跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.208) 您好!臺灣時間:2025/10/02 15:33
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:劉庭瑋
研究生(外文):Liu Ting Wei
論文名稱:以Lactobacillus brevis LUC247發酵台灣藜酸麵糰以增進台灣藜麵包中之GABA含量
論文名稱(外文):Use of Lactobacillus brevis LUC247 fermented quinoa sourdough to develop γ-aminobutyric acid (GABA) enriched quinoa bread.
指導教授:呂英震
指導教授(外文):Lu Ying-Chen
學位類別:碩士
校院名稱:國立嘉義大學
系所名稱:食品科學系研究所
學門:農業科學學門
學類:食品科學類
論文種類:學術論文
論文出版年:2018
畢業學年度:106
語文別:中文
論文頁數:87
中文關鍵詞:台灣藜γ-胺基丁酸酸麵糰
外文關鍵詞:quinoaγ-aminobutyric acidsourdough
相關次數:
  • 被引用被引用:1
  • 點閱點閱:324
  • 評分評分:
  • 下載下載:17
  • 收藏至我的研究室書目清單書目收藏:1
γ-胺基丁酸 (γ-Aminobutyric acid,GABA)為神經傳導抑制物,具有鎮靜、抑制憂鬱及降血壓等生理功能。本實驗目的為利用乳酸菌發酵台灣藜麵糰並篩選其最適發酵條件,製作含GABA且質地、風味較佳的台灣藜麵包。以TLC分析,篩選出具有產生GABA能力之菌株,以16S rDNA定序菌株,確認產GABA菌株為Lactobacillus brevis LUC247。以L. brevis LUC247發酵製作不同含量台灣藜粉末(0%、15%、30%、45%、60%)之第二型酸麵糰,並在發酵不同時間(0、2、4、6、8、12、24、36及48小時)時分析乳酸菌生長菌數、pH值、可滴定酸、有機酸含量及GABA含量;計算其菌數與發酵值。評估主麵糰於不同比例和發酵時間之硬度和黏著性,經前述最適發酵時間,檢測不同台灣藜比例酸麵包之質地、顏色和貨架期。結果顯示,L. brevis LUC247 在不同含量台灣藜之麵糰中發酵12小時後,乳酸菌菌數達到高峰之109 CFU/g。發酵24小時後,pH值為3.75,可滴定酸為0.9%。有機酸的分析顯示乳酸和醋酸含量與台灣藜的比例具有正相關。GABA含量則與台灣藜的含量成正比,含台灣藜30%之酸麵糰約為0%台灣藜酸麵糰之3倍。主麵糰之硬度隨著發酵時間增加而降低,而以添加台灣藜比例高者較高,黏著性起初些微降低於6-8小時至最低點,隨後隨時間增加而增加。麵包的質地分析,顯示台灣藜添加量和硬度呈正相關。酸麵糰麵包在第6天發現黴菌生長。本研究酸麵糰麵包之最適發酵時間、比例以期提供製作吐司的最佳風味、質地和機能性,藉此提供業界做為參考指標。
γ-Aminobutyric acid (GABA) is a neurotransmitter inhibitor, it has sedation, anti-depression, hypotensive and other physiological functions.
This study aimed at investigating the addition of quinoa (Chenopodium formosanum Koidz) flours to sourdough. Type II sourdough containing quinoa flours of different content (0%, 15%, 30%, 45%,60%) were prepared in laboratory. Lactobacillus brevis LUC247 was used to ferment quinoa sourdough during different fermentation time (0, 2, 4, 6, 8, 12, 24, 36, 48 hours). Compared to control dough, without quinoa, the amount of GABA was representing about 3-fold increase, cell count of L. brevis LUC247 in quinoa sourdough fermented for 12 hours was the highest (1E+9 CFU/g). The higher the inoculated cell counts, the faster the pH decreased and Total titratable acidity (TTA) and organic acid (lactate, Acetic acid) amount increased in quinoa sourdough. After fermented 24 hours, pH value is 3.75, TTA is 0.9%. Hardness and stickiness of quinoa sourdough are the most suitable to make bread after fermented 8 hours. After bread making, the 15% quinoa sourdough bread is the most acceptable to people. The result indicated the potential of quinoa flour through sourdough fermentation by LAB to enrich GABA and the sourdough can improve the flavor, texture and nutrition of bread.
目錄
摘要 I
謝誌 III
目錄 IV
附圖目錄 VIII
附表目錄 IX
圖目錄 X
表目錄 XII
壹、 前言 1
貳、 文獻回顧 2
一、 台灣藜 2
(一) 台灣藜簡介 2
(二) 台灣藜營養成份 2
二、 酸麵糰 5
(一)、 酸麵糰簡介 5
(二)、 酸麵糰的種類 5
(三)、 酸麵糰中微生物組成 8
(四)、 酸麵糰的功能 10
三、 γ-胺基丁酸(γ-Aminobutyric Acid) 13
(一)、 γ-胺基丁酸簡介 13
(二)、 GABA生理功能 13
(三)、 GABA生產方式 14
參、 材料與方法 17
一、 實驗架構 17
二、 實驗材料 18
(一) 菌株 18
(二) 培養基 18
(三) 原料 18
(四) 化學藥品 18
(五) 生化鑑定 19
(六) 儀器與設備 20
三、 實驗方法 22
(一) 產GABA能力菌株篩選 22
(二) 台灣藜酸麵糰發酵條件篩選 24
(三) 台灣藜主麵糰製備、分析 29
(四) 台灣藜麵包製備、分析 31
(五) 統計分析 32
肆、 結果與討論 46
一、 篩選具產生GABA能力之菌種 46
二、 菌種鑑定結果 48
三、 不同比例台灣藜之酸麵團發酵期間乳酸菌菌數 51
四、 不同比例台灣藜之酸麵團發酵期間pH值、可滴定酸 54
五、 不同比例台灣藜之酸麵團發酵期間有機酸含量與發酵值 58
六、 不同比例台灣藜之酸麵團發酵期間GABA含量 63
七、 不同比例台灣藜之酸麵團發酵期間主麵糰硬度、黏著性分析 65
八、 不同比例台灣藜之酸麵團主麵糰發酵體積 68
九、 不同比例台灣藜之台灣藜麵包質地分析 70
十、 不同比例台灣藜之台灣藜麵包顏色分析 72
十一、 不同比例台灣藜之台灣藜麵包儲藏期間水分含量變化 75
十二、 不同比例台灣藜之台灣藜麵包貨架期 77
十三、 不同比例台灣藜之台灣藜麵包感官品評分析 80
伍、 結論 82
陸、 參考文獻 83
郭耀綸、楊遠波、蔡碧仁、葛孟杰 (2008)。台灣藜推廣手冊。行政院農委會及國立 屏東科技大學出版:2~14。
施坤河 (2003)。天然酵母麵包製作—老麵於麵包上的應用。烘焙工業112:52-57。
陳筱君 (2014)。臺灣藜之營養及機能性成分分析。國立中興大學食品暨應用生物科技學系研究所碩士論文
Abdou, A.M., Higashiguchi, S., Horie, K., Kim, M., Hatta, H., Yokogoshi, H., 2006. Relaxation and immunity enhancement effects of gamma-aminobutyric acid (GABA) administration in humans. Biofactors 26, 201–8.
Adhikari, B., Howes, T., Bhandari, B.R., Truong, V., 2001. Stickiness in foods: A review of mechanisms and test methods. Int. J. Food Prop. 4, 1–33.
Al-Hooti, Suad N Sidhu, Jiwan S, Al-Saqer, J.M., 2000. Utility of Cie Tristimulus System in Measuring the Objective Crumb Color of High-Fiber Toast Bread Formulations. J. Food Qual. 23, 103–116.
Allegra, M., Furtmüller, P.G., Jantschko, W., Zederbauer, M., Tesoriere, L., Livrea, M.A., Obinger, C., 2005. Mechanism of interaction of betanin and indicaxanthin with human myeloperoxidase and hypochlorous acid. Biochem. Biophys. Res. Commun. 332, 837–844.
Armero, E., Collar, C., 1997. Texture properties of formulated wheat doughs. Relationships with dough and bread technological quality. Leb. und-Technologie 204, 136–145.
Axel, C., Brosnan, B., Zannini, E., Furey, A., Coffey, A., Arendt, E.K., 2016. Antifungal sourdough lactic acid bacteria as biopreservation tool in quinoa and rice bread. Int. J. Food Microbiol. 239, 86–94.
Bartkiene, E., Bartkevics, V., Krungleviciute, V., Pugajeva, I., Zadeike, D., Juodeikiene, G., 2017. Lactic Acid Bacteria Combinations for Wheat Sourdough Preparation and Their Influence on Wheat Bread Quality and Acrylamide Formation. J. Food Sci. 82, 2371–2378.
Bhanwar, S., Bamnia, M., Ghosh, M., Ganguli, A., 2013. Use of Lactococcus lactis to enrich sourdough bread with γ-aminobutyric acid. Int. J. Food Sci. Nutr. 64, 77–81.
Cho, Y.R., Chang, J.Y., Chang, H.C., 2007. Production of γ-aminobutyric acid (GABA) by Lactobacillus buchneri isolated from Kimchi and its neuroprotective effect on neuronal cells. J. Microbiol. Biotechnol. 17, 104–109.
Cizeikiene, D., Juodeikiene, G., Paskevicius, A., Bartkiene, E., 2013. Antimicrobial activity of lactic acid bacteria against pathogenic and spoilage microorganism isolated from food and their control in wheat bread. Food Control 31, 539–545.
Coda, R., Rizzello, C.G., Gobbetti, M., 2010. Use of sourdough fermentation and pseudo-cereals and leguminous flours for the making of a functional bread enriched of γ-aminobutyric acid (GABA). Int. J. Food Microbiol. 137, 236–245.
Cohen, I., Navarro, V., Clemenceau, S., Baulac, M., Miles, R., 2002. On the Origin of Interictal Activity in Human Temporal Lobe Epilepsy in Vitro. Science (80-. ). 298, 1418–1421.
Coleman, S.T., Fang, T.K., Rovinsky, S.A., Turano, F.J., Moye-Rowley, W.S., 2001. Expression of a Glutamate Decarboxylase Homologue Is Required for Normal Oxidative Stress Tolerance in Saccharomyces cerevisiae. J. Biol. Chem. 276, 244–250.
Corsetti, A., Settanni, L., 2007. Lactobacilli in sourdough fermentation. Food Res. Int. 40, 539–558.
Dallagnol, A.M., Pescuma, M., 2015. Optimization of lactic ferment with quinoa flour as bio-preservative alternative for packed bread.
Dhakal, R., Bajpai, V.K., Baek, K.H., 2012. Production of GABA (γ-aminobutyric acid) by microorganisms: A review. Brazilian J. Microbiol. 43, 1230–1241.
Elgeti, D., Jekle, M., Becker, T., 2015. Strategies for the aeration of gluten-free bread – A review. Trends Food Sci. Technol. 46, 75–84.
Föste, M., Jekle, M., Becker, T., 2017. Structure stabilization in starch-quinoa bran doughs: The role of water availability and gelatinization. Carbohydr. Polym. 174, 1018–1025.
Föste, M., Nordlohne, S.D., Elgeti, D., Linden, M.H., Heinz, V., Jekle, M., Becker, T., 2014. Impact of quinoa bran on gluten-free dough and bread characteristics. Eur. Food Res. Technol. 239, 767–775.
Fujimoto, A., Ito, K., Itou, M., Narushima, N., Ito, T., Yamamoto, A., Hirayama, S., Furukawa, S., Morinaga, Y., Miyamoto, T., 2017. Microbial behavior and changes in food constituents during fermentation of Japanese sourdoughs with different rye and wheat starting materials. J. Biosci. Bioeng. xx.
Hammes, W.P., Gänzle, M.G., 1998. Sourdough breads and related products, in: Microbiology of Fermented Foods. Springer US, Boston, MA, pp. 199–216.
Hankey, G.J., Eikelboom, J.W., 1999. Homocysteine and vascular disease. Lancet 354, 407–413.
Hayakawa, K., Kimura, M., Kasaha, K., Matsumoto, K., Sansawa, H., Yamori, Y., 2004. Effect of a gamma-aminobutyric acid-enriched dairy product on the blood pressure of spontaneously hypertensive and normotensive Wistar-Kyoto rats. Br. J. Nutr. 92, 411–7.
Hayat, A., Jahangir, T.M., Khuhawar, M.Y., Alamgir, M., Hussain, Z., Haq, F.U., Musharraf, S.G., 2015. HPLC determination of gamma amino butyric acid (GABA) and some biogenic amines (BAs) in controlled, germinated, and fermented brown rice by pre-column derivatization. J. Cereal Sci. 64, 56–62.
He, H., Hoseney, R.C., 1990. Changes in Bread Firmness and Moisture During Long-Term Storage. Cereal Chem. 67, 603–605.
Kanner, J., Harel, S., Granit, R., 2001. Betalains--a new class of dietary cationized antioxidants. J. Agric. Food Chem. 49, 5178–85.
Kariluoto, S., 2008. Folates in rye : Determination and enhancement by food processing.
Kariluoto, S., Aittamaa, M., Korhola, M., Salovaara, H., 2006. Effects of yeasts and bacteria on the levels of folates in rye sourdoughs 106, 137–143.
Katina, K., 2005. Sourdough: A tool for the improved flavour, texture and shelf-life of wheat bread, VTT Publications.
Komatsuzaki, N., Nakamura, T., Kimura, T., Shima, J., 2008. Characterization of Glutamate Decarboxylase from a High γ-Aminobutyric Acid (GABA)-Producer, Lactobacillus paracasei. Biosci. Biotechnol. Biochem. 72, 278–285.
Koyro, H., Eisa, S.S., Lieth, H., 2008. Salt Tolerance of Chenopodium quinoa Willd ., Grains of the Andes : Influence of Salinity on Biomass Production , Yiel .... Salt Tolerance of Chenopodium quinoa Willd ., Grains of the Andes : Influence of Salinity on Biomass Production , Yield , Compositi.
Li, H., Qiu, T., Huang, G., Cao, Y., 2010. Production of gamma-aminobutyric acid by Lactobacillus brevis NCL912 using fed-batch fermentation. Microb. Cell Fact. 9, 85.
Liao, W.C., Wang, C.Y., Shyu, Y.T., Yu, R.C., Ho, K.C., 2013. Influence of preprocessing methods and fermentation of adzuki beans on γ-aminobutyric acid (GABA) accumulation by lactic acid bacteria. J. Funct. Foods 5, 1108–1115.
Lim, S.B., Tingirikari, J.M.R., Kwon, Y.W., Li, L., Kim, G.E., Han, N.S., 2017. Polyphasic Microbial Analysis of Traditional Korean Jeung-Pyun Sourdough Fermented with Makgeolli. J. Microbiol. Biotechnol. 27, 226–233.
Maeda, T., Morita, N., 2003. Flour quality and pentosan prepared by polishing wheat grain on breadmaking. Food Res. Int. 36, 603–610.
Mota, C., Santos, M., Mauro, R., Samman, N., Matos, A.S., Torres, D., Castanheira, I., 2016. Protein content and amino acids profile of pseudocereals. Food Chem. 193, 55–61.
Ogungbenle, H.N., 2003. Nutritional evaluation and functional properties of quinoa (Chenopodium quinoa) flour. Int. J. Food Sci. Nutr. 54, 153–158.
Okada, T., Sugishita, T., Murakami, T., Murai, H., Saikusa, T., Horino, T., Onoda, A., Kajimoto, O., Takahashi, R., Takahashi, T., 2000. Effect of the Defatted Rice Germ Enriched with GABA for Sleeplessness, Depression, Autonomic Disorder by Oral Administration. Nippon Shokuhin Kagaku Kogaku Kaishi 47, 596–603.
Park, J.H., Lee, Y.J., Kim, Y.H., Yoon, K.S., 2017. Antioxidant and Antimicrobial Activities of Quinoa ( Chenopodium quinoa Willd .) Seeds Cultivated in Korea 22, 195–202.
Quinto, E.J., Jiménez, P., Caro, I., Tejero, J., Mateo, J., Girbés, T., 2014. Probiotic Lactic Acid Bacteria: A Review. Food Nutr. Sci. 5, 1765–1775.
Rosenquist, H., Hansen, Å., 1998. The antimicrobial effect of organic acids, sour dough and nisin against Bacillus subtilis and B. licheniformis isolated from wheat bread. J. Appl. Microbiol. 85, 621–631.
Saikusa, T., Horino, T., Mori, Y., 1994. Accumulation of γ-aminobutyric acid (gaba) in the rice germ during water soaking. Biosci. Biotechnol. Biochem. 58, 2291–2292.
Salim-ur-Rehman, Paterson, A., Piggott, J.R., 2006. Flavour in sourdough breads: a review. Trends Food Sci. Technol. 17, 557–566.
Schmidt, K., Stupar, J., Shirley, J., Adapa, S., Sukup, D., 1996. Factor Affecting Titratable Acidity in Raw Milk. Dairy Day 0, 60–62.
Stiles, M.E., Holzapfel, W.H., 1997. Lactic acid bacteria of foods and their current taxonomy. Int. J. Food Microbiol. 36, 1–29.
Stolz, P., 2003. Biological fundamentals of yeast and lactobacilli fermentation in bread dough. Handb. Dough Ferment.
Suárez-Estrella, D., Torri, L., Pagani, M.A., Marti, A., 2018. Quinoa bitterness: causes and solutions for improving product acceptability. J. Sci. Food Agric.
Teixeira, P., 2014. Lactobacillus: Lactobacillus brevis, in: Encyclopedia of Food Microbiology: Second Edition. Elsevier, pp. 418–424.
Tsai, P.J., Chen, Y.S., Sheu, C.H., Chen, C.Y., 2011. Effect of nanogrinding on the pigment and bioactivity of djulis (Chenopodium formosanum Koidz.). J. Agric. Food Chem. 59, 1814–1820.
Tsai, P.J., Sheu, C.H., Wu, P.H., Sun, Y.F., 2010. Thermal and pH stability of betacyanin pigment of djulis (Chenopodium formosanum) in Taiwan and their relation to antioxidant activity. J. Agric. Food Chem. 58, 1020–1025.
Ua-Arak, T., Jakob, F., Vogel, R.F., 2016. Characterization of growth and exopolysaccharide production of selected acetic acid bacteria in buckwheat sourdoughs. Int. J. Food Microbiol. 239, 103–112.
Vega-Gálvez, A., Miranda, M., Vergara, J., Uribe, E., Puente, L., Martínez, E.A., 2010. Nutrition facts and functional potential of quinoa (Chenopodium quinoa willd.), an ancient Andean grain: A review. J. Sci. Food Agric. 90, 2541–2547.
Wang, Q., Liu, X., Fu, J., Wang, S., Chen, Y., Chang, K., 2018. Substrate sustained release ‑ based high efficacy biosynthesis of GABA by Lactobacillus brevis NCL912. Microb. Cell Fact. 1–8.
Wolter, A., Hager, A.S., Zannini, E., Czerny, M., Arendt, E.K., 2014. Impact of sourdough fermented with lactobacillus plantarum fst 1.7 on baking and sensory properties of gluten-free breads. Eur. Food Res. Technol. 239, 1–12.
Wu, C., Huang, Y., Lai, X., Lai, R., Zhao, W., Zhang, M., Zhao, W., 2014. Study on quality components and sleep-promoting effect of GABA Maoyecha tea. J. Funct. Foods 7, 180–190.
Wu, L., Hsu, H.-W., Chen, Y.-C., Chiu, C.-C., Lin, Y.-I., Ho, J.A., 2006. Antioxidant and antiproliferative activities of red pitaya. Food Chem. 95, 319–327.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top