跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.54) 您好!臺灣時間:2026/01/12 13:21
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:劉立修
研究生(外文):LIU, LI-XIU
論文名稱:衝頭伺服運動曲線應用於鎂合金溫間微擠製成形
論文名稱(外文):The Micro-Extrusion of Magnesium Alloy with Servo Motion Curve of Punch at Elevated Temperature
指導教授:楊東昇楊東昇引用關係
指導教授(外文):YANG, TUNG-SHENG
口試委員:陳狄成鄭芳松
口試委員(外文):CHEN, DYI-CHENGCHENG, FANG-SUNG
口試日期:2018-07-27
學位類別:碩士
校院名稱:國立虎尾科技大學
系所名稱:機械與電腦輔助工程系碩士班
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2018
畢業學年度:106
語文別:中文
論文頁數:83
中文關鍵詞:鎂合金衝頭伺服運動曲線擠製摩擦有限元素分析
外文關鍵詞:Magnesium alloysservo motion curve of the punchextrusionfrictionfinite element analysis
相關次數:
  • 被引用被引用:1
  • 點閱點閱:154
  • 評分評分:
  • 下載下載:7
  • 收藏至我的研究室書目清單書目收藏:1
本研究為開發一溫間微擠製成形裝置並搭配其伺服運動曲線,目的為使工件的等效應力及應變分布均勻外,經由此製程可使微產品外型尺寸更精確且表面粗糙度更佳。首先利用伺服萬能材料試驗機配合微擠製裝置,使得衝頭具有伺服運動曲線之功能。並藉由雙杯擠型實驗及潤滑劑獲得精確之摩擦因子值。另外透過微等徑轉角擠製成形獲得鎂合金棒材,且得到鎂合金在不同溫度下之應力-應變曲線。利用金屬成形有限元素分析搭配傳統曲線與伺服運動曲線於鎂合金之微擠製成形,比較工件之變形、應力分佈、應變分佈及衝頭成形力。最後實際應用伺服運動曲線進行鎂合金微擠製溫間成形實驗,且利用工具顯微鏡與表面輪廓儀等儀器,觀察產品尺寸外型並與模擬結果驗證之;且實際比較有無伺服運動曲線、潤滑劑對硬度、工件尺寸外型及表面粗糙度之影響。
Magnesium (Mg) alloys are used extensively for the manufacture of lightweight structural and functional automotive and electronics parts, due to the low density and high specific strength of such alloys. Development of new forming processes using servo motion curve of the punch is attracting attention in the metal forming industry. The ductility of the Mg alloy was found to be improved by controlling the servo motion curve of the punch. It also can be enhanced the formability of workpiece and the life of die.
In this study, the influence of the servo motion curve of punch on the workability of Mg alloys of micro extrusion is examined. Microstructure and mechanical properties including hardness and stress-strain curve are examined. A magnesium alloy is used in a micro forward extrusion with servo motion curve of punch at the elevated temperature. A finite element analysis of micro extrusion with servo motion curve of punch at the elevated temperature are also applied in this study. Finally, the formability, shaped size, stress distribution and surface roughness of magnesium alloy micro extrusion are improved with servo motion curve of punch at the elevated temperature.
摘要...i
Abstract...ii
誌謝...iii
目錄...iv
表目錄...viii
圖目錄...x
符號說明...xv
第一章 緒論...1
1.1 前言...1
1.2 研究動機與目的...2
1.3 文獻回顧...3
1.4 研究方法與步驟...6
第二章 基礎理論...8
2.1 鎂合金簡介...8
2.1.1 ASTM材料編號介紹...8
2.1.2 不同添加元素對鎂合金的影響...8
2.2 溫度對鎂合金之變形影響...9
2.2.1 退火處理(Annealing)...9
2.2.2 回復(Recovery)...9
2.2.3再結晶(Recrystallization)...10
2.2.4晶粒成長(Grain growth)...10
2.3摩擦理論...10
2.4等徑轉角擠製(Equal Channel Angular Extrusion)原理...11
2.4.1等徑轉角擠製簡介...11
2.4.2 ECAE擠製路徑...11
2.5 DEFORM軟體簡介[41]...13
第三章 鎂合金材料性質與摩擦實驗...16
3.1 應力-應變曲線...16
3.2 摩擦實驗...19
3.2.1 微雙杯擠製網格收斂性分析...19
3.2.2微雙杯擠製摩擦模擬...20
3.2.3微雙杯擠製摩擦實驗...23
第四章 微擠製成形之有限元素分析...27
4.1 微逆向擠製模具設計與分析...27
4.1.1 收斂性分析...27
4.1.2不同圓角分析...28
4.1.3不同成形溫度分析...31
4.1.4微逆向擠製伺服曲線模擬...33
4.2 微雙向擠製模具設計與分析...40
4.2.1網格收斂性分析...41
4.2.2不同斜角分析...42
4.2.3不同成形溫度...44
4.2.4 微雙向擠製伺服曲線模擬...47
第五章 實驗結果與討論...54
5.1微雙向擠製模具...54
5.2微雙向擠製實驗結果...54
5.2.1衝頭成形負荷探討...54
5.2.2金相顯微觀察...57
5.2.3硬度量測結果...59
5.2.3成品量測...60
5.2.4表面粗糙度量測...66
第六章 結論...74
6.1 結論...74
6.2 未來展望...74
參考文獻...75
Extended Abstract...78


[1] 蔡志仁,2008,伺服驅動衝床之動向與與鍛造加工之應用,鍛造,十七卷,3期,10月。
[2] 吳宗彥,2014,“伺服沖床衝頭運動曲線之研究”,國立清華大學,碩士論文。
[3] U.Engel and R.Eckstein, 2002, “Microforming—from basic research to its realization”, J. Mater. Process. Technol., 125–126, pp. 35–44, January,.
[4] 曾俊發, 2003, “尺寸效應於精微成形之基礎研究”, 國立臺灣大學, 碩士論文。
[5] Geiger, M. and M. Kleiner, 2001, “Microforming”, Anneals of the CIRP.
[6] 陳怡安,吳春甫,蔡行知,2005,“行動電話電池微型端子開發”,鍛造,14卷,2期,頁52–57,7月。
[7] Y.Saotome and T.Okamoto, 2001, “An in-situ incremental microforming system for three-dimensional shell structures of foil materials”, J. Mater. Process. Technol., 113, pp. 636–640.
[8] Y.Saotome, K.Yasuda, H.Kaga, 2001, “Micro-Deep drawability of very thin sheet steels”, J. Mater. Process. Technol., 113, pp.641-647.
[9] Akhtar Razul Razali, Yi Qin, 2013, “A Review on Micro-manufacturing, Micro-forming and their Key Issues”, Procedia Engineering, 53, pp.665-672.
[10] N. Tiesler, U. Engel, M. Geiger, 1999, “Forming of Microparts-effects of miniaturization on friction.”, Proceeding of the 6th ICTP.
[11] Wei Zheng, Guangchun Wang, Guoqun Zhao, Dongbin Wei, Zhengyi Jiang, 2013, “Modeling and analysis of dry friction in micro-forming of metals.”, Tribology International, 57, pp.202-209.
[12] J. F.Archard, 1953, “Contact and Rubbing of Flat Surfaces”, J. Appl. Phys., 24(8), pp.981.
[13]T. H.Kim, B. M.Kim, J. C.Choi, 1997, “Prediction of die wear in the wire-drawing process”, J. Mater. Process. Technol., 65, pp. 11–17.
[14]B.Painter, R.Shivpuri, T.Altan, 1996, “Prediction of die wear during hot-extrusion of engine valves”, J. Mater. Process. Technol., 59, pp. 132–143.
[15]G.-A.Lee, Y.-T.Im, 1999, “Finite-element investigation of the wear and elastic deformation of dies in metal forming”, J. Mater. Process. Technol., 89–90, pp. 123–127.
[16]J. H.Kang, I. W.Park, J. S.Jae, S. S.Kang, 1999, “A study on a die wear model considering thermal softening: (I) Construction of the wear model”, J. Mater. Process. Technol., 96, pp. 53–58.
[17]J. H.Kang, I. W.Park, J. S.Jae, S. S.Kang, 1999, “A study on die wear model considering thermal softening (II): Application of the suggested wear model”, J. Mater. Process. Technol., 94, pp. 183–188.
[18]R. .Lee, J. .Jou, 2003, “Application of numerical simulation for wear analysis of warm forging die”, J. Mater. Process. Technol., 140, pp. 43–48.
[19]K.Nakashima, Z.Horita, M.Nemoto, T. G.Langdon, 1998, “Influence of channel angle on the development of ultrafine grains in equal-channel angular pressing,” Acta Mater., 46, pp. 1589–1599.
[20]W. J.Kim, Y. K.Sa, 2006, “Micro-extrusion of ECAP processed magnesium alloy for production of high strength magnesium micro-gears”, Scr. Mater., 54, pp.1391–1395.
[21]蔡志仁,2010,“伺服沖床發展概況淺談”,機械工業雜誌,324期,頁105–107,3月。
[22]Kiichiro Kawamotoa, Takeshi Yoneyama, Masato Okada, Satoshi Kitayama, Junpei Chikahisa, 2014, "Optimum back-pressure forging using servo die cushion", Procedia Engineering, 81, pp.346 – 351.
[23] Yi Meng, Sumio Sugiyama, Jianbo Tan, Jun Yanagimoto, 2014, “Effects of forming conditions on homogeneity of microstructure and mechanical properties of A6061 aluminum alloy manufactured by time-dependent rheo forging on a mechanical servo press”, J. Mater. Process. Technol., 214, pp.3037–3047.
[24] Tomoyoshi Maeno, Ken-ichiro Mori, Yuki lchikawa, Minoru Sugawara, 2014, “Prevention of Seizure in Inner Spline Backward Extrusion by Low-cycle Oscillation Using Servo Press”, Procedia Engineering, 81, pp.1860-1865.
[25] Ryo Matsumoto, Jae-Yeol Jeon, Hiroshi Utsunomiya, 2013, "Shape accuracy in the forming of deep holes with retreat and advance pulse ram motion on a servo press", J. Mater. Process. Technol., 213, pp.770 – 778.
[26] Ryo Matsumoto, Kozo Osakada, 2010, "Ductility of a magnesium alloy in warm forging with controlled forming speed using a CNC servo pressing", J. Mater. Process. Technol., 210, pp.2029-2035.
[27] Ryo Matsumoto, Kazunori Hayashi, Hiroshi Utsunomiya, 2014, " Identification of Friction Coefficient in High Aspect Ratio Combined Forward-backward Extrusion with Pulse Ram Motion on Servo Press", Procedia Engineering, 81, pp.1854-1859.
[28] Ryo Matsumoto, Kazunori Hayashi, Hiroshi Utsunomiya, 2014, " Experimental and numerical analysis of friction in high aspect ratio combined forward-backward extrusion with retreat and advance pulse ram motion on a servo press.", J. Mater. Process. Technol., 214, pp.936-944.
[29] T. S. Yang, C. Wang, L. X. Liu and S. H. Yao, 2018, “Servo Forging Technology and Mold Development of The Pulley of AISI-1010 Low Carbon Steel”, Mater. Sci. For., 917, pp.257-261.
[30] 張宇良,2017,“伺服運動曲線應用於汽車零件外殼之深引伸製程研究”,國立虎尾科技大學,碩士論文。
[31] Jie Xu, Bin Guo, Debin Shan, Chunju Wang, Juan Li, Yanwu Liu, Dongsheng Qu, 2012, “Development of a micro-forming system for micro-punching process of micro-hole arrays in brass foil”, J. Mater. Process. Technol., 212, pp.2238-2246.
[32] X. Wu, J.J. Li, Z.Z. Zheng, L. Liu and Y. Li, 2010, “Micro-back-extrusion of a bulk metallic glass”, Scripta Materialia, 63, pp.469-472.
[33] W. L. Chan, M.W. Fu, B. Yang, 2011, “Study of size effect in micro-extrusion process of pure copper”, Materials and Design, 32, pp.3772-3782.
[34]吳明典,2012,“衝頭物理蒸鍍塗層對黃銅微擠製摩擦效應之影響”,國立高雄應用科技大學,碩士論文。
[35]張朝誠,吳麟麒,李政勳,“衝頭形狀對黃銅微逆向擠製之影響”,PMMT2013, 頁1–7,屏東,2013。
[36]M. M.Avedesian et al., 1999, ASM Specialty Handbook ®, pp. 13–43.
[37]楊萬騏,2003,“藉著La-richmischmetal的添加及熱擠型法以改善Mg-8Al鎂合金機械性能之研究”,國立臺灣大學,博士倫文。
[38]K. F.Zhang, D. L.Yin, D. Z.Wu, 2006, “Formability of AZ31 magnesium alloy sheets at warm working conditions”, Int. J. Mach. Tools Manuf., 46, pp. 1276–1280.
[39] 王騰鉸,2008,“等徑轉角擠製純銅於逆向擠製微型圓杯之研究”,國立高雄應用科技大學,碩士論文。
[40]V. M.Segal, 2004, “Engineering and commercialization of equal channel angular extrusion (ECAE),” Mater. Sci. Eng. A, 386, pp. 269–276.
[41] DEFORM User’s Guide, 1999, Scientific Forming Technologies Corporation, Columbus OH.
[42]ASTM, “Standard Practice for Compression Tests of Metallic Materials at Elevated Temperatures with comventional or Rapid Heating Rates and Strain Rates,” E209-00, pp. 339–345.
[43]air TMD,https://www.airtmd.com/product/content.jsp?id=1512.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊