|
參考文獻 [1] C. C. Lien, J. C. Wang and Y. M. Jiang, “Multi-mode Target Tracking on a Crowd Scene,” Proceedings of the Third International Conference on International Information Hiding and Multimedia Signal Processing, vol. 02, pp. 427-430, 2007. [2] A. Elgammal, D. Harwood and L. Davis, “Non-parametric model for background subtraction,” in proceedings of the 6th European Conference on Computer Vision, pp. 751-767,2000. [3] C.Stauffer, and W. E. L. Grimson, “Adaptive background mixture models for real-time tracking,” IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 02, 1999. [4] Zivkovic, Z. and F. van der Heijden, “Recursive unsupervised learning of finite mixture models,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 26, pp. 651-656, 2004. [5] H. H. Lin, J. H. Chuang, T. L. Liu “Recursive unsupervised learning of finite mixture models” IEEE Transactions on Image Processing, vol. 20, pp. 822-836, 2011. [6] C. C. Lien, K. L. Yu. “Blur Image Segmentation using Iterative Super Pixels Grouping Method”, 2012. [7] P. KaewTraKulPong, and R. Bowden, “An improved adaptive background mixture model for real-time tracking with shadow detection,” Computer Vision and Distributed Processing, pp. 135-144, 2002. [8] X. Dai and S. Khorram. “Performance of Optical Flow Techniques, ”IEEE Computer Society Conference on Computer Vision and Pattern Recognitions, pp. 236-242, 1992. [9] S. Wang, X. Wang, and H. Chen, “A stereo video segmentation algorithm combining disparity map and frame difference,” International Conference on Intelligent System and Knowledge Engineering, vol.1, pp.1121-1124, 2008. [10] K. Kim, T. H. Chalidabhongse, D. Harwood, and L. S. Davis, “Real-Time Foreground -Background Segmentation using Codebook Model”, Real-Time Imaging, pp.172-185, 2005. [11] K.S. Devi, N.Malmurugan, S.Poornima, “Improving the Efficiency of Background Subtraction using Super pixel Extraction and Midpoint for Centroid” International Journal of Computer Applications, vol. 43, pp. 0975-8887, 2012. [12] S. Wang, H. Lu, F.Yang and M. H. Yang, “Superpixel tracking,” IEEE International Conference on Computer Vision (ICCV), pp. 1323-1330, 2011. [13] R. Achanta, A. Shaji, K. Smith, A. Lucchi, P. Fua and S. Suutrunk, "SLIC Superpixels Compared to State-of-the-art Superpixel Methods," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 34 pp.2274-2282, 2011. [14] A. Schick, M. Baumi, R. Stiefelhagen, “Improving foreground segmentations with probabilistic superpixel Markov random fields,” IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp. 27-31, 2012. [15] http://en.wikipedia.org/wiki/Markov_random_field [16] Xi Li and H. Sahbi, “Superpixel-based object class segmentation using conditional random fields,” IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 1101-1104, 2011. [17] http://en.wikipedia.org/wiki/Conditional_random_field [18] C. Liu and Z. Zhao, “Person Re-identification by Local Feature Based on Super Pixel,” Advances in Multimedia Modeling Lecture Notes in Computer Science, vol. 7732, pp 196-205, 2013. [19] http://en.wikipedia.org/wiki/Lab_color_space [20] N. Goyrtte, P. Jodoin, F. Porikli and J. Konrad, “Changedetection.net: A new change detection benchmark dataset,” IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp. 1-8, 2012. [21] P. KaewTraKulPong and R. Bowden, “An improved adaptive background mixture model for realtime tracking with shadow detection,” EuropeanWorkshop on Advanced Video Based Surveillance Systems, pp. 135-144, 2001. [22] L. Maddalena and A. Petrosino, “The SOBS algorithm: what are the limits?,” IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops (CVPRW) ,pp. 21-26, 2012.
|