跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.176) 您好!臺灣時間:2025/09/07 05:07
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:洪銘澤
研究生(外文):Ming-Tse Hung
論文名稱:有效達成口服化療療效之共口服投與化療藥物自微乳化藥物傳遞系統搭配胃滯留藥物傳遞系統與植物性醣蛋白暨代謝酵素雙效抑制劑多元組合之臨床轉譯研究
論文名稱(外文):Clinical Translation Research of Oral Chemotherapy Effectively Enabled with Co-Oral Administration of Chemodrug-loaded Self-microemulsifying drug delivery system plus Gastroretentive Drug delivery system and Herbal P-glycoprotein and CYP450 Dual Function Inhibitor Cocktail.
指導教授:許明照許明照引用關係
指導教授(外文):Ming Thau,Sheu
學位類別:碩士
校院名稱:臺北醫學大學
系所名稱:臨床藥物基因體學暨蛋白質體學碩士學位學程
學門:醫藥衛生學門
學類:醫學學類
論文種類:學術論文
論文出版年:2018
畢業學年度:106
語文別:中文
論文頁數:121
中文關鍵詞:自微乳化藥物傳遞系統胃滯留藥物傳遞系統雙效抑制劑化療藥物
外文關鍵詞:Self-microemulsifying drug delivery systemgastroretentive drug delivery systemdual-function inhibitorchemotherapy drug
相關次數:
  • 被引用被引用:0
  • 點閱點閱:204
  • 評分評分:
  • 下載下載:8
  • 收藏至我的研究室書目清單書目收藏:0
當前口服化療藥物生體可用率不佳為化學治療所困擾的問題,可能因為重複投予相同化療藥物而產生多重藥物抗藥性(Multidrug resistant,MDR),在許多研究都已經證實P-gp與細胞色素(cytochrome P450 enzyme)與多重抗藥性有相關。P-gp與細胞色素(CYP450)分別影響受質藥物的吸收與活性,進而影響口服化療藥物生體可用率。另外,多數化療藥物受限於本身的疏水性特質,使其溶解度差造成溶離速度慢,進而限制藥物的吸收而無法經口服來達到臨床療效。有鑒於此,本研究使用中草藥萃取的雙效抑制劑來抑制P-gp與CYP450兩個因子,並利用自發性微乳化藥物傳輸系統(SMEDDS)或是胃滯留藥物傳遞系統(GRDDS)增加藥物的溶解度與吸收效率,以改善藥物疏水性特質的第三個因子。
本研究體外溶離結果顯示在結合SMEDDS與GRDDS後,幫助藥物達到快速溶離與胃滯留緩慢釋放的兩種效果。在藥物動力學試驗顯示將CPT11與四種雙效抑制劑或是胃滯留藥物系統結合後,對於CPT11與活性代謝物SN38的口服生體可用率都有不同程度的提升。在結合黃芩素(baicalein) 、水飛薊素(silymarin)、甘草酸(GLA)共口服的抑制劑組中, CPT11提升效果分別為13%、176.6%、86.3%;對於SN38分別提升36.8%、104%、58%。在胃滯留組別(GRDDS)則是以10%的PEO(7000K)組別效果最為顯著,其對於CPT11與SN38的生體可用率分別提升231%與149%。且在口服劑型中SN38具有較高的絕對生體可用率(AB)與轉換效率(conversion efficiency)。在DTX的藥物動力學試驗中,於無預處理組中結合水飛薊素或是甘草酸共口服組,對於DTX可提升90%與30%的生體可用率,另外,於預處理組中結合黃芩素或甘草酸組,對於DTX可提升38%與168%的生體可用率。
經由以上體外溶離與體內藥物動力學結果顯示,本研究成功開發一個強大且簡易製備乘載難溶性藥物的平台,期望此平台能應用在更多難溶性藥物,以解決當前口服化療藥物效果不彰之情況與提升病患順服度及生活品質。

Malignant tumor is on the top ranking of the leading cause of death for years. Although chemotherapeutic agent renews rapidly, patients with repeated treatment may suffered from drug resistance, which was shown to have highly-correlated to P-glycoprotein(P-gp) and Cytochrome P450 (CYP450). P-gp, encoded as multidrug resistance 1 (MDR1), is not only overexpression in tumor tissue, but also in the gastrointestinal tract (GIT) epithelial cells for active efflux of the therapeutic drugs across all the cell membranes. Thus, P-gp decreases drug accumulation in cancer cells. CYP450, mainly expressed in liver for catalyzing chemicals to higher water-soluble substance, inactivates oral drugs in intestinal epithelial cells and causes first-pass effect in liver tissue. Therefore, suppression of P-gp and CYP450 could effectively reduce drug resistance, decrease bioavailability and increase therapeutic outcome. In this study, Chinese herbal extracts with the dual-inhibitory effects of P-gp and CYP450 were selected and co-administrated with chemotherapeutic agents to improve the bioavailability of chemotherapeutic drugs.
Irinotecan (CPT11) and Chinese herbal extracts with dual-inhibitory effects of P-gp and CYP450 were encapsulated in self-microemulsifying drug delivery system (SMEDDS), spontaneously forming a clear, thermodynamically stable mixed liquid after contacting with an aqueous solution, in order to enhance their solubilities. Following by formulated as a gastroretentive drug delivery system (GRDDS) provided a great enhancement in oral bioavailability and absortion efficiency.
The oral bioavailability of CPT11 was significantly improved when co-administered with baicalein (13%)、silymarin (176.6%) and glycyrrhetinic acid (GLA) (86.3%) compared to control group. Moreover, the oral bioavailability of SN38 was also increased by 36.8%, 104%, 58%, respectively. In terms of GRDDS, the oral bioavailability for CPT11 and SN38 were increased 231% and 149% respectively when containing 10% PEO in the formula. Overall, the results showed that either co-administration of Chinese herb extracts with dual-inhibitory effects of P-gp and CYP450 or GRDDS can effectively improve the oral bioavailability of the model drug, CPT11/SN38, which is expected to have a better therapeutic outcome in cancer therapy than the control group.
Similar trend was found in the pharmacokinetic study of oral administraiton of Docetaxel (DTX). The oral bioavailability of DTX without pretreatment revealed an improvement of 90% and 30% when co-administered with silymarin and GLA, respectively. While the oral bioavailability of DTX with pretreatment co-administered with baicalein and GLA group showed 38% and 168% of improvement, we successfully developed a delivery platform which can control the release of CPT11 in an acidic environment and improved its bioavailability via co-administration of the P-gp and CYP450 inhibitors. We believe GRDDS will be an efficient delivery platform for various anticancer agents, specifically for poor soluble and substrate to CYP450 or P-gp; thus, it can benefit cancer patients through better therapeutic efficacy.
目錄
目錄 I
中文摘要 1
Abstract 2
縮寫表 4
附表目錄 5
附圖目錄 6
第壹章 緒論 8
第一節 研究背景介紹 8
一、口服劑型簡介 8
二、P-glycoprotein(P-gp) 10
三、Cytochrome P450 (CYP450) 16
四、P-gp與CYP450雙效抑制劑 18
五、自發性微乳劑系統(SMEDDS) 22
六、胃滯留藥物傳遞系統(GRDDS) 26
七、模式藥物-Irinotecan(CPT11)與活性代謝物-SN38 28
第二節 研究動機 35
第貳章 研究材料與實驗方法 36
第一節 實驗材料及儀器設備 36
一、實驗材料 36
二、儀器設備 37
第二節 實驗方法 38
一、CPT11、SN38及SN38G之高效液相層析分析方法(溶液) 38
二、CPT11、SN38之高效液相層析分析方法(血漿) 40
三、P-gp & CYP450雙效抑制劑之紫外分光光度計之體外分析方法 43
第三節 配方開發及體外溶離與體內藥動學試驗 46
一、配方開發與製備 46
二、配方粒徑分析 48
三、體外溶離試驗(Dissolution test) 50
四、體內藥物動力學試驗(Pharmacokinetics test) 52
第參章 結果與討論 55
第一節 分析方法的確立 55
一、CPT11及SN38之高效液相層析之分析方法(溶液) 60
二、CPT11及SN38之高效液相層析之分析方法(血漿) 69
三、P-gp & CYP450雙效抑制劑之紫外分光光度計之體外分析方法 77
第二節 配方開發及體外溶離與體內藥動學試驗 82
一、配方開發與製備 82
二、配方粒徑分析 84
三、體外溶離試驗(Dissolution test) 85
四、體內藥物動力學試驗(Pharmacokinetics) 90
第肆章 結論 110
附錄一 動物試驗核准函 112
參考文獻 113

附表目錄
Table 1 Parameters for particle size measurement. 49
Table 2 Pharmacokinetics of Irinotecan (CPT11) (unit: mg/rabbit). 54
Table 3 Pharmacokinetics of Docetaxel (DTX) (unit: mg/kg). 54
Table 4 Recovery assay of CPT11 in rabbit plasma (n=3). 59
Table 5 Recovery assay of SN38 in rabbit plasma (n=3). 59
Table 6 Intraday accuracy and precision (n=6) of CPT11 in solution. 61
Table 7 Interday accuracy and precision (n=6) of CPT11 in solution. 62
Table 8 Calibration curve (n=2) of CPT11 in solution (dissolution test). 63
Table 9 Intraday accuracy and precision (n=6) of SN38 in solution. 65
Table 10 Interday accuracy and precision (n=6) of SN38 in solution. 66
Table 11 Calibration curve (n=1) of SN38G in solution. 68
Table 12 Intraday accuracy and precision (n=6) of CPT11 in rabbit plasma. 70
Table 13 Interday accuracy and precision (n=6) of CPT11 in rabbit plasma. 71
Table 14 Calibration curve (n=1) of CPT11 in rat plasma. 72
Table 15 Intraday accuracy and precision (n=6) of SN38 in rabbit plasma. 74
Table 16 Interday accuracy and precision (n=6) of SN38 in rabbit plasma. 75
Table 17 Calibration curve of SN38 in rat plasma. 76
Table 18 Calibration curve (n=1) of baicalein in solution. 78
Table 19 Calibration curve (n=1) of silymarin in solution. 79
Table 20 Calibration curve (n=1) of Glycyrrhizic acid in solution. 80
Table 21 Calibration curve (n=1) of Glycyrrhetinic acid in solution. 81
Table 22 SMEDDS formulation ingredients. 83
Table 23 Solubility of SMEDDS formulation (unit: mg/g). 83
Table 24 Particle size and distribution trend of PC90C10P0 formulation (SMEDDS) 84
Table 25 Pharmacokinetics parameters of CPT11 (SMEDDS with or without GRDDS). 92
Table 26 Pharmacokinetics parameters of CPT11 (SMEDDS with or without inhibitors / GRDDS). 95
Table 27 Pharmacokinetics parameters of SN38 (SMEDDS with or without GRDDS). 99
Table 28 Pharmacokinetics parameters of SN38 ( SMEDDS with or without dual inhibitors / GRDDS). 102
Table 29 Pharmacokinetics parameters of DTX. (with or without dual inhibitors). 106
Table 30 Pharmacokinetics parameters of DTX. (with or without pretreatment half dose of dual inhibitors). 108


附圖目錄
Figure 1 Structure of P-glycoprotein [14] 11
Figure 2 P-gp restricts the distribution of its substrates into organs. 12
Figure 3 P-gp eliminates its substrates from excretory organs. 12
Figure 4 Structure of cytochrome P450 enzyme 17
Figure 5 Structure of Baicalein. 18
Figure 6 Structure of Silymarin. 19
Figure 7 Structure of Glycyrrhizic acid, GLA. 20
Figure 8 Structure of Glycyrrhetinic acid, GLA. 20
Figure 9 Preparation and formation of SMEDDS formulation. 23
Figure 10 Introduction of Gastroretentive drug delivery system (GRDDS). 27
Figure 11 Chemical structure of irinotecan hydrochloride trihydrate. 29
Figure 12 Conversion of lactone form and carboxylate form by changing pH environment. 30
Figure 13 Time-course of CPT-11 uptake by isolated intestinal cells. 31
Figure 14 Time-course of SN38 uptake by isolated intestinal cells.] 31
Figure 15 Chemical structure of irinotecan (CPT11) and its major metabolites. [94] 32
Figure 16 Affects absorption and metabolism and related side effects of oral administration of CPT11 34
Figure 17 UV wavelength scan of Baicalein (黃芩素,Conc=20µg/ml) 44
Figure 18 UV wavelength scan of Silymarin (水飛薊素,Conc=30µg/ml) 44
Figure 19 UV wavelength scan of Glycyrrhizic acid (甘草酸,Conc=40µg/ml). 45
Figure 20 UV wavelength scan of Glycyrrhetic acid (甘草次酸,Conc=40µg/ml). 45
Figure 21 Chromatograph of blank in solution. (Excitation380,Emission440/550). 56
Figure 22 Chromatograph of blank in solution. (Excitation370,Emission470/534). 56
Figure 23 Chromatograph of blank in plasma. 58
Figure 24 Chromatograph of blank in plasma. 58
Figure 25 Chromatograph of CPT11 in solution 60
Figure 26 Intraday calibration curve of CPT11 solution validation. 61
Figure 27 Interday calibration curve of CPT11 solution validation. 62
Figure 28 Calibration curve of CPT11 in solution 63
Figure 29 chromatograph of SN38 in solution. 64
Figure 30 Intraday calibration curve validation of CPT11 in solution. 65
Figure 31 Interday calibration curve validation of SN38 in solution. 66
Figure 32 Chromatograph of SN38G in solution. 67
Figure 33 Calibration curve of SN38G (in solution). 68
Figure 34 Chromatograph of CPT11 in plasma. 69
Figure 35 Intraday calibration curve validation of CPT11 in plasma. 70
Figure 36 Interday calibration curve validation of CPT11 in plasma. 71
Figure 37 Calibration curve of CPT11 in rat plasma. 72
Figure 38 Chromatograph of SN38 in plasma. 73
Figure 39 Intraday calibration curve validation of SN38 in rabbit plasma. 74
Figure 40 Intraday calibration curve validation of SN38 in rabbit plasma. 75
Figure 41 Calibration curve of SN38 in rat plasma. 76
Figure 42 Calibration curve of baicalein in solution. (黃芩素) 78
Figure 43 Calibration curve of silymarin in solution. (水飛薊素) 79
Figure 44 Calibration curve of Glycyrrhizic acid in solution. (甘草酸) 80
Figure 45 Calibration curve of Glycyrrhetinic acid in solution. (甘草次酸) 81
Figure 47 Dissolution profile of CPT11 without GRDDS (in vitro) 86
Figure 48 Dissolution profile of CPT11 combined with GRDDS (in vitro) 87
Figure 49 Dissolution profile of P-gp and CYP450 dual inhibitors. 89
Figure 50 Pharmacokinetics profiles of CPT11 in NZ rabbit. (SMEDDS with or without GRDDS) 93
Figure 51 Pharmacokinetics profiles of CPT11 in NZ rabbit. (SMEDDS with or without inhibitors/GRDDS) 96
Figure 52 Pharmacokinetics profiles of SN38 in NZ rabbit. (SMEDDS with or without GRDDS) 100
Figure 53 Pharmacokinetics profiles of SN38 in NZ rabbit. (SMEDDS with or without dual inhibitors/GRDDS) 103
Figure 54 Pharmacokinetics profiles of DTX in rat. (without pretreatment) 107
Figure 55 Pharmacokinetics profiles of DTX in rat (pretreatment) 109
1.Ogliaro, F., N. Harris, S. Cohen, M. Filatov, S.P. de Visser, and S. Shaik, A Model “Rebound” Mechanism of Hydroxylation by Cytochrome P450:  Stepwise and Effectively Concerted Pathways, and Their Reactivity Patterns. Journal of the American Chemical Society, 2000. 122(37): p. 8977-8989.
2.Higgins, C.F. and M.M. Gottesman, Is the multidrug transporter a flippase? Trends Biochem Sci, 1992. 17(1): p. 18-21.
3.Germann, U.A., P-glycoprotein--a mediator of multidrug resistance in tumour cells. Eur J Cancer, 1996. 32A(6): p. 927-44.
4.Sharom, F.J., The P-glycoprotein multidrug transporter: interactions with membrane lipids, and their modulation of activity. Biochem Soc Trans, 1997. 25(3): p. 1088-96.
5.Borst, P. and R.O. Elferink, Mammalian ABC transporters in health and disease. Annu Rev Biochem, 2002. 71: p. 537-92.
6.Szakacs, G., J.K. Paterson, J.A. Ludwig, C. Booth-Genthe, and M.M. Gottesman, Targeting multidrug resistance in cancer. Nat Rev Drug Discov, 2006. 5(3): p. 219-34.
7.Ling, V. and L.H. Thompson, Reduced permeability in CHO cells as a mechanism of resistance to colchicine. J Cell Physiol, 1974. 83(1): p. 103-16.
8.Campos, L., D. Guyotat, E. Archimbaud, P. Calmard-Oriol, T. Tsuruo, J. Troncy, D. Treille, and D. Fiere, Clinical significance of multidrug resistance P-glycoprotein expression on acute nonlymphoblastic leukemia cells at diagnosis. Blood, 1992. 79(2): p. 473-6.
9.Niehans, G.A., W. Jaszcz, V. Brunetto, R.T. Perri, K. Gajl-Peczalska, M.R. Wick, T. Tsuruo, and C.D. Bloomfield, Immunohistochemical identification of P-glycoprotein in previously untreated, diffuse large cell and immunoblastic lymphomas. Cancer Res, 1992. 52(13): p. 3768-75.
10.Fojo, A.T., K. Ueda, D.J. Slamon, D.G. Poplack, M.M. Gottesman, and I. Pastan, Expression of a multidrug-resistance gene in human tumors and tissues. Proc Natl Acad Sci U S A, 1987. 84(1): p. 265-9.
11.Bradley, G. and V. Ling, P-glycoprotein, multidrug resistance and tumor progression. Cancer Metastasis Rev, 1994. 13(2): p. 223-33.
12.Locher, K.P., Structure and mechanism of ATP-binding cassette transporters. Philosophical Transactions of the Royal Society B: Biological Sciences, 2009. 364(1514): p. 239-245.
13.Chen, C.J., J.E. Chin, K. Ueda, D.P. Clark, I. Pastan, M.M. Gottesman, and I.B. Roninson, Internal duplication and homology with bacterial transport proteins in the mdr1 (P-glycoprotein) gene from multidrug-resistant human cells. Cell, 1986. 47(3): p. 381-9.
14.Aller, S.G., J. Yu, A. Ward, Y. Weng, S. Chittaboina, R. Zhuo, P.M. Harrell, Y.T. Trinh, Q. Zhang, I.L. Urbatsch, and G. Chang, Structure of P-glycoprotein reveals a molecular basis for poly-specific drug binding. Science, 2009. 323(5922): p. 1718-22.
15.Fromm, M.F., Importance of P-glycoprotein at blood-tissue barriers. Trends Pharmacol Sci, 2004. 25(8): p. 423-9.
16.Zhou, S.F., Structure, function and regulation of P-glycoprotein and its clinical relevance in drug disposition. Xenobiotica, 2008. 38(7-8): p. 802-32.
17.Lin, J.H. and M. Yamazaki, Role of P-glycoprotein in pharmacokinetics: clinical implications. Clin Pharmacokinet, 2003. 42(1): p. 59-98.
18.Bosch, T.M., A.D.R. Huitema, V.D. Doodeman, R. Jansen, E. Witteveen, W.M. Smit, R.L. Jansen, C.M. van Herpen, M. Soesan, J.H. Beijnen, and J.H.M. Schellens, Pharmacogenetic Screening of CYP3A and ABCB1 in Relation to Population Pharmacokinetics of Docetaxel. Clinical Cancer Research, 2006. 12(19): p. 5786-5793.
19.Lum, B.L. and M.P. Gosland, MDR expression in normal tissues. Pharmacologic implications for the clinical use of P-glycoprotein inhibitors. Hematol Oncol Clin North Am, 1995. 9(2): p. 319-36.
20.Ozols, R.F., R.E. Cunnion, R.W. Klecker, Jr., T.C. Hamilton, Y. Ostchega, J.E. Parrillo, and R.C. Young, Verapamil and adriamycin in the treatment of drug-resistant ovarian cancer patients. J Clin Oncol, 1987. 5(4): p. 641-7.
21.Gottesman, M.M. and I. Pastan, Clinical trials of agents that reverse multidrug-resistance. J Clin Oncol, 1989. 7(4): p. 409-11.
22.Bansal, T., G. Mishra, M. Jaggi, R.K. Khar, and S. Talegaonkar, Effect of P-glycoprotein inhibitor, verapamil, on oral bioavailability and pharmacokinetics of irinotecan in rats. Eur J Pharm Sci, 2009. 36(4-5): p. 580-90.
23.Choi, S.U., B.H. Lee, K.H. Kim, E.J. Choi, S.H. Park, H.S. Shin, S.E. Yoo, N.P. Jung, and C.O. Lee, Novel multidrug-resistance modulators, KR-30026 and KR-30031, in cancer cells. Anticancer Res, 1997. 17(6d): p. 4577-82.
24.Tsuruo, T., H. Iida, S. Tsukagoshi, and Y. Sakurai, Increased accumulation of vincristine and adriamycin in drug-resistant P388 tumor cells following incubation with calcium antagonists and calmodulin inhibitors. Cancer Res, 1982. 42(11): p. 4730-3.
25.Höll, V., M. Kouba, M. Dietel, and G. Vogt, Stereoisomers of calcium antagonists which differ markedly in their potencies as calcium blockers are equally effective in modulating drug transport by P-glycoprotein. Biochemical Pharmacology, 1992. 43(12): p. 2601-2608.
26.Sehested, M., P.B. Jensen, T. Skovsgaard, N. Bindslev, E.J. Demant, E. Friche, and L. Vindelov, Inhibition of vincristine binding to plasma membrane vesicles from daunorubicin-resistant Ehrlich ascites cells by multidrug resistance modulators. Br J Cancer, 1989. 60(6): p. 809-14.
27.Ford, J.M., Modulators of multidrug resistance. Preclinical studies. Hematol Oncol Clin North Am, 1995. 9(2): p. 337-61.
28.Lampidis, T.J., A. Krishan, L. Planas, and H. Tapiero, Reversal of intrinsic resistance to adriamycin in normal cells by verapamil. Cancer Drug Deliv, 1986. 3(4): p. 251-9.
29.Nawrath, H. and M. Raschack, Effects of (-)-desmethoxyverapamil on heart and vascular smooth muscle. J Pharmacol Exp Ther, 1987. 242(3): p. 1090-7.
30.Pirker, R., G. Keilhauer, M. Raschack, C. Lechner, and H. Ludwig, Reversal of multi-drug resistance in human KB cell lines by structural analogs of verapamil. Int J Cancer, 1990. 45(5): p. 916-9.
31.Kessel, D. and C. Wilberding, Promotion of daunorubicin uptake and toxicity by the calcium antagonist tiapamil and its analogs. Cancer Treat Rep, 1985. 69(6): p. 673-6.
32.Hyafil, F., C. Vergely, P. Du Vignaud, and T. Grand-Perret, In vitro and in vivo reversal of multidrug resistance by GF120918, an acridonecarboxamide derivative. Cancer Res, 1993. 53(19): p. 4595-602.
33.Boesch, D., C. Gaveriaux, B. Jachez, A. Pourtier-Manzanedo, P. Bollinger, and F. Loor, In vivo circumvention of P-glycoprotein-mediated multidrug resistance of tumor cells with SDZ PSC 833. Cancer Res, 1991. 51(16): p. 4226-33.
34.Jonsson, B., K. Nilsson, P. Nygren, and R. Larsson, SDZ PSC-833--a novel potent in vitro chemosensitizer in multiple myeloma. Anticancer Drugs, 1992. 3(6): p. 641-6.
35.Newman, M.J., J.C. Rodarte, K.D. Benbatoul, S.J. Romano, C. Zhang, S. Krane, E.J. Moran, R.T. Uyeda, R. Dixon, E.S. Guns, and L.D. Mayer, Discovery and characterization of OC144-093, a novel inhibitor of P-glycoprotein-mediated multidrug resistance. Cancer Res, 2000. 60(11): p. 2964-72.
36.Dantzig, A.H., R.L. Shepard, J. Cao, K.L. Law, W.J. Ehlhardt, T.M. Baughman, T.F. Bumol, and J.J. Starling, Reversal of P-glycoprotein-mediated multidrug resistance by a potent cyclopropyldibenzosuberane modulator, LY335979. Cancer Res, 1996. 56(18): p. 4171-9.
37.Dale, I.L., W. Tuffley, R. Callaghan, J.A. Holmes, K. Martin, M. Luscombe, P. Mistry, H. Ryder, A.J. Stewart, P. Charlton, P.R. Twentyman, and P. Bevan, Reversal of P-glycoprotein-mediated multidrug resistance by XR9051, a novel diketopiperazine derivative. Br J Cancer, 1998. 78(7): p. 885-92.
38.Mullin, S., N. Mani, and T.H. Grossman, Inhibition of antibiotic efflux in bacteria by the novel multidrug resistance inhibitors biricodar (VX-710) and timcodar (VX-853). Antimicrob Agents Chemother, 2004. 48(11): p. 4171-6.
39.Kannan, P., S. Telu, S. Shukla, S.V. Ambudkar, V.W. Pike, C. Halldin, M.M. Gottesman, R.B. Innis, and M.D. Hall, The "specific" P-glycoprotein inhibitor Tariquidar is also a substrate and an inhibitor for breast cancer resistance protein (BCRP/ABCG2). ACS Chem Neurosci, 2011. 2(2): p. 82-9.
40.Nelson, D.R., T. Kamataki, D.J. Waxman, F.P. Guengerich, R.W. Estabrook, R. Feyereisen, F.J. Gonzalez, M.J. Coon, I.C. Gunsalus, O. Gotoh, and et al., The P450 superfamily: update on new sequences, gene mapping, accession numbers, early trivial names of enzymes, and nomenclature. DNA Cell Biol, 1993. 12(1): p. 1-51.
41.Hasemann, C.A., R.G. Kurumbail, S.S. Boddupalli, J.A. Peterson, and J. Deisenhofer, Structure and function of cytochromes P450: a comparative analysis of three crystal structures. Structure, 1995. 3(1): p. 41-62.
42.Hall, D.P.F., Cytochromes P-450 and the regulation of steroid synthesis. Steroids, 1986. 48(3): p. 131-196.
43.Capdevila, J.H., J.R. Falck, and R.W. Estabrook, Cytochrome P450 and the arachidonate cascade. Faseb j, 1992. 6(2): p. 731-6.
44.Asakura, T. and H. Shichi, Cytochrome P450-mediated prostaglandin ωω-1 hydroxylase activities in porcine ciliary body epithelial cells. Experimental Eye Research, 1992. 55(2): p. 377-384.
45.Wrighton, S.A. and J.C. Stevens, The human hepatic cytochromes P450 involved in drug metabolism. Crit Rev Toxicol, 1992. 22(1): p. 1-21.
46.Hollenberg, P.F., Mechanisms of cytochrome P450 and peroxidase-catalyzed xenobiotic metabolism. Faseb j, 1992. 6(2): p. 686-94.
47.Williams, J.A., B.J. Ring, V.E. Cantrell, D.R. Jones, J. Eckstein, K. Ruterbories, M.A. Hamman, S.D. Hall, and S.A. Wrighton, Comparative metabolic capabilities of CYP3A4, CYP3A5, and CYP3A7. Drug Metab Dispos, 2002. 30(8): p. 883-91.
48.Guengerich, F.P., Cytochrome P-450 3A4: regulation and role in drug metabolism. Annu Rev Pharmacol Toxicol, 1999. 39: p. 1-17.
49.Presnell, S.R. and F.E. Cohen, Topological distribution of four-alpha-helix bundles. Proc Natl Acad Sci U S A, 1989. 86(17): p. 6592-6.
50.Williams, P.A., J. Cosme, D.M. Vinkovic, A. Ward, H.C. Angove, P.J. Day, C. Vonrhein, I.J. Tickle, and H. Jhoti, Crystal structures of human cytochrome P450 3A4 bound to metyrapone and progesterone. Science, 2004. 305(5684): p. 683-6.
51.Yano, J.K., M.R. Wester, G.A. Schoch, K.J. Griffin, C.D. Stout, and E.F. Johnson, The structure of human microsomal cytochrome P450 3A4 determined by X-ray crystallography to 2.05-A resolution. J Biol Chem, 2004. 279(37): p. 38091-4.
52.Ekroos, M. and T. Sjogren, Structural basis for ligand promiscuity in cytochrome P450 3A4. Proc Natl Acad Sci U S A, 2006. 103(37): p. 13682-7.
53.Bansal, T., M. Jaggi, R.K. Khar, and S. Talegaonkar, Emerging significance of flavonoids as P-glycoprotein inhibitors in cancer chemotherapy. J Pharm Pharm Sci, 2009. 12(1): p. 46-78.
54.Michalak, K. and O. Wesolowska, Polyphenols counteract tumor cell chemoresistance conferred by multidrug resistance proteins. Anticancer Agents Med Chem, 2012. 12(8): p. 880-90.
55.Nijveldt, R.J., E. van Nood, D.E. van Hoorn, P.G. Boelens, K. van Norren, and P.A. van Leeuwen, Flavonoids: a review of probable mechanisms of action and potential applications. Am J Clin Nutr, 2001. 74(4): p. 418-25.
56.Cho, Y.A., J.S. Choi, and J.P. Burm, Effects of the antioxidant baicalein on the pharmacokinetics of nimodipine in rats: a possible role of P-glycoprotein and CYP3A4 inhibition by baicalein. Pharmacol Rep, 2011. 63(4): p. 1066-73.
57.Li, C., M. Kim, H. Choi, and J. Choi, Effects of baicalein on the pharmacokinetics of tamoxifen and its main metabolite, 4-hydroxytamoxifen, in rats: possible role of cytochrome P450 3A4 and P-glycoprotein inhibition by baicalein. Arch Pharm Res, 2011. 34(11): p. 1965-72.
58.Zheng, Y.H., L.H. Yin, T.H. Grahn, A.F. Ye, Y.R. Zhao, and Q.Y. Zhang, Anticancer effects of baicalein on hepatocellular carcinoma cells. Phytother Res, 2014. 28(9): p. 1342-8.
59.Wang, Z., C. Jiang, W. Chen, G. Zhang, D. Luo, Y. Cao, J. Wu, Y. Ding, and B. Liu, Baicalein Induces Apoptosis and Autophagy via Endoplasmic Reticulum Stress in Hepatocellular Carcinoma Cells. BioMed Research International, 2014. 2014: p. 732516.
60.Chao, J.I., W.C. Su, and H.F. Liu, Baicalein induces cancer cell death and proliferation retardation by the inhibition of CDC2 kinase and survivin associated with opposite role of p38 mitogen-activated protein kinase and AKT. Mol Cancer Ther, 2007. 6(11): p. 3039-48.
61.Donald, G., K. Hertzer, and G. Eibl, Baicalein – An Intriguing Therapeutic Phytochemical in Pancreatic Cancer. Current drug targets, 2012. 13(14): p. 1772-1776.
62.Saller, R., R. Meier, and R. Brignoli, The use of silymarin in the treatment of liver diseases. Drugs, 2001. 61(14): p. 2035-63.
63.Zhao, J., M. Lahiri-Chatterjee, Y. Sharma, and R. Agarwal, Inhibitory effect of a flavonoid antioxidant silymarin on benzoyl peroxide-induced tumor promotion, oxidative stress and inflammatory responses in SENCAR mouse skin. Carcinogenesis, 2000. 21(4): p. 811-6.
64.Katiyar, S.K., N.J. Korman, H. Mukhtar, and R. Agarwal, Protective effects of silymarin against photocarcinogenesis in a mouse skin model. J Natl Cancer Inst, 1997. 89(8): p. 556-66.
65.Kosina, P., P. Maurel, J. Ulrichova, and Z. Dvorak, Effect of silybin and its glycosides on the expression of cytochromes P450 1A2 and 3A4 in primary cultures of human hepatocytes. J Biochem Mol Toxicol, 2005. 19(3): p. 149-53.
66.Zuber, R., M. Modriansky, Z. Dvorak, P. Rohovsky, J. Ulrichova, V. Simanek, and P. Anzenbacher, Effect of silybin and its congeners on human liver microsomal cytochrome P450 activities. Phytother Res, 2002. 16(7): p. 632-8.
67.Džubák, P., M. Hajdúch, R. Gažák, A. Svobodová, J. Psotová, D. Walterová, P. Sedmera, and V. Křen, New derivatives of silybin and 2,3-dehydrosilybin and their cytotoxic and P-glycoprotein modulatory activity. Bioorganic & Medicinal Chemistry, 2006. 14(11): p. 3793-3810.
68.Zhang, S. and M.E. Morris, Effect of the flavonoids biochanin A and silymarin on the P-glycoprotein-mediated transport of digoxin and vinblastine in human intestinal Caco-2 cells. Pharm Res, 2003. 20(8): p. 1184-91.
69.Kim, D.H., Y.H. Jin, J.B. Park, and K. Kobashi, Silymarin and its components are inhibitors of beta-glucuronidase. Biol Pharm Bull, 1994. 17(3): p. 443-5.
70.Park, J.H., J.H. Park, H.J. Hur, J.S. Woo, and H.J. Lee, Effects of silymarin and formulation on the oral bioavailability of paclitaxel in rats. Eur J Pharm Sci, 2012. 45(3): p. 296-301.
71.Yang, F.H., Q. Zhang, Q.Y. Liang, S.Q. Wang, B.X. Zhao, Y.T. Wang, Y. Cai, and G.F. Li, Bioavailability enhancement of paclitaxel via a novel oral drug delivery system: paclitaxel-loaded glycyrrhizic acid micelles. Molecules, 2015. 20(3): p. 4337-56.
72.Nabekura, T., T. Yamaki, K. Ueno, and S. Kitagawa, Inhibition of P-glycoprotein and multidrug resistance protein 1 by dietary phytochemicals. Cancer Chemother Pharmacol, 2008. 62(5): p. 867-73.
73.J Patel, M., S. S Patel, N. M Patel, and M. M Patel, A self-microemulsifying drug delivery system (SMEDDS). Vol. 4. 2010.
74.Dokania, S. and A.K. Joshi, Self-microemulsifying drug delivery system (SMEDDS)--challenges and road ahead. Drug Deliv, 2015. 22(6): p. 675-90.
75.Sha, X., J. Wu, Y. Chen, and X. Fang, Self-microemulsifying drug-delivery system for improved oral bioavailability of probucol: preparation and evaluation. International Journal of Nanomedicine, 2012. 7: p. 705-712.
76.Akula, S., A.K. Gurram, and S.R. Devireddy, Self-Microemulsifying Drug Delivery Systems: An Attractive Strategy for Enhanced Therapeutic Profile. International Scholarly Research Notices, 2014. 2014: p. 11.
77.Dahan, A. and A. Hoffman, Rationalizing the selection of oral lipid based drug delivery systems by an in vitro dynamic lipolysis model for improved oral bioavailability of poorly water soluble drugs. J Control Release, 2008. 129(1): p. 1-10.
78.Gursoy, R.N. and S. Benita, Self-emulsifying drug delivery systems (SEDDS) for improved oral delivery of lipophilic drugs. Biomed Pharmacother, 2004. 58(3): p. 173-82.
79.Hauss, D.J., Oral lipid-based formulations. Advanced Drug Delivery Reviews, 2007. 59(7): p. 667-676.
80.Constantinides, P.P., Lipid microemulsions for improving drug dissolution and oral absorption: physical and biopharmaceutical aspects. Pharm Res, 1995. 12(11): p. 1561-72.
81.Kohli, K., S. Chopra, D. Dhar, S. Arora, and R.K. Khar, Self-emulsifying drug delivery systems: an approach to enhance oral bioavailability. Drug Discov Today, 2010. 15(21-22): p. 958-65.
82.Bagwe, R.P., J.R. Kanicky, B.J. Palla, P.K. Patanjali, and D.O. Shah, Improved drug delivery using microemulsions: rationale, recent progress, and new horizons. Crit Rev Ther Drug Carrier Syst, 2001. 18(1): p. 77-140.
83.Gershanik, T. and S. Benita, Self-dispersing lipid formulations for improving oral absorption of lipophilic drugs. Eur J Pharm Biopharm, 2000. 50(1): p. 179-88.
84.Pouton, C.W., Lipid formulations for oral administration of drugs: non-emulsifying, self-emulsifying and ''self-microemulsifying'' drug delivery systems. Eur J Pharm Sci, 2000. 11 Suppl 2: p. S93-8.
85.Stegemann, S., F. Leveiller, D. Franchi, H. de Jong, and H. Lindén, When poor solubility becomes an issue: From early stage to proof of concept. European Journal of Pharmaceutical Sciences, 2007. 31(5): p. 249-261.
86.Nayak, A., J. Malakar, and K. Kumar Sen, Gastroretentive drug delivery technologies: Current approaches and future potential. Vol. 1. 2010. 1-12.
87.Kawato, Y., M. Aonuma, Y. Hirota, H. Kuga, and K. Sato, Intracellular roles of SN-38, a metabolite of the camptothecin derivative CPT-11, in the antitumor effect of CPT-11. Cancer Res, 1991. 51(16): p. 4187-91.
88.Fassberg, J. and V.J. Stella, A kinetic and mechanistic study of the hydrolysis of camptothecin and some analogues. J Pharm Sci, 1992. 81(7): p. 676-84.
89.de Man, F.M., A.K.L. Goey, R.H.N. van Schaik, R.H.J. Mathijssen, and S. Bins, Individualization of Irinotecan Treatment: A Review of Pharmacokinetics, Pharmacodynamics, and Pharmacogenetics. Clin Pharmacokinet, 2018.
90.Kobayashi, K., B. Bouscarel, Y. Matsuzaki, S. Ceryak, S. Kudoh, and H. Fromm, pH-dependent uptake of irinotecan and its active metabolite, SN-38, by intestinal cells. Int J Cancer, 1999. 83(4): p. 491-6.
91.Rivory, L.P., M.R. Bowles, J. Robert, and S.M. Pond, Conversion of irinotecan (CPT-11) to its active metabolite, 7-ethyl-10-hydroxycamptothecin (SN-38), by human liver carboxylesterase. Biochem Pharmacol, 1996. 52(7): p. 1103-11.
92.Chabot, G.G., Clinical pharmacokinetics of irinotecan. Clin Pharmacokinet, 1997. 33(4): p. 245-59.
93.Atsumi, R., W. Suzuki, and H. Hakusui, Identification of the metabolites of irinotecan, a new derivative of camptothecin, in rat bile and its biliary excretion. Xenobiotica, 1991. 21(9): p. 1159-69.
94.Poujol, S., F. Pinguet, F. Malosse, C. Astre, M. Ychou, S. Culine, and F. Bressolle, Sensitive HPLC-Fluorescence Method for Irinotecan and Four Major Metabolites in Human Plasma and Saliva: Application to Pharmacokinetic Studies. Clinical Chemistry, 2003. 49(11): p. 1900.
95.Takasuna, K., T. Hagiwara, M. Hirohashi, M. Kato, M. Nomura, E. Nagai, T. Yokoi, and T. Kamataki, Involvement of beta-glucuronidase in intestinal microflora in the intestinal toxicity of the antitumor camptothecin derivative irinotecan hydrochloride (CPT-11) in rats. Cancer Res, 1996. 56(16): p. 3752-7.
96.Lokiec, F., P. Canal, C. Gay, E. Chatelut, J.P. Armand, H. Roche, R. Bugat, E. Goncalves, and A. Mathieu-Boue, Pharmacokinetics of irinotecan and its metabolites in human blood, bile, and urine. Cancer Chemother Pharmacol, 1995. 36(1): p. 79-82.
97.Chu, X.Y., Y. Kato, K. Niinuma, K.I. Sudo, H. Hakusui, and Y. Sugiyama, Multispecific organic anion transporter is responsible for the biliary excretion of the camptothecin derivative irinotecan and its metabolites in rats. J Pharmacol Exp Ther, 1997. 281(1): p. 304-14.
98.Chu, X.Y., Y. Kato, and Y. Sugiyama, Multiplicity of biliary excretion mechanisms for irinotecan, CPT-11, and its metabolites in rats. Cancer Res, 1997. 57(10): p. 1934-8.
99.Sano, K., M. Yoshikawa, S. Hayasaka, K. Satake, Y. Ikegami, H. Yoshida, T. Ishikawa, S. Sawada, and S. Tanabe, Simple non-ion-paired high-performance liquid chromatographic method for simultaneous quantitation of carboxylate and lactone forms of 14 new camptothecin derivatives. J Chromatogr B Analyt Technol Biomed Life Sci, 2003. 795(1): p. 25-34.
100.Yang, X., Z. Hu, S.Y. Chan, B.C. Goh, W. Duan, E. Chan, and S. Zhou, Simultaneous determination of the lactone and carboxylate forms of irinotecan (CPT-11) and its active metabolite SN-38 by high-performance liquid chromatography: application to plasma pharmacokinetic studies in the rat. J Chromatogr B Analyt Technol Biomed Life Sci, 2005. 821(2): p. 221-8.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
無相關期刊
 
1. Development of sublingual dripping pill delivery system for improving the oral bioavailability of Curcumin, Quercetin and Resveratrol in Rabbits
2. 人體血清白蛋白奈米顆粒負載烷化聚乙烯亞胺/質體之複合體以非共價鍵結CRISPR/Cas9 質體或siRNA中斷或沉默PD-L1表現應用於免疫治療
3. 開發並以自組裝型卵磷脂混合微胞藥物傳遞系統為黏膜傳遞劑型平台之應用
4. 利用高滲透長滯留效應及雙特異抗體標靶遞送磷脂質穩定化奈米微膠體藥物來增加化療藥物治療: 物化及生物藥劑特性評估
5. 利用Pluronic Lecithin Organogels (PLOs) 承載Docetaxel及Cisplatin作為局部治療提高療效且達到協同結合作用之新穎性應用
6. 石墨烯和石墨烯奈米氧化銀在生物安全和抑菌效果的評估
7. 山竹果殼粉對於高脂高膽固醇飼料誘發腎臟損傷大鼠模式及其粒線體功能之影響
8. 建立以 PCR-DNA 定序為基礎之分子生物學方法於臨床檢體鑑定真菌之評估
9. 習醫之道:初階臨床體驗課程對於基礎醫學之學習的影響初探
10. 親職教育介入對4-6歲兒童之螢幕式活動使用、睡眠品質及心理社會適應之影響
11. 血液透析病患社會支持、自我照顧行為及生活品質關係之研究
12. 老年人創傷性腦損傷流行病學之趨勢:回溯性調查
13. CDK 4/6 抑制劑之臨床發展與產業分析
14. 利用血小板濃縮血漿結合/不結合TEMPO靈芝多醣幾丁質奈米纖維於乾眼症之治療
15. Trastuzumab emtansine 用於治療 HER2 陽性轉移性乳癌病患之療效與成本效益