combinatorial optimization problems, which are considered NP-hard and are solvable via an exhaustive search. Furthermore, when the players interested in acquiring resources exhibit rationality, they may try to manipulate the resource allocation mechanism by acting selfishly and misreport their private information in order to increase their resource allocation / reduce their costs. As such, these resource allocation problems are considered complex due to the rationality of the players and the combinatorial optimization. Based on a game-theoretic analysis, we identify the selfish behaviors of the players and propose novel solutions to incentivize the players to truthfully reveal their private information in a tractable computational complexity. Simulations are presented for evaluating the performance of each of the proposed solutions.
We first study the most recent release of LTE MBMS, i.e. LTE Rel’14 FeMBMS. LTE FeMBMS opens the possibilities for a higher percentage of cell capacity to be allocated for MBMS services, in addition to inter-Mobile Network Operator dual connectivity, dynamic MBMS, and non-subscriber reception of MBMS services. Furthermore, shared content distribution is enabled via shared eMBMS networks (SEN) and the content provider can determine the method of content delivery, be it unicast or multicast.
For streaming real-time video, fast and efficient resource allocation is necessary. Real-time video is expected to make use of MBMS operation On-Demand (MooD). For MBMS resource allocation at the MAC-layer, integer linear programming (ILP) can be used to achieve an optimal resource allocation among multiple video streams. Yet ILP is known to be NP-hard. We observe that for resource allocation at the MAC-layer, where multiple MAC allocation periods are required for the complete transmission of a video frame, a gradient-based resource allocation approach can achieve similar performance to that of ILP. Unlike ILP, in terms of computational complexity, our proposed gradient-based approach runs in P-time.
For the MBMS services, we present a mobile TV system where the advertisers sponsor the TV service. We first study how the impact of viewership of a TV station and its associated bandwidth affects each advertiser’s valuation. By using mechanism design, we design a truthful voting mechanism to accurately capture each viewer’s current TV channel they are watching. The bandwidth allocated to each TV station is dependent on the current resource demands of the streaming videos and the viewership statistics. Based on the projected viewership and bandwidth allocated to each TV station, we design a truthful auction to allocate each advertisement slot to the set of advertisers interested in broadcasting their advertisements and consequently sponsoring said MBMS service.
Finally, for commercial D2D services, we observe that SPs most likely have underutilized spectrum they are looking to monetize. We investigate how commercial D2D services, which can be limited to sub-sectors, can make use of SP controlled underutilized spectrum. The under-utilized spectrum allocation problem is formulated as an SP-controlled gap allocation problem; gaps are used by commercial D2D services. As D2D has a limited range, the gaps can be allocated to multiple D2D stations (UEs transmitting D2D services) within a sector. Based on the channel conditions of each D2D station, the associated bandwidth is auctioned off to advertisers who are interested in broadcasting their advertisements to the associated localized area. To perform the bandwidth allocation in a reasonable time, we derive a truthful auction which has a computational complexity in P-time and has a similar profit performance to the theoretically optimal VCG auction.
Contents
誌謝ii
摘要iii
Abstract v
List of Figures xiii
List of Tables xv
1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1.1 Multicast Services:
A problematic solution to network congestion . . . . . . . . . 1
1.1.2 Incentivizing Multicast Services . . . . . . . . . . . . . . . . . 2
1.2 Dissertation Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Contributions of Dissertation . . . . . . . . . . . . . . . . . . . . . . 5
1.3.1 Chapter 2: Further Enhanced Multimedia Broadcast / Multicast
Service in LTE-Advanced Pro: Rel-14 Enhancements in
LTE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3.2 Chapter 3: Dynamic Resource Allocation Framework for MooD
(MBMS Operation On-Demand) . . . . . . . . . . . . . . . . . 6
1.3.3 Chapter 4: Dynamic Resource Allocation and Advertisement
Revenue Optimization for TV Over eMBMS . . . . . . . . . . 6
1.3.4 Chapter 5: LADTRAM: A Coalition Funded Framework for
Localized Advertisements over D2D . . . . . . . . . . . . . . . 7
1.4 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.4.1 MBMS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.4.2 D2D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.4.3 Game Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.4.4 Auction Theory . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.4.5 Mechanism Design . . . . . . . . . . . . . . . . . . . . . . . . 12
2 Further Enhanced Multimedia Broadcast / Multicast Service in
LTE-Advanced Pro: Rel-14 Enhancements in LTE 13
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2 Comparison of MBMS cell types . . . . . . . . . . . . . . . . . . . . . 15
2.2.1 MBMS/Unicast-mixed cell . . . . . . . . . . . . . . . . . . . . 16
2.2.2 FeMBMS/Unicast-mixed cell . . . . . . . . . . . . . . . . . . . 16
2.2.3 MBMS-dedicated cell . . . . . . . . . . . . . . . . . . . . . . . 18
2.3 Supplemental downlink Carrier . . . . . . . . . . . . . . . . . . . . . 19
2.4 Inter-site Distance . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.5 Non-colocated Multi-carrier Support . . . . . . . . . . . . . . . . . . 21
2.6 TV service without authentication . . . . . . . . . . . . . . . . . . . . 22
2.7 Shared eMBMS and Content Distribution . . . . . . . . . . . . . . . 23
2.8 Transport only vs Full MBMS service mode . . . . . . . . . . . . . . 24
2.9 Dynamic Resource Allocation . . . . . . . . . . . . . . . . . . . . . . 25
2.10 QoE comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.11 Next Generation Radio . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.12 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3 Dynamic Resource Allocation Framework for MooD (MBMS Operation
On-Demand) 30
3.1 Introduction and Related Works . . . . . . . . . . . . . . . . . . . . . 30
3.1.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.2 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.2.1 Features of QoE Utilities . . . . . . . . . . . . . . . . . . . . . 37
3.2.2 Test Scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.3 Proposed Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.3.1 MAC-layer QoE Utility Function . . . . . . . . . . . . . . . . 42
3.3.2 Integer Linear Programming Resource Allocation . . . . . . . 45
3.3.3 Gradient-based Resource Allocation . . . . . . . . . . . . . . . 48
3.4 Description of algorithms . . . . . . . . . . . . . . . . . . . . . . . . . 50
3.4.1 Limitations of ILP . . . . . . . . . . . . . . . . . . . . . . . . 53
3.4.2 Computational Complexity Analysis . . . . . . . . . . . . . . 53
3.4.3 Differences in QoE Optimization Approaches . . . . . . . . . . 55
3.5 Simulation and Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 57
3.5.1 Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
3.5.2 Simulation Results and Analysis . . . . . . . . . . . . . . . . . 58
3.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
3.6.1 Fairness vs Efficiency . . . . . . . . . . . . . . . . . . . . . . . 62
3.6.2 Execution time evaluation . . . . . . . . . . . . . . . . . . . . 64
3.6.3 Performance Evaluation . . . . . . . . . . . . . . . . . . . . . 65
3.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
4 Dynamic Resource Allocation and Advertisement Revenue Optimization
for TV Over eMBMS 67
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
4.1.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
4.2 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
4.2.1 Resource Allocation and inter-component data flow . . . . . . 73
4.2.2 Information Flow . . . . . . . . . . . . . . . . . . . . . . . . . 74
4.2.3 Mobile TV and Location-Based Services . . . . . . . . . . . . 75
4.2.4 Viewership Statistics . . . . . . . . . . . . . . . . . . . . . . . 76
4.2.5 MBMS Resource Block Allocation . . . . . . . . . . . . . . . . 78
4.2.6 SVC video . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
4.2.7 Video Frame Scheduler . . . . . . . . . . . . . . . . . . . . . . 80
4.2.8 Game Theoretic Aspects . . . . . . . . . . . . . . . . . . . . . 81
4.3 Voting Game . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
4.3.1 UE’s Utility . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
4.3.2 UE’s strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
4.3.3 Resource Block Allocation Problem . . . . . . . . . . . . . . . 94
4.3.4 Voting Game results . . . . . . . . . . . . . . . . . . . . . . . 95
4.4 Advertisement Allocation Game . . . . . . . . . . . . . . . . . . . . . 96
4.4.1 Advertiser’s Utility . . . . . . . . . . . . . . . . . . . . . . . . 97
4.4.2 Advertisement Allocation Auction . . . . . . . . . . . . . . . . 99
4.4.3 Advertisement Slot Allocation Problem . . . . . . . . . . . . . 107
4.4.4 Advertisement Allocation Game Results . . . . . . . . . . . . 111
4.5 2-stage Viewership-based Resource & Advertisement Allocation Noncooperative
game Formulation . . . . . . . . . . . . . . . . . . . . . . 112
4.5.1 Properties of the 2-stage game . . . . . . . . . . . . . . . . . . 114
4.6 System Simulation and Analysis . . . . . . . . . . . . . . . . . . . . . 117
4.6.1 Simulation results . . . . . . . . . . . . . . . . . . . . . . . . . 118
4.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
5 LADTRAM: A Coalition Funded Framework for Localized Advertisements
over D2D 124
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
5.1.1 Related work and Challenges . . . . . . . . . . . . . . . . . . 125
5.1.2 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
5.2 Traditional vs Localized spectrum auctions . . . . . . . . . . . . . . . 130
5.3 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
5.3.1 Advertiser Model . . . . . . . . . . . . . . . . . . . . . . . . . 135
5.3.2 Localized Advertising and Location-Based Services . . . . . . 137
5.3.3 Service Provider Model . . . . . . . . . . . . . . . . . . . . . . 137
5.3.4 D2D Ad Station Locality . . . . . . . . . . . . . . . . . . . . . 138
5.3.5 Optimal MCS Determination . . . . . . . . . . . . . . . . . . 139
5.3.6 D2D Ad station Game Model . . . . . . . . . . . . . . . . . . 140
5.4 Ad Resource Allocation Game . . . . . . . . . . . . . . . . . . . . . . 142
5.5 D2D Ad Station Local Auction . . . . . . . . . . . . . . . . . . . . . 143
5.5.1 MCS-dependent uniform price auction Model . . . . . . . . . 144
5.5.2 VCG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
5.6 Backward Induction . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
5.6.1 Ad Station Local Auction . . . . . . . . . . . . . . . . . . . . 149
5.6.2 Ad Resource Allocation Game . . . . . . . . . . . . . . . . . . 152
5.6.3 D2D Ad Game Equilibrium . . . . . . . . . . . . . . . . . . . 154
5.7 Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
5.7.1 Simulation Methodology . . . . . . . . . . . . . . . . . . . . . 155
5.7.2 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . 157
5.8 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
5.9 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
6 Conclusions and Future Work 163
6.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
6.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
Bibliography 167
Bibliography
[1]Cisco. (2016, 2) Cisco Visual Networking Index: Global Mobile Data Traffic Forecast Update, 2015–2020 . [Online]. Available:
http://www.cisco.com/c/en/us/solutions/collateral/service-provider/
visual-networking-index-vni/mobile-white-paper-c11-520862.pdf
[2]FierceMarkets. (2012, August) The failure of mobile broadcast TV to capture consumer attention - worst wireless blunders. [Online]. Available:
http://www.fiercewireless.com/special-reports/failure-mobile-broadcasttv-capture-consumer-attention-worst-wireless-blund
[3]X. Lin et al., “An overview of 3GPP device-to-device proximity services,” IEEE Commun. Mag., vol. 52, no. 4, pp. 40–48, April 2014.
[4]H. Kellerer et al., Knapsack problems. Springer, 2004.
[5]R. Kaliski et al., “"dynamic resource allocation framework for mood (mbms operation on-demand)",” IEEE Trans. Broadcast., vol. 62, no. 4, pp. 903–917,
Decemeber 2016.
[6]D. Lecompte et al., “"evolved multimedia broadcast/multicast service (embms)
in lte-advanced: overview and rel-11 enhancements",” IEEE Commun. Mag., vol. 50, no. 11, pp. 68–74, November 2012.
[7]3GPP, “New WID on Study on 3GPP Enhancement for TV service (FS_EnTV), from S1-150339,” 3rd Generation Partnership Project (3GPP), TR SP-150052, March 2015. [Online]. Available: http://www.3gpp.org
[8]——, “Evolved Universal Terrestrial Radio Access (E-UTRA); Radio Resource Control (RRC); Protocol specification,” 3rd Generation Partnership Project
(3GPP), TS 36.301, March 2017. [Online]. Available: http://www.3gpp.org
[9]S. Sesia et al., LTE - The UMTS Long Term Evolution From Theory to Practice Second Edition. John Wiley & Sons, Ltd., 2011.
[10]3GPP, “Evolved Universal Terrestrial Radio Access (E-UTRA); Overall description; Stage 2 (Release 14),” 3rd Generation Partnership Project (3GPP), TS 36.300, March 2017. [Online]. Available: http://www.3gpp.org
[11]——, “Revised WID: eMBMS enhancements for LTE,” 3rd Generation Partnership Project (3GPP), TR RP-162231, December 2016. [Online].
Available: http://www.3gpp.org
[12]——, “Evolved Universal Terrestrial Radio Access (E-UTRA); User Equipment (UE) procedures in idle mode,” 3rd Generation Partnership Project (3GPP), TS 36.304, March 2017. [Online]. Available: http://www.3gpp.org
[13]——, “Service aspects; Service principles (Release 14),” 3rd Generation Partnership Project (3GPP), TR 23.746, September 2016. [Online]. Available:
http://www.3gpp.org
[14]——, “Multimedia broadcast/multicast service (MBMS) improvements; MBMS operation on demand,” 3rd Generation Partnership Project (3GPP), TR 26.849, June 2015. [Online]. Available: http://www.3gpp.org
[15]——, “Study on improved streaming Quality of Experience (QoE) reporting in 3GPP services and networks (Release 14),” 3rd Generation Partnership Project (3GPP), TR 26.909, March 2017. [Online]. Available: http://www.3gpp.org
[16]ITU, “IMT Vision — Framework and overall objectives of the future development of IMT for 2020 and beyond,” International Telecommunication Union (ITU), TR ITU-R M.2083-0, September 2015. [Online]. Available:
https://www.itu.int/
[17]3GPP, “Report of 3GPP TSG RAN Meeting 75,” 3rd Generation Partnership Project (3GPP), Tech. Rep., March 2017. [Online].
Available: http://www.3gpp.org/ftp/tsg_ran/TSG_RAN/TSGR_75/
Report/Draft_MeetingReport_RAN_75_170309_eom.zip
[18]——, “Service aspects; Service principles (Release 14),” 3rd Generation Partnership Project (3GPP), TR 22.101, March 2017. [Online]. Available: http://www.3gpp.org
[19]——, “Technical Specification Group Services and System Aspects; 3GPP enhancement for TV service (Release 14),” 3rd Generation Partnership Project (3GPP), TR 22.816, March 2016. [Online]. Available: http://www.3gpp.org
[20]C. V. N. Index, “The zettabyte era–trends and nalysis,” Cisco white paper, 2013.
[21]R. Afolabi et al., “Multicast Scheduling and Resource Allocation Algorithms for OFDMA-Based Systems: A Survey,” IEEE Commun. Surveys Tuts., vol. 15, no. 1, pp. pages 240–254, First 2013.
[22]H. Wang et al., “Adaptive Modulation for a Downlink Multicast Channel in OFDMA systems,” in Wireless Communications and Networking Conf., 2007.WCNC 2007. IEEE, March 2007, pp. 650–655.
[23]——, “History-Based Adaptive Modulation for a Downlink Multicast Channel in OFDMA Systems,” in Wireless Communications and Networking Conf., 2008. WCNC 2008. IEEE, March 2008, pp. 1588–1592.
[24]R. Radhakrishnan et al., “Channel quality-based AMC and smart scheduling scheme for SVC video transmission in LTE MBSFN networks,” in Communications (ICC), 2012 IEEE International Conf. on, June 2012, pp. 6514–6518.
[25]A. d. l. Fuente et al., “Joint Multicast/Unicast Scheduling with Dynamic Optimization for LTE Multicast Service,” in European Wireless 2014; 20th European
Wireless Conf.; Proceedings of, May 2014, pp. 1–6.
[26]P. Li et al., “Scalable Video Multicast With Adaptive Modulation and Coding in Broadband Wireless Data Systems,” IEEE/ACM Trans. Netw., vol. 20, no. 1, pp. 57–68, Feb 2012.
[27]H. Schwartz et al., “Overview of the scalable video coding extension of the H264/AVC standard,” IEEE Circuits Syst. Mag., vol. 17, no. 9, pp. 1103–1120, 2007.
[28]H.-Y. Meng et al., “An on-demand QoE resource allocation algorithm for multiflow LTE eMBMS,” in Wireless and Optical Communication Conf. (WOCC), 2015 24th, Oct 2015, pp. 93–97.
[29]W. H. Kuo et al., “Adaptive Resource Allocation for Layer-Encoded IPTV Multicasting in IEEE 802.16 WiMAX Wireless Networks,” IEEE Trans. Multimedia, vol. 13, no. 1, pp. 116–124, Feb 2011.
[30]Y. I. Choi et al., “Scalable Transmission Control: SVC-Based Dynamic Resource Allocation for Enhanced Multicast and Broadcast Service,” IEEE Commun. Lett., vol. 16, no. 9, pp. 1436–1438, September 2012.
[31]L. Huang et al., “Efficient Group-Based Multimedia-on-Demand Service Delivery in Wireless Networks,” IEEE Trans. Broadcast., vol. 52, no. 4, pp. 492–504, Dec 2006.
[32]X. Wang et al., “DeRe: A Buffer Saving and Controllable Video-on-Demand Broadcasting Scheme for Heterogeneous Receivers,” IEEE Trans. Broadcast., vol. PP, no. 99, pp. 1–1, 2015.
[33]J. Chen et al., “Fair and Optimal Resource Allocation for LTE Multicast (eMBMS): Group Partitioning and Dynamics,” in Proc. IEEE INFOCOM, 2015, pp. 1266–1274.
[34]G. Araniti et al., “Adaptive Resource Allocation to Multicast Services in LTE Systems,” IEEE Trans. Broadcast., vol. 59, no. 4, pp. 658–664, Dec 2013.
[35]A. E. Essaili et al., “QoE-Based Traffic and Resource Management for Adaptive HTTP Video Delivery in LTE,” IEEE Trans. Circuits Syst. Video Technol., vol. 25, no. 6, pp. 988–1001, June 2015.
[36]T. Stockhammer, “Dynamic Adaptive Streaming over HTTP –: Standards and Design Principles,” in Proceedings of the Second Annual ACM Conference on Multimedia Systems, ser. MMSys ’11. New York, NY, USA: ACM, 2011, pp. 133–144. [Online]. Available: http://doi.acm.org/10.1145/1943552.1943572
[37]K. Piamrat et al., “Q-DRAM: QoE-Based Dynamic Rate Adaptation Mechanism for Multicast in Wireless Networks,” in IEEE GLOBECOM, Nov 2009, pp. 1–6.
[38]J. Koo et al., “MARC: Adaptive Rate Control scheme for improving the QoE of streaming services in mobile broadband networks,” in ISCIT, Oct 2010, pp. 105–110.
[39]H. Hu et al., “QoE-based multi-stream scalable video adaptation over wireless networks with proxy,” in IEEE ICC, June 2012, pp. 7088–7092.
[40]Y. Chen et al., “From QoS to QoE: A Tutorial on Video Quality Assessment,” IEEE Commun. Surveys Tuts., vol. 17, no. 2, pp. 1126–1165, Secondquarter
2015.
[41]F. Dobrian et al., “Understanding the Impact of Video Quality on User Engagement,” in Proc. of the ACM SIGCOMM 2011 Conf., ser. SIGCOMM ’11. New York, NY, USA: ACM, 2011, pp. 362–373. [Online]. Available:
http://doi.acm.org/10.1145/2018436.2018478
[42]X. Liu et al., “A Case for a Coordinated Internet Video Control Plane,” in Proc. of the ACM SIGCOMM 2012 Conf. on Applications, Technologies, Architectures, and Protocols for Computer Communication, ser. SIGCOMM ’12. New York, NY, USA: ACM, 2012, pp. 359–370. [Online]. Available:
http://doi.acm.org/10.1145/2342356.2342431
[43]W. Kuo et al., “A QoE-Based Link Adaptation Scheme for H.264/SVC Video Multicast Over IEEE 802.11,” IEEE Trans. Circuits Syst. Video Technol., vol. 25, no. 5, pp. 812–826, May 2015.
[44]S. Lu, Y. Cai, L. Zhang, J. Li, P. Skov, C. Wang, and Z. He, “Channel-aware frequency domain packet scheduling for mbms in lte,” in VTC Spring 2009 IEEE 69th Vehicular Technology Conference, April 2009, pp. 1–5.
[45]C. Ko et al., “Strategy-Proof Resource Allocation Mechanism for Multi-Flow Wireless Multicast,” IEEE Trans. Wireless Commun., pp. 1–14, 2015.
[46]3GPP, “3GPP TS 36.213 V12.5.0. Physical layer procedures; Evolved Universal Terrestrial Radio Access, Technical Specification,” 3rd Generation Partnership
Project (3GPP), Tech. Rep., March 2015.
[47]——, “3GPP TR 36.814 V9.0.0. Further advancements for E-UTRA physical layer aspects; Evolved Universal Terrestrial Radio Access, Technical Report,” 3rd Generation Partnership Project (3GPP), Tech. Rep., March 2010.
[48]J. C. Ikuno et al., “System Level Simulation of LTE Networks,” in 2010 IEEE 71st Vehicular Technology Conference, May 2010, pp. 1–5.
[49](2005) SVC test sequences. [Online]. Available: ftp://ftp.tnt.uni-hannover.de/
pub/svc/testsequences/
[50]K. Suehring. (2012, March) JSVM reference software. [Online]. Available:
http://www.hhi.fraunhofer.de/
[51]S. J. Crowley. (2011, April) The Challenge of HD Video Streaming on LTE. [Online]. Available: http://stevencrowley.com/2011/04/22/streaminghd-video-on-mobile-broadband/#more-1977
[52]N. Nisan, Algorithmic Game Theory. Cambridge Univ. Press, 2007.
[53]D. Gómez-Barquero et al., “DVB-NGH: The Next Generation of Digital Broadcast Services to Handheld Devices,” IEEE Trans. Broadcast., vol. 60, no. 2, pp.246–257, 2014.
[54]M. Chair et al., “FLO Physical Layer: An Overview,” IEEE Trans. Broadcast., vol. 53, no. 1, pp. 145–160, 2007.
[55]A. Kumar, Implementing Mobile TV : ATSC Mobile DTV, MediaFLO, DVBH/SH, DMB, WiMAX, 3G Systems, and Rich Media Applications , 2nd ed. Focal Press, 2010.
[56]J. Yoon et al., “MuVi: A Multicast Video Delivery Scheme for 4G Cellular Networks,” in Proc. ACM MobiCom, 2012, pp. 209–220.
[57]C.-Y. Wang et al., “A Voting-Based Femtocell Downlink Cell-Breathing Control Mechanism,” IEEE/ACM Trans. Netw., vol. 24, no. 1, pp. 85–98, Feb 2016.
[58]N. Nisan et al., “Google’s Auction for TV Ads,” in 36th ICALP, vol. 5556, 2009, pp. 309–327.
[59]I. Staff. (2010, September) How to Buy TV Advertising on a Budget. [Online].
Available: http://www.inc.com/guides/2010/09/how-to-buy-tv-advertisingon-a-budget.html
[60]H. R. Varian, “Position auctions,” International Journal of Industrial Organization, vol. 25, no. 6, pp. 1163–1178, 2007.
[61]3GPP, “Introduction of the Multimedia Broadcast/Multicast Service (MBMS) in the Radio Access Network (RAN); Stage 2,” 3rd Generation Partnership
Project (3GPP), TS 25.346, 3 2014. [Online]. Available: http://www.3gpp.org/
[62]W. Zhou, “The Choice of Commercial Breaks in Television Programs: TheNumber, Length and Timing,” The Journal of Industrial Economics, vol. 52, no. 3, pp. 315–326, 2004.
[63]X. Hei et al., “A Measurement Study of a Large-Scale P2P IPTV System,”IEEE Trans. Multimedia, vol. 9, no. 8, pp. 1672–1687, Dec 2007.
[64]D. Parkes, “Iterative Combinatorial Auctions,” in Combinatorial Auctions, P. Cramton et al., Eds. MIT Press, 2006, ch. 2.
[65]S. Dobzinski et al., “Multi-unit auctions with budget limits,” Games and Economic Behavior, vol. 74, no. 2, pp. 486 – 503, 2012.
[66]P. Cramton, “Ascending auctions,” European Economic Review, vol. 42, no. 3, pp. 745–756, 1998.
[67]L. Ausubel et al., “The Clock-Proxy Auction: A Practical Combinatorial Auction Design,” in Combinatorial Auctions, P. Cramton et al., Eds. MIT Press, 2006, ch. 5.
[68]M. Cha et al., “Watching Television over an IP Network,” in Proc. of the 8th ACM SIGCOMM Conference on Internet Measurement, ser. IMC ’08. New York, NY, USA: ACM, 2008, pp. 71–84.
[69]G. Association. (2016, 2) The Mobile Economy. [Online]. Available: http://www.gsma.com/mobileeconomy/2016/global/
[70]M. Matinmikko et al., “Spectrum sharing using licensed shared access: the concept and its workflow for LTE-advanced networks,” IEEE Wireless Communications, vol. 21, no. 2, pp. 72–79, April 2014.
[71]3GPP, “Feasibility study for Proximity Services (ProSe),” 3rd Generation Partnership Project (3GPP), TS 22.803, 6 2013. [Online]. Available:
http://www.3gpp.org/
[72]A. Asadi et al., “A Survey on Device-to-Device Communication in Cellular Networks,” IEEE Commun. Surveys Tuts., vol. 16, no. 4, pp. 1801–1819, Fourthquarter 2014.
[73]S. Rathinakumar and M. K. Marina, “GAVEL: Strategy-proof Ascending Bid Auction for Dynamic Licensed Shared Access,” in Proceedings of the 17th ACM International Symposium on Mobile Ad Hoc Networking and Computing,
ser. MobiHoc ’16. New York, NY, USA: ACM, 2016, pp. 121–130. [Online].
Available: http://doi.acm.org/10.1145/2942358.2942371
[74]X. Zhou and H. Zheng, “TRUST: A General Framework for Truthful Double Spectrum Auctions,” in IEEE INFOCOM 2009, April 2009, pp. 999–1007.
[75]W. Dong et al., “Double Auctions for Dynamic Spectrum Allocation,” IEEE/ACM Trans. Netw., vol. 24, no. 4, pp. 2485–2497, Aug. 2016. [Online].
Available: https://doi.org/10.1109/TNET.2015.2476497
[76]S. C. Zhan et al., “Truthful Auction Mechanism Design for Short-Interval Secondary Spectrum Access Market,” IEEE Trans. Wireless Commun., vol. 13, no. 3, pp. 1471–1481, March 2014.
[77]Q. Wang, Q. Sun, K. Ren, and X. Jia, “Themis: Collusion-resistant and fair pricing spectrum auction under dynamic supply,” IEEE Transactions on Mobile Computing, vol. PP, no. 99, pp. 1–1, 2016.
[78]Y. Li et al., “Coalitional Games for Resource Allocation in the Device-toDevice Uplink Underlaying Cellular Networks,” IEEE Trans. Wireless Commun., vol. 13, no. 7, pp. 3965–3977, July 2014.
[79]S. T. Su et al., “Protocol Design and Game Theoretic Solutions for Device-toDevice Radio Resource Allocation,” IEEE Trans. Veh. Technol., vol. PP, no. 99, pp. 1–1, 2016.
[80]C. Y. Wang et al., “Device-to-Device Communication in LTE-Advanced System: A Strategy-Proof Resource Exchange Framework,” IEEE Trans. Veh. Technol., vol. 65, no. 12, pp. 10 022–10 036, Dec 2016.
[81]Y. Zhang et al., “Incentive Compatible Mode Selection and Spectrum Partitioning in Overlay D2D-Enabled Network,” in 2015 IEEE Globecom Workshops (GC Wkshps), Dec 2015, pp. 1–6.
[82]J. Wang et al., “Resource Sharing of Underlaying Device-to-Device and Uplink Cellular Communications,” IEEE Commun. Lett., vol. 17, no. 6, pp. 1148–1151,
June 2013.
[83]Y. Xiao et al., “Spectrum sharing for device-to-device communications in cellular networks: A game theoretic approach,” in IEEE DYSPAN, April 2014, pp. 60–71.
[84]H. Kebriaei et al., “Double-Sided Bandwidth-Auction Game for Cognitive Device-to-Device Communication in Cellular Networks,” IEEE Trans. Veh. Technol., vol. 65, no. 9, pp. 7476–7487, Sept 2016.
[85]3GPP, “Evolved Universal Terrestrial Radio Access (E-UTRA) and Evolved Universal Terrestrial Radio Access Network (E-UTRAN); Overall description; Stage 2,” 3rd Generation Partnership Project (3GPP), TS 36.300, 6 2016.
[Online]. Available: http://www.3gpp.org/
[86]J. Lyu et al., “A Stackelberg Game Model for Overlay D2D Transmission With Heterogeneous Rate Requirements,” IEEE Transactions on Vehicular Technology, vol. 65, no. 10, pp. 8461–8475, Oct 2016.
[87]R. Kaliski and H. Y. Wei, “Dynamic Resource Allocation and Advertisement Revenue Optimization for TV Over eMBMS,” IEEE Trans. Broadcast., vol. 62, no. 3, pp. 579–597, Sept 2016.
[88]H. Haddadi et al., “MobiAd: Private and Scalable Mobile Advertising,” in Proc. ACM MobiArch. New York, NY, USA: ACM, 2010, pp. 33–38.
[89]Apple. (2016, May) Apple iBeacon. [Online]. Available: https://developer.apple.com/ibeacon/
[90]Google. (2016, May) Google Eddystone. [Online]. Available: https://developers.google.com/beacons/
[91]B. Edelman et al., “Internet Advertising and the GSP Auction,” American Economic Review, vol. 97, no. 1, pp. 242–259, 2005.
[92]Google. (2016, February) AdWords Help - Auction. [Online]. Available: https://support.google.com/adwords/answer/142918?hl=en-GB
[93]3GPP, “Digital cellular telecommunications system (Phase 2+); Universal Mobile Telecommunications System (UMTS); Numbering, addressing and identification,” 3rd Generation Partnership Project (3GPP), TS 23.003, 4
2011. [Online]. Available: http://www.3gpp.org/
[94]IST, “WINNER II Channel Models,” Information Society Technologies (IST), Tech. Rep. D1.1.2 V1.2, 2008. [Online]. Available: http://www.cept.org/files/
1050/documents/winner2%20-%20final%20report.pdf
[95]3GPP, “Study on LTE Device to Device Proximity Services; Radio Aspects,” 3rd Generation Partnership Project (3GPP), TR 36.843 V12.0.1, 3 2014.
[Online]. Available: http://www.3gpp.org/
[96]Z. Han et al., Game Theory in Wireless and ommunication Networks: Theory,Models, and Applications. Cambridge University Press, 2012.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊