郭耀綸、楊遠波、蔡碧仁、葛孟杰 (2008)。台灣藜推廣手冊。行政院農委會及國立 屏東科技大學出版:2~14。
施坤河 (2003)。天然酵母麵包製作—老麵於麵包上的應用。烘焙工業112:52-57。
陳筱君 (2014)。臺灣藜之營養及機能性成分分析。國立中興大學食品暨應用生物科技學系研究所碩士論文Abdou, A.M., Higashiguchi, S., Horie, K., Kim, M., Hatta, H., Yokogoshi, H., 2006. Relaxation and immunity enhancement effects of gamma-aminobutyric acid (GABA) administration in humans. Biofactors 26, 201–8.
Adhikari, B., Howes, T., Bhandari, B.R., Truong, V., 2001. Stickiness in foods: A review of mechanisms and test methods. Int. J. Food Prop. 4, 1–33.
Al-Hooti, Suad N Sidhu, Jiwan S, Al-Saqer, J.M., 2000. Utility of Cie Tristimulus System in Measuring the Objective Crumb Color of High-Fiber Toast Bread Formulations. J. Food Qual. 23, 103–116.
Allegra, M., Furtmüller, P.G., Jantschko, W., Zederbauer, M., Tesoriere, L., Livrea, M.A., Obinger, C., 2005. Mechanism of interaction of betanin and indicaxanthin with human myeloperoxidase and hypochlorous acid. Biochem. Biophys. Res. Commun. 332, 837–844.
Armero, E., Collar, C., 1997. Texture properties of formulated wheat doughs. Relationships with dough and bread technological quality. Leb. und-Technologie 204, 136–145.
Axel, C., Brosnan, B., Zannini, E., Furey, A., Coffey, A., Arendt, E.K., 2016. Antifungal sourdough lactic acid bacteria as biopreservation tool in quinoa and rice bread. Int. J. Food Microbiol. 239, 86–94.
Bartkiene, E., Bartkevics, V., Krungleviciute, V., Pugajeva, I., Zadeike, D., Juodeikiene, G., 2017. Lactic Acid Bacteria Combinations for Wheat Sourdough Preparation and Their Influence on Wheat Bread Quality and Acrylamide Formation. J. Food Sci. 82, 2371–2378.
Bhanwar, S., Bamnia, M., Ghosh, M., Ganguli, A., 2013. Use of Lactococcus lactis to enrich sourdough bread with γ-aminobutyric acid. Int. J. Food Sci. Nutr. 64, 77–81.
Cho, Y.R., Chang, J.Y., Chang, H.C., 2007. Production of γ-aminobutyric acid (GABA) by Lactobacillus buchneri isolated from Kimchi and its neuroprotective effect on neuronal cells. J. Microbiol. Biotechnol. 17, 104–109.
Cizeikiene, D., Juodeikiene, G., Paskevicius, A., Bartkiene, E., 2013. Antimicrobial activity of lactic acid bacteria against pathogenic and spoilage microorganism isolated from food and their control in wheat bread. Food Control 31, 539–545.
Coda, R., Rizzello, C.G., Gobbetti, M., 2010. Use of sourdough fermentation and pseudo-cereals and leguminous flours for the making of a functional bread enriched of γ-aminobutyric acid (GABA). Int. J. Food Microbiol. 137, 236–245.
Cohen, I., Navarro, V., Clemenceau, S., Baulac, M., Miles, R., 2002. On the Origin of Interictal Activity in Human Temporal Lobe Epilepsy in Vitro. Science (80-. ). 298, 1418–1421.
Coleman, S.T., Fang, T.K., Rovinsky, S.A., Turano, F.J., Moye-Rowley, W.S., 2001. Expression of a Glutamate Decarboxylase Homologue Is Required for Normal Oxidative Stress Tolerance in Saccharomyces cerevisiae. J. Biol. Chem. 276, 244–250.
Corsetti, A., Settanni, L., 2007. Lactobacilli in sourdough fermentation. Food Res. Int. 40, 539–558.
Dallagnol, A.M., Pescuma, M., 2015. Optimization of lactic ferment with quinoa flour as bio-preservative alternative for packed bread.
Dhakal, R., Bajpai, V.K., Baek, K.H., 2012. Production of GABA (γ-aminobutyric acid) by microorganisms: A review. Brazilian J. Microbiol. 43, 1230–1241.
Elgeti, D., Jekle, M., Becker, T., 2015. Strategies for the aeration of gluten-free bread – A review. Trends Food Sci. Technol. 46, 75–84.
Föste, M., Jekle, M., Becker, T., 2017. Structure stabilization in starch-quinoa bran doughs: The role of water availability and gelatinization. Carbohydr. Polym. 174, 1018–1025.
Föste, M., Nordlohne, S.D., Elgeti, D., Linden, M.H., Heinz, V., Jekle, M., Becker, T., 2014. Impact of quinoa bran on gluten-free dough and bread characteristics. Eur. Food Res. Technol. 239, 767–775.
Fujimoto, A., Ito, K., Itou, M., Narushima, N., Ito, T., Yamamoto, A., Hirayama, S., Furukawa, S., Morinaga, Y., Miyamoto, T., 2017. Microbial behavior and changes in food constituents during fermentation of Japanese sourdoughs with different rye and wheat starting materials. J. Biosci. Bioeng. xx.
Hammes, W.P., Gänzle, M.G., 1998. Sourdough breads and related products, in: Microbiology of Fermented Foods. Springer US, Boston, MA, pp. 199–216.
Hankey, G.J., Eikelboom, J.W., 1999. Homocysteine and vascular disease. Lancet 354, 407–413.
Hayakawa, K., Kimura, M., Kasaha, K., Matsumoto, K., Sansawa, H., Yamori, Y., 2004. Effect of a gamma-aminobutyric acid-enriched dairy product on the blood pressure of spontaneously hypertensive and normotensive Wistar-Kyoto rats. Br. J. Nutr. 92, 411–7.
Hayat, A., Jahangir, T.M., Khuhawar, M.Y., Alamgir, M., Hussain, Z., Haq, F.U., Musharraf, S.G., 2015. HPLC determination of gamma amino butyric acid (GABA) and some biogenic amines (BAs) in controlled, germinated, and fermented brown rice by pre-column derivatization. J. Cereal Sci. 64, 56–62.
He, H., Hoseney, R.C., 1990. Changes in Bread Firmness and Moisture During Long-Term Storage. Cereal Chem. 67, 603–605.
Kanner, J., Harel, S., Granit, R., 2001. Betalains--a new class of dietary cationized antioxidants. J. Agric. Food Chem. 49, 5178–85.
Kariluoto, S., 2008. Folates in rye : Determination and enhancement by food processing.
Kariluoto, S., Aittamaa, M., Korhola, M., Salovaara, H., 2006. Effects of yeasts and bacteria on the levels of folates in rye sourdoughs 106, 137–143.
Katina, K., 2005. Sourdough: A tool for the improved flavour, texture and shelf-life of wheat bread, VTT Publications.
Komatsuzaki, N., Nakamura, T., Kimura, T., Shima, J., 2008. Characterization of Glutamate Decarboxylase from a High γ-Aminobutyric Acid (GABA)-Producer, Lactobacillus paracasei. Biosci. Biotechnol. Biochem. 72, 278–285.
Koyro, H., Eisa, S.S., Lieth, H., 2008. Salt Tolerance of Chenopodium quinoa Willd ., Grains of the Andes : Influence of Salinity on Biomass Production , Yiel .... Salt Tolerance of Chenopodium quinoa Willd ., Grains of the Andes : Influence of Salinity on Biomass Production , Yield , Compositi.
Li, H., Qiu, T., Huang, G., Cao, Y., 2010. Production of gamma-aminobutyric acid by Lactobacillus brevis NCL912 using fed-batch fermentation. Microb. Cell Fact. 9, 85.
Liao, W.C., Wang, C.Y., Shyu, Y.T., Yu, R.C., Ho, K.C., 2013. Influence of preprocessing methods and fermentation of adzuki beans on γ-aminobutyric acid (GABA) accumulation by lactic acid bacteria. J. Funct. Foods 5, 1108–1115.
Lim, S.B., Tingirikari, J.M.R., Kwon, Y.W., Li, L., Kim, G.E., Han, N.S., 2017. Polyphasic Microbial Analysis of Traditional Korean Jeung-Pyun Sourdough Fermented with Makgeolli. J. Microbiol. Biotechnol. 27, 226–233.
Maeda, T., Morita, N., 2003. Flour quality and pentosan prepared by polishing wheat grain on breadmaking. Food Res. Int. 36, 603–610.
Mota, C., Santos, M., Mauro, R., Samman, N., Matos, A.S., Torres, D., Castanheira, I., 2016. Protein content and amino acids profile of pseudocereals. Food Chem. 193, 55–61.
Ogungbenle, H.N., 2003. Nutritional evaluation and functional properties of quinoa (Chenopodium quinoa) flour. Int. J. Food Sci. Nutr. 54, 153–158.
Okada, T., Sugishita, T., Murakami, T., Murai, H., Saikusa, T., Horino, T., Onoda, A., Kajimoto, O., Takahashi, R., Takahashi, T., 2000. Effect of the Defatted Rice Germ Enriched with GABA for Sleeplessness, Depression, Autonomic Disorder by Oral Administration. Nippon Shokuhin Kagaku Kogaku Kaishi 47, 596–603.
Park, J.H., Lee, Y.J., Kim, Y.H., Yoon, K.S., 2017. Antioxidant and Antimicrobial Activities of Quinoa ( Chenopodium quinoa Willd .) Seeds Cultivated in Korea 22, 195–202.
Quinto, E.J., Jiménez, P., Caro, I., Tejero, J., Mateo, J., Girbés, T., 2014. Probiotic Lactic Acid Bacteria: A Review. Food Nutr. Sci. 5, 1765–1775.
Rosenquist, H., Hansen, Å., 1998. The antimicrobial effect of organic acids, sour dough and nisin against Bacillus subtilis and B. licheniformis isolated from wheat bread. J. Appl. Microbiol. 85, 621–631.
Saikusa, T., Horino, T., Mori, Y., 1994. Accumulation of γ-aminobutyric acid (gaba) in the rice germ during water soaking. Biosci. Biotechnol. Biochem. 58, 2291–2292.
Salim-ur-Rehman, Paterson, A., Piggott, J.R., 2006. Flavour in sourdough breads: a review. Trends Food Sci. Technol. 17, 557–566.
Schmidt, K., Stupar, J., Shirley, J., Adapa, S., Sukup, D., 1996. Factor Affecting Titratable Acidity in Raw Milk. Dairy Day 0, 60–62.
Stiles, M.E., Holzapfel, W.H., 1997. Lactic acid bacteria of foods and their current taxonomy. Int. J. Food Microbiol. 36, 1–29.
Stolz, P., 2003. Biological fundamentals of yeast and lactobacilli fermentation in bread dough. Handb. Dough Ferment.
Suárez-Estrella, D., Torri, L., Pagani, M.A., Marti, A., 2018. Quinoa bitterness: causes and solutions for improving product acceptability. J. Sci. Food Agric.
Teixeira, P., 2014. Lactobacillus: Lactobacillus brevis, in: Encyclopedia of Food Microbiology: Second Edition. Elsevier, pp. 418–424.
Tsai, P.J., Chen, Y.S., Sheu, C.H., Chen, C.Y., 2011. Effect of nanogrinding on the pigment and bioactivity of djulis (Chenopodium formosanum Koidz.). J. Agric. Food Chem. 59, 1814–1820.
Tsai, P.J., Sheu, C.H., Wu, P.H., Sun, Y.F., 2010. Thermal and pH stability of betacyanin pigment of djulis (Chenopodium formosanum) in Taiwan and their relation to antioxidant activity. J. Agric. Food Chem. 58, 1020–1025.
Ua-Arak, T., Jakob, F., Vogel, R.F., 2016. Characterization of growth and exopolysaccharide production of selected acetic acid bacteria in buckwheat sourdoughs. Int. J. Food Microbiol. 239, 103–112.
Vega-Gálvez, A., Miranda, M., Vergara, J., Uribe, E., Puente, L., Martínez, E.A., 2010. Nutrition facts and functional potential of quinoa (Chenopodium quinoa willd.), an ancient Andean grain: A review. J. Sci. Food Agric. 90, 2541–2547.
Wang, Q., Liu, X., Fu, J., Wang, S., Chen, Y., Chang, K., 2018. Substrate sustained release ‑ based high efficacy biosynthesis of GABA by Lactobacillus brevis NCL912. Microb. Cell Fact. 1–8.
Wolter, A., Hager, A.S., Zannini, E., Czerny, M., Arendt, E.K., 2014. Impact of sourdough fermented with lactobacillus plantarum fst 1.7 on baking and sensory properties of gluten-free breads. Eur. Food Res. Technol. 239, 1–12.
Wu, C., Huang, Y., Lai, X., Lai, R., Zhao, W., Zhang, M., Zhao, W., 2014. Study on quality components and sleep-promoting effect of GABA Maoyecha tea. J. Funct. Foods 7, 180–190.
Wu, L., Hsu, H.-W., Chen, Y.-C., Chiu, C.-C., Lin, Y.-I., Ho, J.A., 2006. Antioxidant and antiproliferative activities of red pitaya. Food Chem. 95, 319–327.