跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.102) 您好!臺灣時間:2025/12/03 22:27
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:邱韋桓
研究生(外文):Wei-Huan Chiu
論文名稱:同步監控與改善呼吸位移之補償裝置驗證
論文名稱(外文):The verification of improving the compensation accuracy of respiratory motion using simultaneously monitoring device
指導教授:莊賀喬莊賀喬引用關係
口試委員:田德之廖愛禾李春穎
口試委員(外文):ChunYing Li
口試日期:2012-07-25
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:機電整合研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:61
中文關鍵詞:即時追蹤呼吸運動補償超音波
外文關鍵詞:Real-time trackingRespiratory compensationUltrasound
相關次數:
  • 被引用被引用:0
  • 點閱點閱:267
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
本研究藉由自行研發之呼吸位移補償系統搭配超音波儀輔助監測補償效果與利用螢光透視儀來驗證補償效果的準確性。主要是因為超音波具有無放射線傷害的特性,因此可以取代舊式螢光透視,以減輕患者受到不必要的放射劑量傷害。研究中也利用呼吸模擬系統產生模擬人體呼吸時的腹部起伏,再利用應變規來擷取模擬的呼吸訊號,藉由超音波探測目標的距離變化,調整呼吸訊號的增益値,使補償訊號振幅接近目標運動的位移大小。並以呼吸補償系統進行呼吸位移補償,藉由螢光透視影像來驗證補償效果。結果顯示,當超音波輔助呼吸補償系統進行正弦波與人體呼吸訊號震幅為5、10、15mm時,呼吸補償系統補償誤差可縮小到0.81mm~2.92mm,因此藉由超音波輔助下其呼吸位移之補償率最高可改善92.48%。另外,由臨床試驗進行擷取2位病患呼吸訊號,同時以超音波觀察病患體內橫膈膜位移,並啟動呼吸補償系統以抵銷橫膈膜位移,其補償率可達61.3%~64.6%,最後並透過螢光透視影像分析來驗證上述的補償率。綜合以上驗證結果可顯示本研究的呼吸運動補償系統結合非侵入式的超音波系統輔助監測補償率對於抵銷因呼吸而造成的器官位移上有所貢獻。

This study uses a respiratory compensating system (RCS) coupled with a ultrasound transducer to monitor the respiratory compensation effect. Normally, respiratory compensation accuracy is verified by a fluoroscopy and in this study the ultrasound transducer is used to replace it as a monitor to reduce the unnecessary radiation dose. The study uses a simulated respiratory system to simulate the abdomen displacements and a strain gauge to capture the respiratory signals. The movement of the target is observed by the ultrasound transducer while adjusting the respiratory signal gain in order to track the target. Finally, the target movement was verified by a fluoroscopy images when the respiratory signal is input from the Sine wave and human respiratory data with an amplitude of 5, 10 and 15 mm. The compensating error can be minimized to 0.81~2.92mm by the RCS. Moreover, with the assistance of a ultrasound transducer the compensating rate of the target can be improved up to 92.48%. Finally, two patients’ respiratory signals are captured to activate the RCS to offset the displacements of targets while using the ultrasound transducer to observe their diaphragm or other targets. The results suggested that about 61.3~64.6% organ displacement can be offset in our system. Therefore, this study proves that our RCS can contribute to the compensation of organ displacement with respiratory motion.


摘 要 i
ABSTRACT ii
誌 謝 iii
目 錄 iv
表目錄 vi
圖目錄 vii
第一章 緒論 1
1.1前言 1
1.2研究動機與目的 3
1.3研究步驟與方法 5
1.4論文架構 6
第二章 文獻回顧 8
2.1放射治療的不確定性 8
2.1.1 腫瘤位移 8
2.1.2 長期腫瘤位移-設定誤差 9
2.1.3 短期腫瘤位移-呼吸造成誤差 9
2.2呼吸訊號擷取方法 11
2.2.1位移變化的監測 11
2.2.2 氣體感測 12
2.2.3 氣體濃度感測 13
2.2.4 電磁場感測 13
2.2.5 應變規感測 14
2.3 現階段癌症治療方式 16
2.3.1 加大治療邊距 16
2.3.2 呼吸控制(Breath holds) 17
2.3.3 呼吸調控(Gating) 20
2.3.4 即時追蹤(Real-time tracking) 21
2.4 照影技術 22
2.4.1 螢光透視(Fluoroscopy) 22
2.4.2 超音波(Ultrasound) 23
第三章 實驗材料與方法 25
3.1實驗架構 25
3.2 實驗設備 26
3.2.1 呼吸模擬系統 26
3.2.3 呼吸補償系統 27
3.2.4 應變規(Strain gauge) 28
3.2.5 移動式螢光透視系統(Mobile fluoroscopy system, Philips C-arm) 30
3.2.6超音波儀器 (Ultrasound) 32
3.2.7影像擷取設備 33
3.3 使用軟體 34
3.3.1 PC-Base 控制卡(VisSim) 34
3.3.2影像分析軟體(CMA Coach 6) 37
3.4 實驗方法 39
3.4.1呼吸模擬系統及呼吸補償系統位移驗證 39
3.4.2呼吸補償系統人體驗證 42
第四章 結果與討論 44
4.1呼吸模擬系統及呼吸補償系統模擬驗證 44
4.1.1螢光透視 47
4.1.2模擬人體之球體 49
4.2呼吸補償系統人體驗證 49
第五章 結論與未來研究方向 53
5.1結論 53
5.2未來研究方向 53
參考文獻 55

[1] J.D. Christensen, A.V. Kirichenko, and O. Gayou, “Treatment Dose Verification in Liver SBRT Using a Deformable Respiratory Motion Model and Treatment Beam''s-Eye-View Fluoroscopy With Tumor Tracking, “International Journal of Radiation Oncology Biology Physics, vol. 84, no. 3, p. S202, 2012.
[2] H. Shirato, M. Oita, K. Fujita, Y. Watanabe, and K. Miyasaka, “Feasibility of synchronization of real-time tumor-tracking radiotherapy and intensity-modulated radiotherapy from viewpoint of excessive dose from fluoroscopy,” International Journal of Radiation Oncology Biology Physics, vol. 60, no. 1, p. 335-341, 2004.
[3] A. Uchino, K. Hasuo, S. Matsumoto, and K. Masuda, “Cerebral magnetic resonance imaging of liver cirrhosis patients,” Clinical Imaging, vol. 18, no. 2, p. 123-130, 1994.
[4] T. Ichikawa, and T. Araki, “Fast magnetic resonance imaging of liver,” European Journal of Radiology, vol. 29, no. 3, p. 186-210, 1999.
[5] A. Uchino, K. Hasuo, S. Matsumoto, and K. Masuda, “Cerebral magnetic resonance imaging of liver cirrhosis patients,” Clinical Imaging, vol. 18, no. 2, p. 123-130, 1994.
[6] K. Redmond, D. Song, J. Fox, J. Zhou, N. Rosenzweig, and E. Ford, “Respiratory Motion Changes of Lung Tumors Over the Course of Radiation Therapy Based on Respiration-Correlated Four-Dimensional Computed Tomography Scans ,“International Journal of Radiation Oncology Biology Physics, vol. 75, no. 5, Dec. 2009, pp. 1605-1612.
[7] H. H. Liu, P. Balter, T. Tutt, B. Choi, J. Zhang, C. Wang, M. Chi, D. Luo, T. Pan, S. Hunjan, G. Starkschall, I. Rosen, K. Prado, Z. Liao, J. Chang, R. Komaki, J. D. Cox, R. Mohan, and L. Dong, “Assessing Respiration-Induced Tumor Motion and Internal Target Volume Using Four-Dimensional Computed Tomography for Radiotherapy of Lung Cancer ,“International Journal of Radiation Oncology Biology Physics, , vol. 68, no. 2, Jun. 2007, pp. 531-540.
[8] P. Giraud et al., “Conformal radiotherapy (CRT) planning for lung cancer: analysis of intrathoracic organ motion during extreme phases of breathing.,” International Journal of Radiation Oncology Biology Physics, vol. 51, no. 4, 2001, pp. 1081-1092.
[9] T. Saito, T. Sakamoto, and N. Oya, “Comparison of gating around end-expiration and end-inspiration in radiotherapy for lung cancer ,“Radiotherapy and Oncology, vol. 93, no. 3, 2009, pp. 430-435.
[10] S. Korreman, A. Pedersen, T. Nottrup, L. Specht, H. Nystrom, “Breathing adapted radiotherapy for breast cancer: Comparison of free breathing gating with the breath-hold technique ,“Radiotherapy and Oncology, vol. 76, no. 3, Sep. 2005, pp. 311-318,
[11] D. Kim, B. Murray, R. Halperin, and W. Roa, ” Held-breath self-gating technique for radiotherapy of non–small-cell lung cancer: A feasibility study,” International Journal of Radiation Oncology Biology Physics, vol. 49, no. 1, Jan. 2001, pp. 43-49.
[12] R. Ahmed, S. Shen, R. Ove, J. Duan, J. Fiveash, and S. Russo, “Intensity modulation with respiratory gating for radiotherapy of the pleural space ,“Medical Dosimetry, vol. 32, no. 1, 2007, pp. 16-22.
[13] A. Pedersen, S. Korreman, H. Nystrom, and L. Specht, “Breathing adapted radiotherapy of breast cancer: reduction of cardiac and pulmonary doses using voluntary inspiration breath-hold ,“Radiotherapy and Oncology, vol. 72, no. 1, Jul. 2004, pp. 53-60.
[14] H. Onishia, K. Kuriyamaa, T. Komiyamaa, S. Tanakaa, N. Sanoa, K. Marinoa, S. Ikenagaa, T. Arakia, and M. Uematsub, “Clinical outcomes of stereotactic radiotherapy for stage I non-small cell lung cancer using a novel irradiation technique: patient self-controlled breath-hold and beam switching using a combination of linear accelerator and CT scanner ,“Lung Cancer, vol. 45, no. 1, Jul. 2004, pp. 45-55.
[15] C. Glide-Hurst, E. Gopan, and G. Hugo, “Anatomic and Pathologic Variability During Radiotherapy for a Hybrid Active Breath-Hold Gating Technique “International Journal of Radiation Oncology Biology Physics, vol. 77, no. 3, Jul. 2010, pp. 910-917.
[16] D. Duggan, G. Ding, C. Coffey, W. Kirby, D. Hallahan, A. Malcolm, and B. Lu, “Deep-inspiration breath-hold kilovoltage cone-beam CT for setup of stereotactic body radiation therapy for lung tumors: Initial experience ,“Lung Cancer, vol. 56, no. 1, Apr. 2007, pp. 77-88.
[17] H. Taguchi, Y. Sakuhara, S. Hige, K. Kitamura, Y. Osaka, D. Abo, D. Uchida, A. Sawada, T. Kamiyama, T. Shimizu, H. Shirato, and K. Miyasaka, “Intercepting Radiotherapy Using a Real-Time Tumor-Tracking Radiotherapy System for Highly Selected Patients With Hepatocellular Carcinoma Unresectable With other Modalities ,“International Journal of Radiation Oncology Biology Physics, vol. 69, no. 2, Oct. 2007, pp. 376-380.
[18] R. Onimaru, M. Fujino, K. Yamazaki, Y. Onodera, H. Taguchi, N. Katoh, F. Hommura, S. Oizumi, M. Nishimura, and H. Shirato, “Steep Dose–Response Relationship for Stage I Non–Small-Cell Lung Cancer Using Hypofractionated High-Dose Irradiation by Real-Time Tumor-Tracking Radiotherapy ,“International Journal of Radiation Oncology Biology Physics, vol. 70, no. 2, Feb. 2008, pp. 374-381.
[19] H. Shirato, S. Shimizu, T. Kunieda, K. Kitamura, M. Herk, K. Kagei, T. Nishioka, S. Hashimoto, K. Fujita, H. Aoyama, K. Tsuchiya, K. Kudo, and K. Miyasaka, “Physical aspects of a real-time tumor-tracking system for gated radiotherapy ,“International Journal of Radiation Oncology Biology Physics, vol. 48, no. 4, Nov. 2000, pp. 1187-1195.
[20] H. Shirato, M. Oita, K. Fujita, Y. Watanabe, and K. Miyasaka, “Feasibility of synchronization of real-time tumor-tracking radiotherapy and intensity-modulated radiotherapy from viewpoint of excessive dose from fluoroscopy ,“International Journal of Radiation Oncology Biology Physics, vol. 60, no. 1, Sep. 2004, pp. 335-341.
[21] M. Engelsman, M.F. Damen, D. Jaeger, M, Ingen,and J. Mijnheer, “The effect of breathing and set-up errors on the cumulative dose to a lung tumor ,“Radiotherapy and Oncology, vol. 60, no. 1, Jul. 2001, pp. 95 -105.
[22] S. Shimizu, H. Shirato, S. Ogura, H. Dosaka, K. Kitamura, T. Nishioka, K. Kagei, M. Nishimura, and K. Miyasaka, “Detection of lung tumor movement in real-time tumor-tracking radiotherapy ,“International Journal of Radiation Oncology Biology Physics, vol. 51, no. 2, Oct. 2001, pp. 304 -310.
[23] H. Shih, S. Jiang, K. Aljarrah, K. Doppke, and N. Choi, “Internal target volume determined with expansion margins beyond composite gross tumor volume in three-dimensional conformal radiotherapy for lung cancer.,” International Journal of Radiation Oncology Biology Physics, vol. 60, no. 2, Oct. 2004, pp. 613 -622.
[24] P.h. Drouet, S. Dubowsky, S. Zeghloul and C. Mavroidis, “Compensation of geometric and elastic errors in large manipulators with an application to a high accuracy medical system,” Robotica, vol. 20, 1999, pp. 341–352.
[25] J. Wilberta, J. Meyer, K. Baier, and M. Guckenberger, “Tumor tracking and motion compensation with an adaptive tumor tracking system (ATTS): System description and prototype testing ,“Med. Phys, vol. 35, no. 9, Sep. 2008, pp. 3911-3021.
[26] A. Krauss, S. Nill, M. Tacke, and U. Oelfke, “Electromagnetic Real-Time Tumor Position Monitoring and Dynamic Multileaf Collimator Tracking Using a Siemens 160 MLC: Geometric and Dosimetric Accuracy of an Integrated System” International Journal of Radiation Oncology Biology Physics, vol. 79, no. 2, Feb. 2011, pp. 579-587.
[27] C. Ozhasoglu, C. Saw, H. Chen, S. Burton, K. Komanduri, N. Yue, S. Huq, and D. Heron, B. Gagel, “Synchrony – Cyberknife Respiratory Compensation Technology,” Medical Dosimetry, vol. 33, no. 2, 2008, pp. 117-123.
[28] H. Shirato, M. Oita, K. Fujita, Y. Watanabe, and K. Miyasaka, “Feasibility of synchronization of real-time tumor-tracking radiotherapy and intensity-modulated radiotherapy from viewpoint of excessive dose from fluoroscopy,” International Journal of Radiation Oncology Biology Physics, vol. 60, no. 1, Seb. 2004, pp. 335-341.
[29] O. C L Haas, P. Skworcow, D. Paluszczyszyn, A. Sahih, M. Ruta and J. A Mills, “ Couch-based motion compensation: modelling,simulation and real-time experiments.“ Phys. Med. Biol, vol. 57, p. 5787-5807, 2012.
[30] J. Wilbert, K. Baier, A. Richter, C. Herrmann, M. Flemtje and M. Guckenberger, “ Influence of continuous tablemotion on patient breathing patterns.“ Int. J. Radiation Oncology Biol. Phys, vol. 77, no. 2, p. 622-629, 2010.
[31] 行政院衛生署 http://www.doh.gov.tw/CHT2006/index_populace.aspx.
[32] D. Yan, J. Wong, F. Vicini, J. Michalski, C. Pan, A. Frazier, E. Horwitz, and A. Martinez, “Adaptive modification of treatment planning to minimize the deleterious effects of treatment setup errors ,“International Journal of Radiation Oncology Biology Physics, vol. 38, no. 1, Apr. 1997, pp. 197-206.
[33] Y. Seppenwoolde, H. Shirato, K. Kitamura, S. Shimizu, M. Herk, J. V. Lebesque, and K. Miyasaka, ” Precise and real-time measurement of 3D tumor motion in lung due to breathing and heartbeat, measured during radiotherapy,” International Journal of Radiation Oncology Biology Physics, vol. 53, no. 4, Jul 2002, pp. 822-834.
[34] V. Kini, S. Vedam, P. Keall, S. Patil, C. Chen, and R. Mohan, ” Patient training in respiratory-gated radiotherapy,” Medical Dosimetry, vol. 28, no. 1, 2003, pp. 7-11.
[35] S. Nishiokaa, T. Nishiokab, M. Kawaharaa, S. Tanakaa, T. Hiromuraa, and K. Tomitaa, ” Exhale fluctuation in respiratory-gated radiotherapy of the lung: A pitfall of respiratory gating shown in a synchronized internal/external marker recording study,” Radiotherapy and Oncology, vol. 86, no. 1, Jan 2008, pp. 69-76.
[36] C. Larsson, and P. Staun, ” Evaluation of a New Fibre-Optical Monitor for Respiratory Rate Monitoring,” The Journal of Clinical Monitoring and Computing, vol 15, no 5, Jul 1999 , pp. 295-298.
[37] B. Hok, A. Bluckert, and G. Sandberg, ” A non-contacting sensor system for respiratory air flow detection,” Sensors and Actuators A: Physical, vol. 52, no. 1-3, 1996, pp. 81-85.
[38] E.E. Davies1, H.L. Hahn, S.G. Spiro, and R.H.T. Edwards, ” A new technique for recording respiratory transients at the start of exercise,” Respiration Physiology, vol 20, no 1, Feb 1974 , pp. 69-79.
[39] R.L. Hughson, D.R. Northey, H.C. Xing, B.H. Dietrich, and J.E. Cochrane , ” Alignment of ventilation and gas fraction for breath-by-breath respiratory gas exchange calculations in exercise,” Computers and Biomedical Research, vol 24, no 2, Apr 1991 , pp. 118-128.
[40] M. R. Davidson, ” The influence of gas exchange on lung gas concentrations during air breathing, ” Bulletin of Mathematical Biology, vol 39, no 1, 1997 , pp. 73-86.
[41] University of North Carolina, School of Medicine,
http://www.med.unc.edu/radonc/patient/treatments/calypso
[42] R.L. Ryan, K. Lechleiter, K. Malinowski, D.M. Shepard, D.J. Housley, M. Afghan, J. Newell, J. Petersen, B. Sargent, and P. Parikh, ” Evaluation of Linear Accelerator Gating With Real-Time Electromagnetic Tracking,” International Journal of Radiation Oncology Biology Physics, vol 74, no 3, Jul 2009 , pp. 920-927.
[43] K. Ohara, T. Okumura, M. Akisada, T. Inada, T. Mori, H. Yokota, M. J. B. Calaguas, ”Irradiation synchronized with respiration gate,” International Journal of Radiation Oncology Biology Physics, vol 17, no 4, Oct 1989 , pp. 853-857.
[44] I. Eriksson, L. Berggren, and S. Hallgren, “CO2 production and breathing pattern during invasive and non‐invasive respiratory monitoring,” Acta naesthesiologica Scandinavica, vol. 30, no. 6, Aug 1986, pp. 438–443.
[45] 黃碇洋,以應變規應用於呼吸位移補償系統之補償精度改善與實驗驗證,碩士論文,臺北科技大學機電整合研究所,台北,2012
[46] International Commission on Radiation Units and Measurements, ICRU Report 62: Prescribing, Recording, and Reporting Photon Beam Therapy (Supplement to ICRU Report 50) (ICRU, Bethesda, 1999)
[47] S. S. Korreman, A. N. Pedersen, T. J. Nottrup, L. Specht, and H. Nystrom, ” Breathing adapted radiotherapy for breast cancer: Comparison of free breathing gating with the breath-hold technique,” Radiotherapy and Oncology, vol.76, no. 3, Sep 2005, pp. 311–318.
[48] J.W. Wong, M.B. Sharpe, D.A. Jaffray, V.R. Kini, J.M. Robertson , J.S. Stromberg , and A.A. Martinez, ” The use of active breathing control (ABC) to reduce margin for breathing motion.,” Int J Radiat Oncol Biol Phys, Jul 1999, pp. 911.
[49] V. M. Remouchamps, N. Letts, F. A. Vicini, M. B. Sharpe, L. L. Kestin, P. Y. Chen, A. A. Martinez, and J. Wong, ” Initial clinical experience with moderate deep-inspiration breath hold using an active breathing control device in the treatment of patients with left-sided breast cancer using external beam radiation therapy,” International Journal of Radiation Oncology Biology Physics, vol.56, no. 3, Jul 2003, pp. 704–715.
[50] K.E. Rosenzweig, J. Hanley, and D. Mah, ” The deep inspiration Breath-hold technique in the treatment of inoperable non-small-cell lung cancer, ” Int J Radiat Oncol Biol Phys, vol.48, no. 1, 2000, pp. 81–87.
[51] J. Hanley, ” Deep inspiration breath-hold technique for lung tumors : the potential value of target immobilization and reduced lung density in dose escalation ,” Int J Radiat Oncol Biol Phys, vol.45, no. 3, 1999, pp. 603–611.
[52] S. Miohara, T. Kanai, and M. Endo, ” Respiratory gated irradiation system for heavy-ion radiotherapy,” Int J Radiat Oncol Biol Phys, vol.47, no. 4, 2000, pp. 1097–1103.
[53] R. Wagman, E. Yorke, E. Ford, P. Giraud, G. Mageras, B. Minsky, and K. Rosenzweig, “Respiratory gating for liver tumors: use in dose escalation,” International Journal of Radiation Oncology Biology Physics, vol. 55, no. 3, Mar. 2003, pp. 659–668.
[54] S. Nishiokaa, T. Nishiokab, M. Kawaharaa, S. Tanakaa, T. Hiromuraa, K. Tomitaa, H. Shiratoc, “Exhale fluctuation in respiratory-gated radiotherapy of the lung: A pitfall of respiratory gating shown in a synchronized internal/external marker recording study ,“Radiotherapy and Oncology, vol. 86, no. 1, Jan. 2008, pp. 69–76.
[55] T. H.D. Williamsa, A. G. Syrettb, and T. J. Brammarb, “W.S.B.—A fluoroscopy C-arm communication strategy ,“Injury, vol. 40, no. 8, Aug. 2009, pp. 840–843.
[56] 黃彥臻,醫用超音波器材市場動態,工業局智慧型醫療電子產業技術推廣與輔導計畫,2009
[57] 穆志欣,模擬呼吸運動之假體機構設計,碩士論文,機械工程學系,台南,2009
[58] 大銀微系統股份有限公司,http://www.hiwinmikro.com.tw/
[59] 李世中,數位式胸腔X光照相之劑量-影像品質最佳化評估,博士論文,清華大學,工程與系統科學系,新竹,2007。
[60] BV Endura - Philips.http://www.healthcare.philips.com
[61] 張簡吉幸,臨床腹部超音波學,台北,1984
[62] 登昌恆興業股份有限公司,http://www.upmostgroup.com.tw
[63] VISSIM,http://www.vissim.com/


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top