|
1.Ogliaro, F., N. Harris, S. Cohen, M. Filatov, S.P. de Visser, and S. Shaik, A Model “Rebound” Mechanism of Hydroxylation by Cytochrome P450: Stepwise and Effectively Concerted Pathways, and Their Reactivity Patterns. Journal of the American Chemical Society, 2000. 122(37): p. 8977-8989. 2.Higgins, C.F. and M.M. Gottesman, Is the multidrug transporter a flippase? Trends Biochem Sci, 1992. 17(1): p. 18-21. 3.Germann, U.A., P-glycoprotein--a mediator of multidrug resistance in tumour cells. Eur J Cancer, 1996. 32A(6): p. 927-44. 4.Sharom, F.J., The P-glycoprotein multidrug transporter: interactions with membrane lipids, and their modulation of activity. Biochem Soc Trans, 1997. 25(3): p. 1088-96. 5.Borst, P. and R.O. Elferink, Mammalian ABC transporters in health and disease. Annu Rev Biochem, 2002. 71: p. 537-92. 6.Szakacs, G., J.K. Paterson, J.A. Ludwig, C. Booth-Genthe, and M.M. Gottesman, Targeting multidrug resistance in cancer. Nat Rev Drug Discov, 2006. 5(3): p. 219-34. 7.Ling, V. and L.H. Thompson, Reduced permeability in CHO cells as a mechanism of resistance to colchicine. J Cell Physiol, 1974. 83(1): p. 103-16. 8.Campos, L., D. Guyotat, E. Archimbaud, P. Calmard-Oriol, T. Tsuruo, J. Troncy, D. Treille, and D. Fiere, Clinical significance of multidrug resistance P-glycoprotein expression on acute nonlymphoblastic leukemia cells at diagnosis. Blood, 1992. 79(2): p. 473-6. 9.Niehans, G.A., W. Jaszcz, V. Brunetto, R.T. Perri, K. Gajl-Peczalska, M.R. Wick, T. Tsuruo, and C.D. Bloomfield, Immunohistochemical identification of P-glycoprotein in previously untreated, diffuse large cell and immunoblastic lymphomas. Cancer Res, 1992. 52(13): p. 3768-75. 10.Fojo, A.T., K. Ueda, D.J. Slamon, D.G. Poplack, M.M. Gottesman, and I. Pastan, Expression of a multidrug-resistance gene in human tumors and tissues. Proc Natl Acad Sci U S A, 1987. 84(1): p. 265-9. 11.Bradley, G. and V. Ling, P-glycoprotein, multidrug resistance and tumor progression. Cancer Metastasis Rev, 1994. 13(2): p. 223-33. 12.Locher, K.P., Structure and mechanism of ATP-binding cassette transporters. Philosophical Transactions of the Royal Society B: Biological Sciences, 2009. 364(1514): p. 239-245. 13.Chen, C.J., J.E. Chin, K. Ueda, D.P. Clark, I. Pastan, M.M. Gottesman, and I.B. Roninson, Internal duplication and homology with bacterial transport proteins in the mdr1 (P-glycoprotein) gene from multidrug-resistant human cells. Cell, 1986. 47(3): p. 381-9. 14.Aller, S.G., J. Yu, A. Ward, Y. Weng, S. Chittaboina, R. Zhuo, P.M. Harrell, Y.T. Trinh, Q. Zhang, I.L. Urbatsch, and G. Chang, Structure of P-glycoprotein reveals a molecular basis for poly-specific drug binding. Science, 2009. 323(5922): p. 1718-22. 15.Fromm, M.F., Importance of P-glycoprotein at blood-tissue barriers. Trends Pharmacol Sci, 2004. 25(8): p. 423-9. 16.Zhou, S.F., Structure, function and regulation of P-glycoprotein and its clinical relevance in drug disposition. Xenobiotica, 2008. 38(7-8): p. 802-32. 17.Lin, J.H. and M. Yamazaki, Role of P-glycoprotein in pharmacokinetics: clinical implications. Clin Pharmacokinet, 2003. 42(1): p. 59-98. 18.Bosch, T.M., A.D.R. Huitema, V.D. Doodeman, R. Jansen, E. Witteveen, W.M. Smit, R.L. Jansen, C.M. van Herpen, M. Soesan, J.H. Beijnen, and J.H.M. Schellens, Pharmacogenetic Screening of CYP3A and ABCB1 in Relation to Population Pharmacokinetics of Docetaxel. Clinical Cancer Research, 2006. 12(19): p. 5786-5793. 19.Lum, B.L. and M.P. Gosland, MDR expression in normal tissues. Pharmacologic implications for the clinical use of P-glycoprotein inhibitors. Hematol Oncol Clin North Am, 1995. 9(2): p. 319-36. 20.Ozols, R.F., R.E. Cunnion, R.W. Klecker, Jr., T.C. Hamilton, Y. Ostchega, J.E. Parrillo, and R.C. Young, Verapamil and adriamycin in the treatment of drug-resistant ovarian cancer patients. J Clin Oncol, 1987. 5(4): p. 641-7. 21.Gottesman, M.M. and I. Pastan, Clinical trials of agents that reverse multidrug-resistance. J Clin Oncol, 1989. 7(4): p. 409-11. 22.Bansal, T., G. Mishra, M. Jaggi, R.K. Khar, and S. Talegaonkar, Effect of P-glycoprotein inhibitor, verapamil, on oral bioavailability and pharmacokinetics of irinotecan in rats. Eur J Pharm Sci, 2009. 36(4-5): p. 580-90. 23.Choi, S.U., B.H. Lee, K.H. Kim, E.J. Choi, S.H. Park, H.S. Shin, S.E. Yoo, N.P. Jung, and C.O. Lee, Novel multidrug-resistance modulators, KR-30026 and KR-30031, in cancer cells. Anticancer Res, 1997. 17(6d): p. 4577-82. 24.Tsuruo, T., H. Iida, S. Tsukagoshi, and Y. Sakurai, Increased accumulation of vincristine and adriamycin in drug-resistant P388 tumor cells following incubation with calcium antagonists and calmodulin inhibitors. Cancer Res, 1982. 42(11): p. 4730-3. 25.Höll, V., M. Kouba, M. Dietel, and G. Vogt, Stereoisomers of calcium antagonists which differ markedly in their potencies as calcium blockers are equally effective in modulating drug transport by P-glycoprotein. Biochemical Pharmacology, 1992. 43(12): p. 2601-2608. 26.Sehested, M., P.B. Jensen, T. Skovsgaard, N. Bindslev, E.J. Demant, E. Friche, and L. Vindelov, Inhibition of vincristine binding to plasma membrane vesicles from daunorubicin-resistant Ehrlich ascites cells by multidrug resistance modulators. Br J Cancer, 1989. 60(6): p. 809-14. 27.Ford, J.M., Modulators of multidrug resistance. Preclinical studies. Hematol Oncol Clin North Am, 1995. 9(2): p. 337-61. 28.Lampidis, T.J., A. Krishan, L. Planas, and H. Tapiero, Reversal of intrinsic resistance to adriamycin in normal cells by verapamil. Cancer Drug Deliv, 1986. 3(4): p. 251-9. 29.Nawrath, H. and M. Raschack, Effects of (-)-desmethoxyverapamil on heart and vascular smooth muscle. J Pharmacol Exp Ther, 1987. 242(3): p. 1090-7. 30.Pirker, R., G. Keilhauer, M. Raschack, C. Lechner, and H. Ludwig, Reversal of multi-drug resistance in human KB cell lines by structural analogs of verapamil. Int J Cancer, 1990. 45(5): p. 916-9. 31.Kessel, D. and C. Wilberding, Promotion of daunorubicin uptake and toxicity by the calcium antagonist tiapamil and its analogs. Cancer Treat Rep, 1985. 69(6): p. 673-6. 32.Hyafil, F., C. Vergely, P. Du Vignaud, and T. Grand-Perret, In vitro and in vivo reversal of multidrug resistance by GF120918, an acridonecarboxamide derivative. Cancer Res, 1993. 53(19): p. 4595-602. 33.Boesch, D., C. Gaveriaux, B. Jachez, A. Pourtier-Manzanedo, P. Bollinger, and F. Loor, In vivo circumvention of P-glycoprotein-mediated multidrug resistance of tumor cells with SDZ PSC 833. Cancer Res, 1991. 51(16): p. 4226-33. 34.Jonsson, B., K. Nilsson, P. Nygren, and R. Larsson, SDZ PSC-833--a novel potent in vitro chemosensitizer in multiple myeloma. Anticancer Drugs, 1992. 3(6): p. 641-6. 35.Newman, M.J., J.C. Rodarte, K.D. Benbatoul, S.J. Romano, C. Zhang, S. Krane, E.J. Moran, R.T. Uyeda, R. Dixon, E.S. Guns, and L.D. Mayer, Discovery and characterization of OC144-093, a novel inhibitor of P-glycoprotein-mediated multidrug resistance. Cancer Res, 2000. 60(11): p. 2964-72. 36.Dantzig, A.H., R.L. Shepard, J. Cao, K.L. Law, W.J. Ehlhardt, T.M. Baughman, T.F. Bumol, and J.J. Starling, Reversal of P-glycoprotein-mediated multidrug resistance by a potent cyclopropyldibenzosuberane modulator, LY335979. Cancer Res, 1996. 56(18): p. 4171-9. 37.Dale, I.L., W. Tuffley, R. Callaghan, J.A. Holmes, K. Martin, M. Luscombe, P. Mistry, H. Ryder, A.J. Stewart, P. Charlton, P.R. Twentyman, and P. Bevan, Reversal of P-glycoprotein-mediated multidrug resistance by XR9051, a novel diketopiperazine derivative. Br J Cancer, 1998. 78(7): p. 885-92. 38.Mullin, S., N. Mani, and T.H. Grossman, Inhibition of antibiotic efflux in bacteria by the novel multidrug resistance inhibitors biricodar (VX-710) and timcodar (VX-853). Antimicrob Agents Chemother, 2004. 48(11): p. 4171-6. 39.Kannan, P., S. Telu, S. Shukla, S.V. Ambudkar, V.W. Pike, C. Halldin, M.M. Gottesman, R.B. Innis, and M.D. Hall, The "specific" P-glycoprotein inhibitor Tariquidar is also a substrate and an inhibitor for breast cancer resistance protein (BCRP/ABCG2). ACS Chem Neurosci, 2011. 2(2): p. 82-9. 40.Nelson, D.R., T. Kamataki, D.J. Waxman, F.P. Guengerich, R.W. Estabrook, R. Feyereisen, F.J. Gonzalez, M.J. Coon, I.C. Gunsalus, O. Gotoh, and et al., The P450 superfamily: update on new sequences, gene mapping, accession numbers, early trivial names of enzymes, and nomenclature. DNA Cell Biol, 1993. 12(1): p. 1-51. 41.Hasemann, C.A., R.G. Kurumbail, S.S. Boddupalli, J.A. Peterson, and J. Deisenhofer, Structure and function of cytochromes P450: a comparative analysis of three crystal structures. Structure, 1995. 3(1): p. 41-62. 42.Hall, D.P.F., Cytochromes P-450 and the regulation of steroid synthesis. Steroids, 1986. 48(3): p. 131-196. 43.Capdevila, J.H., J.R. Falck, and R.W. Estabrook, Cytochrome P450 and the arachidonate cascade. Faseb j, 1992. 6(2): p. 731-6. 44.Asakura, T. and H. Shichi, Cytochrome P450-mediated prostaglandin ωω-1 hydroxylase activities in porcine ciliary body epithelial cells. Experimental Eye Research, 1992. 55(2): p. 377-384. 45.Wrighton, S.A. and J.C. Stevens, The human hepatic cytochromes P450 involved in drug metabolism. Crit Rev Toxicol, 1992. 22(1): p. 1-21. 46.Hollenberg, P.F., Mechanisms of cytochrome P450 and peroxidase-catalyzed xenobiotic metabolism. Faseb j, 1992. 6(2): p. 686-94. 47.Williams, J.A., B.J. Ring, V.E. Cantrell, D.R. Jones, J. Eckstein, K. Ruterbories, M.A. Hamman, S.D. Hall, and S.A. Wrighton, Comparative metabolic capabilities of CYP3A4, CYP3A5, and CYP3A7. Drug Metab Dispos, 2002. 30(8): p. 883-91. 48.Guengerich, F.P., Cytochrome P-450 3A4: regulation and role in drug metabolism. Annu Rev Pharmacol Toxicol, 1999. 39: p. 1-17. 49.Presnell, S.R. and F.E. Cohen, Topological distribution of four-alpha-helix bundles. Proc Natl Acad Sci U S A, 1989. 86(17): p. 6592-6. 50.Williams, P.A., J. Cosme, D.M. Vinkovic, A. Ward, H.C. Angove, P.J. Day, C. Vonrhein, I.J. Tickle, and H. Jhoti, Crystal structures of human cytochrome P450 3A4 bound to metyrapone and progesterone. Science, 2004. 305(5684): p. 683-6. 51.Yano, J.K., M.R. Wester, G.A. Schoch, K.J. Griffin, C.D. Stout, and E.F. Johnson, The structure of human microsomal cytochrome P450 3A4 determined by X-ray crystallography to 2.05-A resolution. J Biol Chem, 2004. 279(37): p. 38091-4. 52.Ekroos, M. and T. Sjogren, Structural basis for ligand promiscuity in cytochrome P450 3A4. Proc Natl Acad Sci U S A, 2006. 103(37): p. 13682-7. 53.Bansal, T., M. Jaggi, R.K. Khar, and S. Talegaonkar, Emerging significance of flavonoids as P-glycoprotein inhibitors in cancer chemotherapy. J Pharm Pharm Sci, 2009. 12(1): p. 46-78. 54.Michalak, K. and O. Wesolowska, Polyphenols counteract tumor cell chemoresistance conferred by multidrug resistance proteins. Anticancer Agents Med Chem, 2012. 12(8): p. 880-90. 55.Nijveldt, R.J., E. van Nood, D.E. van Hoorn, P.G. Boelens, K. van Norren, and P.A. van Leeuwen, Flavonoids: a review of probable mechanisms of action and potential applications. Am J Clin Nutr, 2001. 74(4): p. 418-25. 56.Cho, Y.A., J.S. Choi, and J.P. Burm, Effects of the antioxidant baicalein on the pharmacokinetics of nimodipine in rats: a possible role of P-glycoprotein and CYP3A4 inhibition by baicalein. Pharmacol Rep, 2011. 63(4): p. 1066-73. 57.Li, C., M. Kim, H. Choi, and J. Choi, Effects of baicalein on the pharmacokinetics of tamoxifen and its main metabolite, 4-hydroxytamoxifen, in rats: possible role of cytochrome P450 3A4 and P-glycoprotein inhibition by baicalein. Arch Pharm Res, 2011. 34(11): p. 1965-72. 58.Zheng, Y.H., L.H. Yin, T.H. Grahn, A.F. Ye, Y.R. Zhao, and Q.Y. Zhang, Anticancer effects of baicalein on hepatocellular carcinoma cells. Phytother Res, 2014. 28(9): p. 1342-8. 59.Wang, Z., C. Jiang, W. Chen, G. Zhang, D. Luo, Y. Cao, J. Wu, Y. Ding, and B. Liu, Baicalein Induces Apoptosis and Autophagy via Endoplasmic Reticulum Stress in Hepatocellular Carcinoma Cells. BioMed Research International, 2014. 2014: p. 732516. 60.Chao, J.I., W.C. Su, and H.F. Liu, Baicalein induces cancer cell death and proliferation retardation by the inhibition of CDC2 kinase and survivin associated with opposite role of p38 mitogen-activated protein kinase and AKT. Mol Cancer Ther, 2007. 6(11): p. 3039-48. 61.Donald, G., K. Hertzer, and G. Eibl, Baicalein – An Intriguing Therapeutic Phytochemical in Pancreatic Cancer. Current drug targets, 2012. 13(14): p. 1772-1776. 62.Saller, R., R. Meier, and R. Brignoli, The use of silymarin in the treatment of liver diseases. Drugs, 2001. 61(14): p. 2035-63. 63.Zhao, J., M. Lahiri-Chatterjee, Y. Sharma, and R. Agarwal, Inhibitory effect of a flavonoid antioxidant silymarin on benzoyl peroxide-induced tumor promotion, oxidative stress and inflammatory responses in SENCAR mouse skin. Carcinogenesis, 2000. 21(4): p. 811-6. 64.Katiyar, S.K., N.J. Korman, H. Mukhtar, and R. Agarwal, Protective effects of silymarin against photocarcinogenesis in a mouse skin model. J Natl Cancer Inst, 1997. 89(8): p. 556-66. 65.Kosina, P., P. Maurel, J. Ulrichova, and Z. Dvorak, Effect of silybin and its glycosides on the expression of cytochromes P450 1A2 and 3A4 in primary cultures of human hepatocytes. J Biochem Mol Toxicol, 2005. 19(3): p. 149-53. 66.Zuber, R., M. Modriansky, Z. Dvorak, P. Rohovsky, J. Ulrichova, V. Simanek, and P. Anzenbacher, Effect of silybin and its congeners on human liver microsomal cytochrome P450 activities. Phytother Res, 2002. 16(7): p. 632-8. 67.Džubák, P., M. Hajdúch, R. Gažák, A. Svobodová, J. Psotová, D. Walterová, P. Sedmera, and V. Křen, New derivatives of silybin and 2,3-dehydrosilybin and their cytotoxic and P-glycoprotein modulatory activity. Bioorganic & Medicinal Chemistry, 2006. 14(11): p. 3793-3810. 68.Zhang, S. and M.E. Morris, Effect of the flavonoids biochanin A and silymarin on the P-glycoprotein-mediated transport of digoxin and vinblastine in human intestinal Caco-2 cells. Pharm Res, 2003. 20(8): p. 1184-91. 69.Kim, D.H., Y.H. Jin, J.B. Park, and K. Kobashi, Silymarin and its components are inhibitors of beta-glucuronidase. Biol Pharm Bull, 1994. 17(3): p. 443-5. 70.Park, J.H., J.H. Park, H.J. Hur, J.S. Woo, and H.J. Lee, Effects of silymarin and formulation on the oral bioavailability of paclitaxel in rats. Eur J Pharm Sci, 2012. 45(3): p. 296-301. 71.Yang, F.H., Q. Zhang, Q.Y. Liang, S.Q. Wang, B.X. Zhao, Y.T. Wang, Y. Cai, and G.F. Li, Bioavailability enhancement of paclitaxel via a novel oral drug delivery system: paclitaxel-loaded glycyrrhizic acid micelles. Molecules, 2015. 20(3): p. 4337-56. 72.Nabekura, T., T. Yamaki, K. Ueno, and S. Kitagawa, Inhibition of P-glycoprotein and multidrug resistance protein 1 by dietary phytochemicals. Cancer Chemother Pharmacol, 2008. 62(5): p. 867-73. 73.J Patel, M., S. S Patel, N. M Patel, and M. M Patel, A self-microemulsifying drug delivery system (SMEDDS). Vol. 4. 2010. 74.Dokania, S. and A.K. Joshi, Self-microemulsifying drug delivery system (SMEDDS)--challenges and road ahead. Drug Deliv, 2015. 22(6): p. 675-90. 75.Sha, X., J. Wu, Y. Chen, and X. Fang, Self-microemulsifying drug-delivery system for improved oral bioavailability of probucol: preparation and evaluation. International Journal of Nanomedicine, 2012. 7: p. 705-712. 76.Akula, S., A.K. Gurram, and S.R. Devireddy, Self-Microemulsifying Drug Delivery Systems: An Attractive Strategy for Enhanced Therapeutic Profile. International Scholarly Research Notices, 2014. 2014: p. 11. 77.Dahan, A. and A. Hoffman, Rationalizing the selection of oral lipid based drug delivery systems by an in vitro dynamic lipolysis model for improved oral bioavailability of poorly water soluble drugs. J Control Release, 2008. 129(1): p. 1-10. 78.Gursoy, R.N. and S. Benita, Self-emulsifying drug delivery systems (SEDDS) for improved oral delivery of lipophilic drugs. Biomed Pharmacother, 2004. 58(3): p. 173-82. 79.Hauss, D.J., Oral lipid-based formulations. Advanced Drug Delivery Reviews, 2007. 59(7): p. 667-676. 80.Constantinides, P.P., Lipid microemulsions for improving drug dissolution and oral absorption: physical and biopharmaceutical aspects. Pharm Res, 1995. 12(11): p. 1561-72. 81.Kohli, K., S. Chopra, D. Dhar, S. Arora, and R.K. Khar, Self-emulsifying drug delivery systems: an approach to enhance oral bioavailability. Drug Discov Today, 2010. 15(21-22): p. 958-65. 82.Bagwe, R.P., J.R. Kanicky, B.J. Palla, P.K. Patanjali, and D.O. Shah, Improved drug delivery using microemulsions: rationale, recent progress, and new horizons. Crit Rev Ther Drug Carrier Syst, 2001. 18(1): p. 77-140. 83.Gershanik, T. and S. Benita, Self-dispersing lipid formulations for improving oral absorption of lipophilic drugs. Eur J Pharm Biopharm, 2000. 50(1): p. 179-88. 84.Pouton, C.W., Lipid formulations for oral administration of drugs: non-emulsifying, self-emulsifying and ''self-microemulsifying'' drug delivery systems. Eur J Pharm Sci, 2000. 11 Suppl 2: p. S93-8. 85.Stegemann, S., F. Leveiller, D. Franchi, H. de Jong, and H. Lindén, When poor solubility becomes an issue: From early stage to proof of concept. European Journal of Pharmaceutical Sciences, 2007. 31(5): p. 249-261. 86.Nayak, A., J. Malakar, and K. Kumar Sen, Gastroretentive drug delivery technologies: Current approaches and future potential. Vol. 1. 2010. 1-12. 87.Kawato, Y., M. Aonuma, Y. Hirota, H. Kuga, and K. Sato, Intracellular roles of SN-38, a metabolite of the camptothecin derivative CPT-11, in the antitumor effect of CPT-11. Cancer Res, 1991. 51(16): p. 4187-91. 88.Fassberg, J. and V.J. Stella, A kinetic and mechanistic study of the hydrolysis of camptothecin and some analogues. J Pharm Sci, 1992. 81(7): p. 676-84. 89.de Man, F.M., A.K.L. Goey, R.H.N. van Schaik, R.H.J. Mathijssen, and S. Bins, Individualization of Irinotecan Treatment: A Review of Pharmacokinetics, Pharmacodynamics, and Pharmacogenetics. Clin Pharmacokinet, 2018. 90.Kobayashi, K., B. Bouscarel, Y. Matsuzaki, S. Ceryak, S. Kudoh, and H. Fromm, pH-dependent uptake of irinotecan and its active metabolite, SN-38, by intestinal cells. Int J Cancer, 1999. 83(4): p. 491-6. 91.Rivory, L.P., M.R. Bowles, J. Robert, and S.M. Pond, Conversion of irinotecan (CPT-11) to its active metabolite, 7-ethyl-10-hydroxycamptothecin (SN-38), by human liver carboxylesterase. Biochem Pharmacol, 1996. 52(7): p. 1103-11. 92.Chabot, G.G., Clinical pharmacokinetics of irinotecan. Clin Pharmacokinet, 1997. 33(4): p. 245-59. 93.Atsumi, R., W. Suzuki, and H. Hakusui, Identification of the metabolites of irinotecan, a new derivative of camptothecin, in rat bile and its biliary excretion. Xenobiotica, 1991. 21(9): p. 1159-69. 94.Poujol, S., F. Pinguet, F. Malosse, C. Astre, M. Ychou, S. Culine, and F. Bressolle, Sensitive HPLC-Fluorescence Method for Irinotecan and Four Major Metabolites in Human Plasma and Saliva: Application to Pharmacokinetic Studies. Clinical Chemistry, 2003. 49(11): p. 1900. 95.Takasuna, K., T. Hagiwara, M. Hirohashi, M. Kato, M. Nomura, E. Nagai, T. Yokoi, and T. Kamataki, Involvement of beta-glucuronidase in intestinal microflora in the intestinal toxicity of the antitumor camptothecin derivative irinotecan hydrochloride (CPT-11) in rats. Cancer Res, 1996. 56(16): p. 3752-7. 96.Lokiec, F., P. Canal, C. Gay, E. Chatelut, J.P. Armand, H. Roche, R. Bugat, E. Goncalves, and A. Mathieu-Boue, Pharmacokinetics of irinotecan and its metabolites in human blood, bile, and urine. Cancer Chemother Pharmacol, 1995. 36(1): p. 79-82. 97.Chu, X.Y., Y. Kato, K. Niinuma, K.I. Sudo, H. Hakusui, and Y. Sugiyama, Multispecific organic anion transporter is responsible for the biliary excretion of the camptothecin derivative irinotecan and its metabolites in rats. J Pharmacol Exp Ther, 1997. 281(1): p. 304-14. 98.Chu, X.Y., Y. Kato, and Y. Sugiyama, Multiplicity of biliary excretion mechanisms for irinotecan, CPT-11, and its metabolites in rats. Cancer Res, 1997. 57(10): p. 1934-8. 99.Sano, K., M. Yoshikawa, S. Hayasaka, K. Satake, Y. Ikegami, H. Yoshida, T. Ishikawa, S. Sawada, and S. Tanabe, Simple non-ion-paired high-performance liquid chromatographic method for simultaneous quantitation of carboxylate and lactone forms of 14 new camptothecin derivatives. J Chromatogr B Analyt Technol Biomed Life Sci, 2003. 795(1): p. 25-34. 100.Yang, X., Z. Hu, S.Y. Chan, B.C. Goh, W. Duan, E. Chan, and S. Zhou, Simultaneous determination of the lactone and carboxylate forms of irinotecan (CPT-11) and its active metabolite SN-38 by high-performance liquid chromatography: application to plasma pharmacokinetic studies in the rat. J Chromatogr B Analyt Technol Biomed Life Sci, 2005. 821(2): p. 221-8.
|