跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.152) 您好!臺灣時間:2025/11/04 01:08
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:游佳茵
研究生(外文):YOU, JIA-YIN
論文名稱:以噴霧乾燥機製備不同條件之芝麻油粉末對品質的影響
論文名稱(外文):The effect of different conditions on the quality of sesame oil powder prepared by spray dryer
指導教授:邱致穎邱致穎引用關係
指導教授(外文):CIOU,JHIH-YING
口試委員:侯智耀吳崇立梁志弘
口試委員(外文):HOU,CHIH-YAOWU,CHUNG-LILIANG, CHIH-HUNG
口試日期:2017-12-22
學位類別:碩士
校院名稱:東海大學
系所名稱:食品科學系
學門:農業科學學門
學類:食品科學類
論文種類:學術論文
論文出版年:2018
畢業學年度:106
語文別:中文
論文頁數:119
中文關鍵詞:芝麻油粉末油脂微膠囊化乳化製備噴霧乾燥
外文關鍵詞:Sesame oilOil powderMicroencapsulationEmulsion propertiesSpray drying
相關次數:
  • 被引用被引用:0
  • 點閱點閱:758
  • 評分評分:
  • 下載下載:31
  • 收藏至我的研究室書目清單書目收藏:0
芝麻油為普遍使用的調味油,常與大豆油調和製成香油提供不同的使用功能,然由於其特性與其它油脂不同,故發展及應用空間易受限制。故本次研究以麥芽糊精(Maltodextrin;MD)及羥丙基甲基纖維素(Hydroxypropyl methylcellulose;HPMC)作為壁材,透過噴霧乾燥方式製備芝麻油粉末油脂(Sesame oil powder),希藉由油脂粉末化以增進其應用性。另市售已有芝麻油粉末油脂的產品,但回溶後香氣常不足,故此類產品使用會受到限制,所以擬透過油脂添加量(7.5、10、12.5%)及與大豆油調和濃度(20、40、60、80、100%)的調控,探討適合現代食品產業使用之芝麻油粉。實驗結果顯示,產率範圍為54.85-68.79%,不同條件下並不會產生顯著性的變化;水分含量隨著油脂添加濃度增加而有顯著性下降趨勢,添加油濃度7.5%及12.5%時芝麻油的調和比例變化沒有產生顯著性的影響;但添加10%時,發現隨芝麻油調和比例增加,水分含量亦逐漸增加(4.02-5.87%),芝麻粉末油脂的水活性介於0.536~0.661,隨油脂的添加濃度及調和芝麻油濃度增加,水活性下降較顯著。油脂含量在添加7.5%的油脂時,會隨調和濃度上升而有顯著性的增加(39.11-44.11%),並隨油脂添加量增加,粉末中的油脂含量會顯著的增加;保油率除調和濃度80%之外,其餘的組別皆會隨著油脂添加量增加而顯著性的上升,並且僅在7.5%的組別,保油率會隨著調和濃度增加,產生顯著性的上升(084.22-93.07%);表面油脂量當油脂添加量增加,在各調和濃度下表面油脂量皆顯著性的增加,但油添加量的部分,僅有7.5%的組別,隨調和濃度增加,表面油脂量顯著性的減少(30.50-24.79%);包覆率則在油添加量7.5%時,會隨著調和濃度增加,產生顯著性的增加(023.59-43.78%),並在調和濃度80、100%,隨油脂添加量增加顯著性的下降;鬆散假密度及緊密假密度,皆會在油的添加濃度增加的同時有顯著性的上升,但隨著芝麻油調和濃度增加產生顯著性下降;粉體黏性指標(Hausner ratio;HR)介於1.4-1.45;溶解度會隨添加油濃度上升而顯著性減少,並僅在添加10%的油時會發現隨著芝麻油的調和比例增加溶解度發生顯著性的上升;此外25℃相比90℃的水溫下溶解除了油添加濃度7.5%的芝麻油調和濃度40、60及100%與油添加濃度10%的芝麻油調和濃度100%的組別有顯著上升外,其餘對溶解度沒有顯著性的差異;較高的添加油濃度會使的粉末吸濕性顯著性降低,但調和芝麻油濃度並不會對其造成顯著性差異;表面型態觀察看出調和濃度及油脂添加量提高,會使粉體顏色加深,此外每種粉末都發現結塊的情形;過氧化值在噴霧乾燥製成完成後,除了調和濃度20%之外,其餘的組別當油脂添加量由7.5%增加到12.5%時便會顯著性的上升,並隨調和濃度增加而顯著性的上升,經過25℃及60℃的7天保存後,所有組別皆隨著調和濃度的增加,過氧化值顯著性的提高,此外除了25℃保存下芝麻油調和濃度40%的組別外,其餘組別皆隨著油脂添加量的增加而有顯著性的上升。結果顯示,相比於在相同儲存環境下的控制組後發現保護狀態不佳;感官品評的結果表示較高調和濃度可以得到整體及風味較高的喜好度,並且被評斷出具有較為強烈的芝麻味,而添加12.5%的調和20%的組別則顯著的具有較強烈的油耗味。依照上述結果得知,以目前設定條件下製作粉末油脂,具有較低的水活性、水分含量、吸濕性可使產品品質更為穩定,此外不論在在冷水及熱水中皆有良好的溶解度,可增加產品應用度的範圍。
Sesame oil is a commonly used condiment oil, and it blend with soybean oil to produce blended sesame oil regularly. However, sesame oil has constrained development and application due to the different characteristic with other condiment oil. This research try to improve extensibility and applicability by using spray dried sesame oil powder which use MD and HPMC as wall material. Although there already has some product of sesame oil powder in the market, but most of them has insufficient flavor when it dissolved in water. To find the most suitable usage in modern food industry, this experiment controls the amount of oil added in 7.5, 10, 12.5 % and sesame oil blending ratio in 20, 40, 60, 80, 100 %. The results showed that the drying yield is in 55.07 to 68.79 % range, the production decreased as amount of oil increased, and it had no significant difference by using different emulsifier. The moisture content also decreased by the amount of oil added. However by adding 10 % of oil, the moisture content is increased (4.28 to 5.87 %) and the sesame oil blending ratio increased, the water activity is in 0.541 to 0.661 range, it decreased by amount of oil added, and sesame oil blending ratio increased. The result indicated that if the oil contents sets in between 7.5 and 12.5 %, it had no significant difference. In 7.5 %of oil added, the oil content is increased from 39.11 to 44.11 %, and sesame oil blending ratio increased by the amount of oil added. The surface oil content increased by the amount of oil added, and only in 7.5 % of oil added, it decrease significantly between 30.50 to 24.79 % but sesame oil blending ratio increase; the encapsulation efficiency is increased from 23.59 to 43.78 % when sesame oil blending ratio increase. Furthermore, in 80 and 100 % of sesame oil blending ratio, it decreased significantly by the amount of oil added. Aerated and tapped bulk density are increased significantly by amount of oil added, but decreased significantly by sesame oil blending ratio decreased. The hausner ratio is in between 1.4 to 1.45. Compared with temperature in 25℃ and 90℃, and the solubility is increased significantly only in 7.5 % of oil added with 40, 60, 100 % of sesame oil blending ratio. The hygroscopicity is increased by the amount of oil added, but it has no significant difference with sesame oil blending ratio. In the appearance, this research observes that the color of powder became deeper by the amount of oil added and sesame oil blending ratio increase, also, all of them were caking. After spray drying process finished, except in 20 % of blending oil ratio, the POV is increased significantly by the amount of oil added. After storage 7 days with in 25℃and 60℃, except in 40 % of blending oil ratio with 25℃, the POV is increased significantly by the amount of oil added. As result, compare with control sample in the same environment, the powder has poor preservation. The Concentration result showed that high sesame oil blending ratio can earn better favor and recognized with strong sesame flavor. However in the 12.5 % of oil added and 20 % of sesame oil blending ratio, the result shown poor concentration because of rancid flavor oil. Based on the result above, the powder has better quality with the research setting of lower water content, water activity and hygroscopicity. Besides, it has good solubility in both heat and cold water this indicated the high extensibility and applicability as well.
目錄
頁次
1.前言 1
2.文獻回顧 2
2.1芝麻油 2
2.1.1芝麻油簡介與營養價值 2
2.1.2芝麻油之香氣來源 2
2.1.3芝麻油的應用與發展 5
2.2微膠囊包覆技術 13
2.2.1定義與用途 14
2.2.2實驗壁材料介紹 18
2.2.2.1麥芽糊精 21
2.2.2.2羥丙基甲基纖維素 23
2.3噴霧乾燥之簡介 23
2.3.1噴霧乾燥機之流程介紹 25
2.3.1.1進料溶液霧化 25
2.3.1.2霧化液滴與熱空氣混合 28
2.3.1.3乾燥粉體與空氣分離及粉末收集 29
2.3.2噴霧乾燥機參數說明 30
2.3.2.1空氣壓力 30
2.3.2.2空氣流速 30
2.3.2.3進料流速 31
2.3.2.4入口溫度 31
2.3.2.5液料濃度 32
2.3.3以噴霧乾燥法製作微膠囊粉末油脂 32
3.實驗的 35
4.實驗設計 35
5.材料方法 41
5.1實驗材料 41
5.1.1實驗原料 41
5.1.2實驗藥品 41
5.2實驗設備 42
5.3樣品製備 44
5.3.1壁材料配置 44
5.3.2調和油配置 44
5.3.3乳化液配置 44
5.3.4噴霧乾燥 44
5.4芝麻油乳化液黏度分析 44
5.5粉體物性分析 45
5.5.1產率分析 45
5.5.2水分含量分析 45
5.5.3水活性測定 45
5.5.4油脂含量、保油率、表面油脂量、包覆率 45
5.5.5鬆散假密度、緊密假密度及黏性指標 47
5.5.6溶解度 48
5.5.7吸濕性 48
5.6表面型態觀察 49
5.7化性分析 49
5.7.1油脂過氧化價測定 49
5.8感官品評分析 50
5.8.1喜好度分析 50
5.8.2強度分析 50
5.9統計分析 52
6.結果與討論 53
6.1物性分析 53
6.1.1不同調和濃度及油添加量之產率結果 53
6.1.2不同調和濃度及油添加量之水分含量結果 56
6.1.3不同調和濃度及油添加量之水活性結果 56
6.1.4不同調和濃度及油添加量之油脂含量、保油率、表面油脂量、包覆率結果 59
6.1.5不同調和濃度及油添加量之鬆散假密度、緊密假密度、黏性指標結果 72
6.1.6不同調和濃度及油添加量之溶解度結果 76
6.1.7不同調和濃度及油添加量之吸濕性結果 84
6.2不同調和濃度及油添加量之表面型態觀察 84
6.3化性分析 88
6.3.1不同調和濃度及油添加量之油脂過氧化價結果 88
6.4感官品評分析 96
6.4.1不同調和濃度及油添加量之感官品評喜好度結果 96
6.4.2不同調和濃度及油添加量之感官品評強度結果 98
7.結論 100
8.參考文獻 102
附錄1、芝麻油粉感官品評喜好度問卷 118
附錄2、芝麻油粉感官品評強度問卷 119


參考文獻

王長生。1995。淺談芝麻餅粕與飼料營養價值。飼料工業16(4):35-36。中國。
行政院農委會農糧署。2016。特用作物生長概況。行政院農委會農糧署。台北,台灣。
吳崇立。2017。探討添加不同比例大豆油調和之芝麻油油脂特性。國立中興大學食品暨應用生物科技學研究所碩士論文。台中市,台灣。
吳雋凡。2011利用噴霧乾燥法合成磷酸離鐵/碳複合材料並探討其電化學性。國立高雄應用化學研究所碩士論文。高雄市,台灣。
周瑞寶。2006。芝麻油香氣成分研究。中國油脂,第31卷,第7期。
林溪浚。2010。以噴霧乾燥披覆聚乙烯醇或聚甲基丙烯酸甲酯於氧化鋁粉表面。國立台北科技大學機電整合研究所碩士論文。台北市,台灣。
胡云峰。2008。避蚊胺微膠囊的製備研究。大連理工大學化學工程學研究所碩士論文。遼寧省,中國。
食品工業發展研究所。2005。新世代食品加工及調配料技術研發。科技專案。經濟部技術處。
張衣承。2008。利用預熱之調和芝麻油提高大豆油脂氧化安定性之研究。國立臺灣海洋大學食品科學研究所碩士論文。基隆,台灣。
陳正士。2014。台灣食用油產業競營策略之研究。逢甲大學經營管理研究所碩士論文。台中市,台灣。
陳玉玲、華傑。2003。兩岸食用油脂產業現況與比較。中華工業發展研究所。
黃連佑。明膠/CMC複凝聚製備尤加利精油微膠囊之研究。正修科技大學化妝品與時尚彩妝研究所碩士論文。高雄市。台灣。
劉平年。2005。芝麻油揮發性風味成分的研究。中國糧油學報20(6):88-90。
劉伯康、莊朝琪。2016。食品感官品評理論與實務(第二版)。新文京出版社。 台北。
Abadio, F. D. B., Domingues, A. M., Borges, S. V., & Oliveira, V. M. (2004). Physical properties of powdered pineapple (Ananas comosus) juice - effect of maltodextrin concentration and atomization speed. Food Engineering, 64, 285-287.
Abdullah, E. C., & Geldart, D. (1999). The use of bulk density measurements as flowability indicators. Powder Technology, 102(2), 151-165.
Ahn, J. H., Kim, H. S., Lee, K. W., Seo, E. M., Lee, K. W., & Kim, H. S. (2008). Optimization of microencapsulation of seed oil by response surface methodology. Food Chemistry, 107(1), 98-105.
Aidoo, R. P., Depypere, F., Afoakwa, E. O., & Dewettinck, K. (2013). Industrial manufacture of sugar-free chocolates – Applicability of alternative sweeteners and carbohydrate polymers as raw materials in product development. Trends in Food Science & Technology, 32(2), 84-96.
Alamilla-Beltran, L., Chanona-Pérez, J. J., Jiménez-Aparicio, A. R., & Guitérrez-Lopez, G. F. (2005). Description of morpholoigical changes of particles along spray drying. Journal of Food Engineering, 67, 179-184.
Ashakumary, L., Rouyer, I., Takahashi, Y., Ide, T., Fukuda, N., & Aoyama, T. (1999). Sesamin, a sesame lignan, is a potent inducer of hepatic fatty acid oxidation in the rat. Metabolism, 48(10), 1303-1313.
Bae, E. K., & Lee, K. W. (2008). Microencapsulation of avocado oil by spray drying using whey protein and maltodextrin. Microencapsulation, 25(8), 549-560.
Barbosa, M. I. M. J., Borsarelli, C. D., & Mercadante, A. Z. (2005). Light stability of spray-dried bixin encapsulated with different edible polysaccharide preparations. Food Research International, 38(8–9), 989-994.
Bhandari, B. R., Datta, N., & Howes, T. (1997). Problems associated with spray drying of sugar-rich foods. Drying Technology(15), 671-684.
Bimbenet, J. J., Bonazzi, C., & Dumoulin, E. (2002). Drying of foodstuffs. Drying’2002 – In: Proceeding of the 13th international drying symposium, 64–80.
Binsi, P. K., Nayak, N., Sarkar, P. C., Jeyakumari, A., Muhamed Ashraf, P., Ninan, G., & Ravishankar, C. N. (2017). Structural and oxidative stabilization of spray dried fish oil microencapsulates with gum arabic and sage polyphenols: Characterization and release kinetics. Food Chemistry, 219, 158-168.
Budowski, P., Menezes, F. G. T., & Dollear, F. G. (1950). Sesame oil, V. ‘The stability of sesame oil’. J. Am. Oil Chem. Soc, 27, 377-380.
Budowski, P., O’connor, R. T., & Field, E. T. (1951). Sesame oil, VI. ‘Determination of sesamin’. J. Am. Oil Chem. Soc, 28, 51–54.
Bule, M. V., Singhal, R. S., & Kennedy, J. F. (2010). Microencapsulation of ubiquinone-10 in carbohydrate matrices for improve stability. Carbohydrate Polymers, 82(1), 1290-1296.
Burdock, G. A. (2007). Safety assessment of hydroxypropyl methylcellulose as a food ingredient. Food and Chemical Toxicology, 45(12), 2341-2351.
Cai, Y. Z., & Corke, H. (2000). Production and Properties of Spray-dried Amaranthus Betacyanin Pigments. Food Science, 65(7), 1248-1252.
Cal, K., & Sollohub, K. (2010). Spray drying technique. I: Hardware and process parameters. Pharmaceutical Sciences, 99, 575-586.
Can Karaca, A. G., O. , & Ak, M. M. (2016). Effects of processing conditions and formulation on spray drying of sour cherry juice concentrate. Science of Food and Agriculture, 96 449-455.
Cano-Chauca, M., Stringheta, P. C., Ramos, A. M., & Cal-Vidal, J. (2005). Effect of the carriers on the microstructure of mango powder obtained by spray drying and its functional characterization. Innovative Food Science & Emerging Technologies, 6(4), 420-428.
Cano-Higuita, D. M., Villa-V'elez, H. A., Telis-Romero, J., V'aquiro, H. A., & Telis, V. R. N. (2015). Influence of alternative drying aids on water sorption of spray dried mango mix powders: a thermodynamic approach. Food Bioprod. Process, 93, 19-28.
Carneiro, H. C. F., Tonon, R. V., Grosso, C. R. F., & Hubinger, M. D. (2013). Encapsulation efficiency and oxidative stability of flaxseed oil microencapsulated by spray drying using different combinations of wall materials. Journal of Food Engineering, 115(4), 443-451.
Cheng, F. C., Jinn, T. R., Hou, R. C., & Tzen, J. T. C. (2006). Neuroprotective effects of sesamin and sesamolin on gerbil brain in cerebral ischemia. International Journal of Biomedical Science, 2(3), 284-288.
Corrigan, O. I. (1995). Thermal analysis of spray dried products. Thermochimica Acta, 248, 245-258.
Davidov-Pardo, G., Roccia, P., Salgado, D., León, A. E., & Pedroza-Islas, R. (2008). Evaluation of the different wall materials to microencapsulate fish oil and its behavior in bread products. Am. J. Food Technol, 3, 384-393.
Daza, L. D., Fujita, A., Fávaro-Trindade, A., Rodrigues-Ract, J. N., Granato, D., & Genovese, M. I. (2016). Effect of spray drying conditions on the physical properties of & Cagaita (Eugenia dysenterica) fruit extracts. Food and Bioproducts Processing, 20-29.
Desai, K. G. H., & Park, H. J. (2005). Recent developments in microencapsulation of food ingredients. Drying Technology, 23, 1361-1394.
Dewettinck, K., & Huyghebaert, A. (1998). Top-spray fluidized bed coating: Effect of process variables on coating efficiency. LWT-Food Science and Technology, 31(6), 568-575.
Drusch, S. (2006). Sugar beet pectin: A novel emulsifying wall component for microencapsulation of lipophilic food ingredients by spray-drying. Food Hydrocolloids.
Dziezak, J. D. (1988). Microencapsulation and encapsulated ingredients. Food Technology, 136-151.
Fanger, G. O. (1974). Microencapsulation: A brief history and introduction. Microencapsulation, Springer( US ), 1-20.
Fazaeli, M., Emam-Djomeh, Z., Kalbasi Ashtari, A., & Omid, M. (2012). Effect of spray drying conditions and feed composition on the physical properties of black mulberry juice powder. Food and Bioproducts Processing, 90(4), 667-675.
Fazaeli, M., Emam-Djomeh, Z., & Yarmand, M. S. (2016). Influence of black mulberry juice addition and spray drying conditions on some physical properties of ice cream powder. Food Engineering, 12, 277-285.
Fernandes, L. P., Turatt, I. C. C., Lopes, N. P., Ferreira, J. C., Candido, R. C., & Oliveira, V. M. (2008). Volatile retention and antifungal properties of spray-dried micro particles of Lippia sidoides essential oil. Drying Technology,, 26(12), 1534-1542.
Fernandes, R. V. d. B., Borges, S. V., Silva, E. K., da Silva, Y. F., de Souza, H. J. B., do Carmo, E. L., de Oliveira, C. R., Yoshida, M. I., & Botrel, D. A. (2016). Study of ultrasound-assisted emulsions on microencapsulation of ginger essential oil by spray drying. Industrial Crops and Products, 94(Supplement C), 413-423.
Fioramonti, S. A., Rubiolo, A. C., & Santiago, L. G. (2017). Characterisation of freeze-dried flaxseed oil microcapsules obtained by multilayer emulsions. Powder Technology, 319, 238-244.
Fleming, R. S. (1921). The spray process of drying. The Journal of Industrial and Engineering Chemistry, 13, 447-449.
Fogler, B. B., & Kleinschmidt, R. V. (1938). Spray drying. Industrial and Engineering Chemistry, 30, 1372-1384.
Frascareli, E. C., Silva, V. M., Tonon, R. V., & Hubinger, M. D. (2012). Effect of process conditions on the microencapsulation of coffee oil by spray drying. Food and Bioproducts Processing, 90(3), 413-424.
Fuchs, M., Turchiulli, C., Bohin, M., Cuvelier, M. E., Ordannaud, C., Peyrat-Maillard, M. N., & Dumoulin, E. (2006). Encapsulation of oil in powder using spray drying and fluidized bed agglomeration. Food Engineering, 75(1), 27-35
Gallo, L., Llabot, J. M., Allemandi, D., Bucalá, V., & Piña, J. (2011).Influence of spray-drying operating conditions on Rhamnus purshiana (Cáscara sagrada) extract powder physical properties. Powder Technology, 208, 205-214.
Ghafoorunissa, Hemalatha, S., & Rao, M. V. (2004). Sesame lignans enhance antioxidant activity of vitamin E in lipid peroxidation systems. Molecular and Cellular Biochemistry, 262 (1-2), 195-202.
Gharsallaoui, A., Roudaut, G., Chambin, O., Voilley, A., & Saurel, R. (2007). Applications of spray-drying in microencapsulation of food ingredients: An overview. Food Research International, 40(9), 1107-1121.
Gibbs, B. F., Kermasha, B. F., Alli, I., & Mulligan, C. N. (1999). Encapsulation in the food industry: A review. Internatioanl Journal of Food Sciences and Nutrition, 50, 213-224.
Godin, V., & Spensley, P. C. (1971). Oils and Oilseeds. Tropical Products Institute, London (1971).
Gopalan, C., Ramasastri , B. V., & Balasubramanian, S. C. (1982). Nutritive Value of Indian Foods. National Institute of Nutrition, Indian Council of Medical Research, Hyderabad, India.
Gouin, S. (2004). Microencapulation: industrial appraisal of existing technologies and trends. Trends in Food Science and Technology, 15, 330-347.
Goula, A. M., & Adamopoulos, K. G. (2005). Spray drying of tomato pulp in dehumidified air: II. The effect on the powder properties. Food Engineering, 66, 35-42.
Goula, M. A., Adamopoulos, K. G., & Kazakis, N. A. (2004). Influence of spray drying conditions on tomato powder properties. Drying Technology, 22, 1129-1151.
Hogan, S. A., McNamee, B. F., O’Riordan, Dolores, E., & O’Sullivan, M. (2001). Emulsification and microencapsulation properties of sodium caseinate/carbohydrate blends. International Dairy Journal, 11(3), 137-144.
Huang, L. X., Kumar, K., & Mujumdar, A. (2006). A comparative study of a spray dryer with rotary disc atomizer and pressure nozzle using computational fluid dynamic simulations. Chemical Engineering and Processing: Process Intensification, 45, 461-470.
Islam, F., Gill, R. A., Ali, B., Farooq, M. A., Xu, L., Najeeb, U., & Zhou, W. (2016). Chapter 6 - Sesame A2 - Gupta, Surinder Kumar. In Breeding Oilseed Crops for Sustainable Production, (pp. 135-147). San Diego: Academic Press.
Jafari, S. M., Assadpoor, E., He, Y., & Bhandari, B. (2008). Encapsulation efficiency of food flavours and oils during spray drying. Drying Technology, 26(7), 816-835.
Jamilah, B., Ee, S. C., Muhammad, K., Hashim, D. M., & Adzahan, N. (2013). Spray-Drying Optimization for Red Pitaya Peel (Hylocereus polyrhizus). Food and Bioprocess Technology, 6(5), 1332-1342.
Joshi, A. B. (1961). Sesamum. Indian Central Oilseeds Committee,Hyderabad.
Jumah, R. Y., Tashtoush, B., Shaker, R. R., & Zraiy, A. F. (2000). Manufacturing parameters and quality characteristics of spray-dried jameed. Drying Technology, 18, 967-984.
Kamal-Eldin, A., Moazzami, A., & Washi, S. (2011). Sesame seed lignans: Potent physiological modulators and possible ingredients in functional foods & nutraceuticals. Recent Patents on Food, Nutrition & Agriculture, 3(1), 17-29.
Kha, T. C., Nguyen, M. H., & Roach, P. D. (2010). Effects of spray drying conditions on the physicochemical and antioxidant properties of the Gac (Momordica cochinchinensis) fruit aril powder. Journal of Food Engineering, 98, 385-392.
King, A. H. (1995). Encapsulation of food ingredients: A review of available technology, focusing on hydrocolloids. Encapsulation and controlled release of food ingredients, 590, 26-39.
Liolios, C. C., Gortzi, O., Lalas, S., Tsaknis, J., & Chinou, I. (2009). Liposomal incorporation of carvacrol and thymol isolated from the essential oil of Origanum dictamnus L. and in vitro antimicrobial activity. Food Chemistry, 112(1), 77-83.
Listiohadi, Y. D., Hourigan, J., Sleigh, R. W., & Steele, R. J. (2005). An exploration of the caking of lactose in whey and skim milk powders. Australian Journal of Dairy Technology, 60(3), 207-213.
Liu, X. D., Atarashi, T., Furuta, T., Yoshii, H., Aishima, S., Ohkawara, M., & Linko, P. (2001). Microencapsulation of emulsified hydrophobic flavors by spray drying. Drying Technology, 19(7), 1361-1374.
Liu, Z., Zhou, J., Zeng, Y., & Ouyang, X. (2004). The enhancement and encapsulation of Agaricus bisporus flavor. Food Engineering, 65, 391-396.
Maiti, S., Hegde, M. R., & Chattopadhyay, S. B. (1988). Handbook of Annual Oilseed Crops. Oxford and IBH, New Delhi (1988).
Marques, L. G., Ferreira, M. C., & Freire, J. T. (2007). Freeze drying of acerola (Malpighia glabra L.). Chemical Engineering and Processing: Process Intensification, 46, 451-457.
Masters, K. (1991). Spray Drying Handbook. (5th ed), Longman Scientific & Technical(London).
McClements, D. J. (2005). Food emulsions: Principles, practice, and techniques. 2nd ed, CRC Press(Boca Raton).
Mohammed, N. K., Tan, C. P., Manap, Y. A., Alhelli, A. M., & Hussin, A. S. M. (2017). Process conditions of spray drying microencapsulation of Nigella sativa oil. Powder Technology, 315(Supplement C), 1-14.
Murugesan, R., & Orsat, V. (2011). Spray drying of elderberry (Sambucus nigra L.) juice to maintain its phenolic content. Drying Technology, 29, 1729-1740.
Muzaffar, K., & kumar, P. (2015). Parameter optimization for spray drying of tamarind pulp using response surface methodology. Powder Technology, 279, 179-184.
Oberoi, D. P. S., & Sogi, D. S. (2015). Effect of drying methods and maltodextrin concentration on pigment content of watermelon juice powder. Journal of Food Engineering, 165(Supplement C), 172-178.
Partanen, R., Raula, J., Seppänen, R., Buchert, J., Kauppinen, E., & Forssell, P. (2008). Effect of relative humidity on oxidation of flaxseed oil in spray dried whey protein emulsions. Agricultural and Food Chemistry, 56(14), 5717-5722.
Patil, V., Chauhan, A. K., & Singh, R. P. (2014). Optimization of the spray drying process for developing guava powder using response surface methodology. Powder Technology, 253, 230-236.
Premi, M., & Sharma, H. K. (2017). Effect of different combinations of maltodextrin, gum arabic and whey protein concentrate on the encapsulation behavior and oxidative stability of spray dried drumstick (Moringa oleifera) oil. International Journal of Biological Macromolecules, 105(Part 1), 1232-1240.
Quek, S. Y., Chok, N. K., & Swedlund, P. (2007). The physicochemical properties of spray-dried watermelon powders. Chemical Engineering and Processing: Process Intensification, 46 386-392.
Rangkadilok, N., Pholphana, N., Mahidol, C., Wongyai, W., Saengsooksree, K., Nookabkaew, S., & Satayavivad, J. (2010). Variation of sesamin, sesamolin and tocopherols in sesame (Sesamum indicum L.) seeds and oil products in Thailand. Food Chemistry, 122(3), 724-730.
Ray, S., Raychaudhuri, U., & Chakraborty, R. (2016). An overview of encapsulation of active compounds used in food products by drying technology. Food Bioscience, 13, 76-83.
Roccia, P., Martínez, M. L., Llabot, J. M., & Ribotta, P. D. (2014). Influence of spray-drying operating conditions on sunflower oil powder qualities. Powder Technology, 254, 307-313.
Rodríguez-Hernández, G. R., González-García, R., Grajales-Lagunes, A., Ruiz-Cabrera, M. A., & Abud-Archila, M. (2005). Effect on the physicochemical properties of powder and reconstituted product. Drying Technology, 23, 955-973.
Rosenberg, M., Kopelman, I. J., & Talmon, Y. (1990). Factors affecting retention in spray-drying microencapsulation of volatile materials. Agricultural and Food Chemistry, 38, 1288-1294.
S.M. Jafari, E. Assadpoor, B. Bhandari, & Y. He. (2008). Nano particle encapsulation of fish oil by spray drying. Food Research International, 41(2), 172-183.
Saifullah, M., Yusof, Y. A., Chin, N. L., & Aziz, M. G. (2016). Physicochemical and flow properties of fruit powder and their effect on the dissolution of fast dissolving fruit powder tablets. Powder Technology, 301, 396-404.
Santana, A. A., Martin, L. G. P., Oliveira, R. A., Kurozawa, L. E., & Park, H. J. (2017). Spray drying of babassu coconut milk using different carrier agents. Drying Technology, 35, 76-87.
Santivarangkna, C., Kulozik, U., & Foerst, P. (2007). Alternative drying processes for the industrial preservation of lactic acid starter cultures. Biotechnology Progress, 23, 302-315.
Seegeler, C. J. P. (1983). Oil Plants in Ethiopia: Their Taxonomy and Agricultural Significance. Centre for Agricultural Publishing and Documentation Wageningen(1983).
Shahidi, F., & Han, X. Q. (1993). Encapsulation of food ingredients. Critical Review in Food Science and Nutrition, 33, 501-547.
Shamaei, S., Seiiedlou, S. S., Aghbashlo, M., Tsotsas, E., & Kharaghani, A. (2017). Microencapsulation of walnut oil by spray drying: Effects of wall material and drying conditions on physicochemical properties of microcapsules. Innovative Food Science & Emerging Technologies, 39(Supplement C), 101-112.
Shishir, M. R. I., & Chen, W. (2017). Trends of spray drying: A critical review on drying of fruit and vegetable juices. Trends in Food Science & Technology, 65, 49-67.
Shishir, M. R. I., Taip, F. S., Aziz, N. A., Talib, R. A., & Sarker, M. S. H. (2016). Optimization of spray drying parameters for pink guava powder using RSM. Food Science and Biotechnology, 25 1-8.
Silva, V. M., Vieira, G. S., & Hubinger, M. D. (2014). Influence of different combinations of wall materials and homogenisation pressure on the microencapsulation of green coffee oil by spray drying. Food Research International, 61(Supplement C), 132-143.
Smith, K. H. (1971). Nutritional framework of oilseed proteins. J. Am. Oil Chem. Soc, 48, 625-628.
Soottitantawat, A., Bigeard, F., Yoshi, H., Furuta, T., Ohkawara, M., & Linko, P. (2005). Influence of emulsion and powder size on the stability of encapsulated D-limonene by spray drying. Innovative Food Science and Emerging Technologies, 6(1), 107-114.
Soottitantawat, A., Yoshii, H., Furuta, T., Ohkawara, M., & Linko, P. (2003). Microencapsulation by spray drying: influence of emulsion size on the retention of volatile compounds. J. Food Sci, 68(7), 2256-2262.
Suja, K. P., Jayalekshmy, A., & Arumughan, C. (2004). Free radical scavenging behavior of antioxidant compounds of sesame (Sesamum indicum L.) in DPPH(∗) system. ournal of Agricultural and Food Chemistry, 52(4), 912-915.
Tan, L. W., Ibrahim, M. N., Kamil, M. N., & Taip, F. S. (2011). Empirical modeling for spray drying process of sticky and non-sticky products. Procedia Food Science, 1, 690-697.
Thalberg, K., Lindholm, D., & Axelsson, A. (2004). Comparison of different flowability tests for powders for inhalation. Powder Technology, 146(3), 206-213.
Timilsena, Y. P., Wang, B., Adhikari, R., & Adhikari, B. (2017). Advances in microencapsulation of polyunsaturated fatty acids (PUFAs)-rich plant oils using complex coacervation: A review. Food Hydrocolloids, 69, 369-381.
Tonon, C. Brabet, & Hubinger, M. D. (2008). Influence of process conditions on the physicochemical properties of açai (Euterpe oleraceae Mart.) powder produced by spray drying. Food Engineering, 88, 411-418.
Tonon, R. V., Grosso, C. R. F., & Hubinger, M. D. (2011). Influence of emulsion composition and inlet air temperature on the microencapsulation of flaxseed oil by spray drying. Food Research International, 44(1), 282-289.
Tontul, I., & Topuz, A. (2014). Influence of emulsion composition and ultrasonication time on flaxseed oil powder properties. Powder Technology, 264(Supplement C), 54-60.
Tze, N. L., Han, C. P., Yusof, Y. A., Ling, C. N., Talib, R. A., & Taip, F. S. (2012). Physicochemical and nutritional properties of spray-dried pitaya fruit powder as natural colorant. Food Science and Biotechnology, 21, 675-682.
Vardin, H., & Yasar, M. (2012). Optimisation of pomegranate (Punica Granatum L.) juice spray-drying as affected by temperature and maltodextrin content. International Journal of Food Science & Technology, 47, 167-176.
Visavadiya, N. P., & Narasimhacharya, A. V. R. L. (2008). Sesame as a hypocholesteraemic and antioxidant dietary component. Food and Chemical Toxicology, 46(6), 1889.
Wang, W., & Zhou, W. (2015). Characterisation of spray dried soy sauce powders made by adding crystalline carbohydrates to drying carrier. Food Chemistry, 168, 417-422.
Wang, Y., Xie, Y., Xu, D., & Lin, X. (2014). Hydroxypropyl Methylcellulose Reduces Particle Adhesion and Improves Recovery of Herbal Extracts During Spray Drying of Chinese Herbal Medicines. Drying Technology, 32(5), 557-566.
Weiss, E. A. (1983). Oilseed Crops. Longman, London and New York.
Winter, S. B. D., Duran, L. E., & Benito, V. M. (2010). New salt forms of an aminoindan derivative. In): Google Patents.
Yermanos, D. M. (1978). Oil analysis report on the world sesame collection. World Farming, 14, 5-11.
Yokota, T., Matsuzaki, Y., Koyama, M., Hitomi, T., Kawanaka, M., & Enoki-Konishi, M. (2007). Sesamin, a lignan of sesame, down-regulates cyclin D1 protein expression in human tumor cells. Cancer Science, 98(9), 1447-1453.
Yonekura, L., Sun, H., Soukoulis, C., & Fisk, I. (2014). Microencapsulation of Lactobacillus acidophilus NCIMB 701748 in matrices containing soluble fibre by spray drying: Technological characterization, storage stability and survival after in vitro digestion. Journal of Functional Foods, 6(Supplement C), 205-214.
Yousefi, S., Emam-Djomeh, Z., & Mousavi, S. M. (2011). Effect of carrier type and spray drying on the physicochemical properties of powdered and reconstituted pomegranate juice (Punica Granatum L.). Journal of Food Science and Technology, 48, 677-684.
Zakarian, A. J., & King, C. J. (1982). Volatiles loss in the zone during spray drying of emulsions. Industrial Engineering Chemistry Process Design and Development, 21, 107-113.
Zbicinski, I., Delag, A., Strumillo, A., & Adamiec, J. (2002). Advanced experimental analysis of drying kinetics in spray drying. Chemical Engineering Journal, 207-216.
Zhou, D., Pan, Y., Ye, J., Jia, J., Ma, J., & Ge, F. (2017). Preparation of walnut oil microcapsules employing soybean protein isolate and maltodextrin with enhanced oxidation stability of walnut oil. LWT - Food Science and Technology, 83, 292-297.
Zotarelli, M. F., da Silva, V. M., Durigon, A., Hubinger, M. D., & Laurindo, J. B. (2017). Production of mango powder by spray drying and cast-tape drying. Powder Technology, 305(Supplement C), 447-454.
Zuidam, N. J., & Heinrich, J. (2009). Encapsulation of aroma. N.J. Zuidam, V.A. Nedovic (Eds.), Encapsulation technologies for food active ingredients and food processing, Springer, Dordrecht, Netherlands, 127-160.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊