跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.223) 您好!臺灣時間:2025/10/08 05:49
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:徐俊智
研究生(外文):Hsu, Chun-Chih
論文名稱:中間層及基材前處理影響ZrMoN薄膜性質之研究
論文名稱(外文):Influence of Buffer Layer and Substrate Pretreatment on the Properties of ZrMoN Films
指導教授:許春耀許春耀引用關係
指導教授(外文):Hsu, Chun-Yao
口試委員:郭啟全盧錫全陳釘煙陳俊生許春耀
口試委員(外文):Kuo, Chil-ChyuanLu, Hsi-ChuanChen, Ding-YengChen, Chun-ShengHsu, chun-Yao
口試日期:2019-01-28
學位類別:碩士
校院名稱:龍華科技大學
系所名稱:機械工程系碩士班
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:52
中文關鍵詞:氮化鋯鉬奈米壓痕磨耗試驗
相關次數:
  • 被引用被引用:1
  • 點閱點閱:189
  • 評分評分:
  • 下載下載:9
  • 收藏至我的研究室書目清單書目收藏:1
本研究使用直流磁控濺鍍系統,沉積氮化物多層膜(MoN/ZrMoN) 於玻璃及SUS 304不鏽鋼基材,探討反應磁控濺鍍沉積參數對於MoN/ZrMoN硬質薄膜特性的影響。分別改變ZrMoN之Zr功率(50~250 Watt)、中間MoN膜厚(225~690 nm),及基材電漿蝕刻前處理(duration time 5~15 min),對MoN/ZrMoN多層膜微結構及機械性質的影響。利用SEM、EDS、XRD,奈米壓痕、摩擦磨耗試驗及水滴接觸角,量測分析薄膜特性。結果發現Zr含量增加,ZrMoN薄膜的(111)繞射波的結晶位置,向低角度偏移。研究顯示單層MoN,ZrMoN, 多層膜MoN/ZrMoN及基材經電漿蝕刻多層膜MoN/ZrMoN的硬度,摩擦係數及彈性回復量分別為(8.22 GPa, 50.24%),(11.95 GPa, 0.74, 64.93%), (12.53 GPa, 0.42, 58.69%), (13.87 GPa, 0.29, 62.77%)。基材經電漿蝕刻前處理,增加基材表面粗糙度,水滴接觸角由85.0o降低到58.4o,表面趨於親水性,有效提升薄膜附著性,顯示MoN/ZrMoN多層膜有優良機械性質。本研究最佳MoN/ZrMoN多層膜有優越的抗磨耗性,經確認實驗驗證,其硬度,摩擦係數及彈性回復量,分別為15.71GPa、0.21及66.65 %。
In this study, a DC magnetron sputtering system was used to deposit multilayer films on nitride (MoN / ZrMoN) glass and SUS304 stainless steel substrates. The effects of reactive magnetron sputtering deposition parameters on MoN / ZrMoN rigid films were investigated. Change the Zr power of ZrMoN (50~250W), the thickness of intermediate MoN film (225~690nm), and the pretreatment of substrate plasma etching (duration 5~15min), and the microstructure and mechanical properties of MoN / ZrMoN multilayer. Impact. Film properties were measured by SEM, EDS, XRD, nanoindentation, frictional wear test and water droplet contact angle. As a result, it was found that the content of Zr was increased, and the crystal position of the (111) diffraction wave of the ZrMoN film was shifted to a low angle. Studies have shown that the MoN / ZrMoN friction coefficient and elastic recovery of a single MoN, ZrMoN, multilayer film MoN / ZrMoN and plasma etched substrate through the multilayer film are (8.22 GPa, 50.24%), respectively (11.95 GPa, 0.74, 64.93%) ), (12.53 GPa, 0.42, 58.69%), (13.87 GPa, 0.29, 62.77%). The substrate is processed by plasma etching to increase the surface roughness of the substrate. The contact angle of the water droplets was reduced from 85.0o to 58.4o, and the surface became hydrophilic, effectively improving the adhesion of the film. It shows that the MON / ZrMoN multilayer film has excellent mechanical properties. The best MoN / ZrMoN multilayer film in this study has excellent wear resistance. The hardness, friction coefficient and elastic recovery were 15.71 GPa, 0.21 and 66.65%, respectively.
摘要 i
ABSTRACT ii
誌謝 iii
目錄 iv
表目錄 vi
圖目錄 vii
第一章 前言 1
1.1 前言 1
1.2 研究目的 1
第二章 文獻回顧 3
2.1 文獻回顧 3
2.2 濺鍍(Sputtering) 4
2.2.1磁控濺鍍(Magnetron Sputtering Deposition) 4
2.2.2反應式濺鍍(Reactive sputtering) 5
2.3 薄膜沉積原理 6
2.3.1薄膜成長機制 7
2.4 薄膜機械性質 8
2.5 氮化物薄膜 8
2.5.1氮化鉬 9
2.5.2氮化鋯 9
2.6 奈米壓痕理論 9
第三章 實驗設備與方法 10
3.1 磁控濺鍍設備與實驗材料 10
3.1.1磁控濺鍍設備 10
3.1.2基材 11
3.1.3靶材 11
3.1.4氣體 11
3.2 薄膜分析設備 12
3.2.1電子顯微鏡(FE-SEM) 12
3.2.2(X-Ray Diffraction;XRD) 13
3.2.3低真空顯微鏡 15
3.2.4 (α-step) 16
3.3 薄膜機械性質分析設備 17
3.3.1奈米壓痕量測儀 17
3.3.2球對盤磨耗測試儀 18
3.3.4微表面粗糙度量測儀 19
3.3.5水滴接觸角量測儀 20
3.4 濺鍍步驟 21
3.4.1基材前處理 21
3.4.2基材薄膜製備步驟 21
3.5 實驗規劃與流程 21
3.6 實驗濺鍍參數設計 23
第四章 結果與討論 24
4.1 改變膜厚之MoN薄膜分析 24
4.1.1 MoN薄膜XRD微結構分析 24
4.1.2 硬度、彈性回復量分析 26
4.1.3 水滴接觸角分析 27
4.2 改變Zr功率MoN/ZrMoN多層膜分析 27
4.2.1 ZrMoN薄膜EDS成分及XRD微結構分析 27
4.2.2 SEM表面及橫斷面分析 29
4.2.3 硬度、彈性回復量及摩擦係數分析 30
4.2.4 水滴接觸角分析 33
4.3 改變中間層MoN之膜厚影響ZrMoN薄膜分析 33
4.3.1 ZrMoN薄膜EDS成分及XRD微結構分析 34
4.3.2 SEM表面及橫斷面分析 35
4.3.3 硬度、彈性回復量及摩擦係數分析 37
4.3.4 水滴接觸角分析 39
4.4 基材蝕刻前處理影響MoN/ZrMoN多層膜分析 40
4.4.1 基材蝕刻 40
4.4.2 ZrMoN薄膜EDS成分及XRD微結構分析 41
4.4.3 SEM表面及橫斷面分析 42
4.4.4 硬度、彈性回復量及摩擦係數分析 43
4.4.5水滴接觸角分析 46
4.5 最佳參數再現性驗證 46
4.5.1硬度及彈性回復量及摩擦係數分析 46
第五章 結論 48
5.1 結論 48
參考文獻 50

[1]E. Lugscheider, C. Barimani, C. Wolff, S. Guerreiro, G. Doepper, Comparisonofthe structure of PVD-thinfilms deposited with different deposition energies, Surface and Coatings Technology 86-87 (1996) 177-183.
[2]M. H. Chan, F. H. Lu, Air-based deposition of conductive nitride thin films by sputtering, Journal of The Electrochemical Society 158.6 (2011) 75-80.
[3]Kondo, T. Oogami, K. Sato, Y. Tanaka, Structure and properties of cathodic arc ion plated CrN coatings for copper machining cutting tools, Surface and Coatings Technology 177 –178 (2004) 238-244.
[4]黃智偉,DC磁控濺鍍沈積氮化鈦/氮化鉻磨耗性質之研究,崑山科技大學機械工程系,碩士論文 (2007)。
[5]F. Vaz, L. Rebouta, R. M. C. da Silva, S. Ramos, M. F. da Silva, J. C. Soares, Characterization of Titanium Silicon Nitride Films Deposited by PVD, Vacuum 52 (1999) 209-214.
[6]F. Vaz, L. Rebouta, P. Goudeau, J. Pacaud, H. Garem, J. P. Riviere, A. Cavaleiro, E. Alves, Characterization of Ti1-xSixNy Composite Films, Surface and Coatings Technology 133-134 (2000) 307-313.
[7]S. Fontes Jr, L. C. Felix, G. B. De Oliveira, D. R. Fernandez, R. Hubler, A. H. Da Silva Jr, R. G. Carvalho, E. K. Tentardini, Deposition and characterization of ZrMoN thin films by reactive magnetron sputtering, Materials Science (S36) 49 (2016) 12-22.
[8]D. L. Qi, H. Lei, F. Di, Z. L. Pei, J. Gong, C. Sun, Effect of Mo content on the microstruc-ture and properties of CrMoN composite coatings, Institute of Metal Research, Chinese Academy of Sciences 51-3 (2015) 371-377.
[9]J. Y. Xiang, Z. X. Lin, E. Renoux, F. B. Wu, Microstructure evolution and indentation cracking behavior of MoN multilayer films, Surface and Coatings Technology 350 (2018) 1020-1027.
[10]P. Dubey, V. Arya, S. Srivastava, D. Singh, R. Chandra, Effect of nitrogen flow rate on structural and mechanical properties of Zirconium Tungsten Nitride (Zr–W–N) coatings deposited by magnetron sputtering, Surface and Coatings Technology 236 (2013) 182-187.
[11]李曠緯,氮化鎢/氮化鈦多層膜磨潤性質研究,成功大學機械工程學系,碩士論文 (2012)。
[12]蔡延佐,氮化鉻鋁矽/氮化鎢奈米多層硬質薄膜之抗磨耗行為、微觀結構與熱穩定性研究,清華大學材料科學工程學系,博士論文 (2010)。
[13]V. Maksakova, S. Simoes, A. D. Pogrebnjak, O. V. Bondar, Ya. O. Kravchenko, T. N. Koltunowicz, Zh. K. Shaimardanov, Multilayered ZrN/CrN coatings with enhanced thermal and mechanical properties, Journal of Alloys and Compounds, 776 (2019) 679-690.
[14]Q. Yang, L. R. Zhao, P. C. Patnaik, X. T. Zeng, Wear resistant TiMoN coatings deposited by magnetron sputtering, Wear 261 (2006) 119-125.
[15]D. Pogrebnjak, D. Eyidi, G. Abadias, O. V.Bondar, V. M. Beresnev, O. V. Sobol, Structure and properties of arc evaporated nanoscale TiN/MoN multilayered systems, International Journal of Refractory Metals and Hard Materials 48 (2015) 222-228.
[16]W. R. Grove, On some phenomena of the voltaic discharge, The Philosophical Magazine 16 (1840) 478-482.
[17]黃信懷,製程溫度對氧化銦鎵鋅薄膜特性之影響探討,國立中興大學物理學系,碩士論文 (2017)。
[18]王昇裕,濺鍍操作條件對摻鋁氧化鋅透明導電膜特性之影響,國立高雄應用科技大學化學工程與材料工程系,碩士論文 (2010)。
[19]陳正士,直流式磁控濺鍍鋯基氮碳薄膜機械性質及擴散阻障之研究,國立成功大學材料工程學系,博士論文 (2005)。
[20]Y. Mao, J. Engels, A. Houben, M. Rasinski, J. Steffens, A. Terra, Ch. Linsmeier, J. W. Coenen, The influence of annealing on yttrium oxide thin film deposited by reactive magnetron sputtering, Nuclear Materials and Energy 10 (2017) 1-8.
[21]楊尚賢,矽單晶基板上之異質磊晶成長:氮化鈦、氮化鋯、氧化鋅,清華大學材料科學工程學系,博士論文 (2006)。
[22]K. V. Chauhan, S. K. Rawal, A review paper on tribological and mechanical properties of ternary nitride based coatings, Procedia Technology 14 (2014)430-437.
[23]M. K. Kazmanli, M. Urgen, A. F. Cakir, Effect of nitrogen pressure, bias voltage and substrate temperature on the phase structure of Mo–N coatings produced by cathodic arc PVD, Surface and Coatings Technology 167(1) (2003) 77-82.
[24]U. OjedaMota, R. A. Araujo, H. Wang, T. Cagın, Mechanical Properties of Metal Nitrides for Radiation Resistant Coating Applications: A DFT Study, Physics Procedia 66 (2015) 576-585.
[25]X. M. Xu, J. Wang, Q. Y. Zhang, Oxidation behavior of TiN/ZrN multilayers annealed in air, Thin Solid Films 516(6) (2008) 1025-1028.
[26]張瑞慶,奈米壓痕技術與應用,聖約翰科技大學機械系 (2006)。
[27]K. S. Chang, K. T. Chen, C. Y. Hsu, P. D. Hong, Growth (AlCrNbSiTiV)N thin films on the interrupted turning and properties using DCMS and HIPIMS system, Applied Surface Science 440 (2018) 1-7.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊