|
[1]S. H. Kim, A. Umar, S. W. Hwang, 2015, “Rose-like CuO nanostructures for highly sensitive glucose chemical sensor application,” Ceramics International, vol. 41, pp. 9468-9475. [2]S. A. Zaidi, J. H. Shin, 2016, “Recent developments in nanostructure based electrochemical glucose sensors,” Talanta, vol. 149, pp. 30-42. [3]J. Zhang, J. Ma, S. Zhang, W. Wang, Z. Chen, 2015, “A highly sensitive nonenzymatic glucose sensor based on CuO nanoparticles decorated carbon spheres,” Sensors and Actuators B: Chemical, vol. 211, pp. 385-391. [4]D. M. Kim, S. J. Cho, C. H. Cho, K. B. Kim, M. Y. Kim, Y. B. Shim, 2016, “Disposable all-solid-state pH and glucose sensors based on conductive polymer covered hierarchical AuZn oxide,” Biosensors and Bioelectronics, vol. 79, pp. 165-172. [5]A. L. Rinaldi, R. Carballo, 2016, “Impedimetric non-enzymatic glucose sensor based on nickelhydroxide thin film onto gold electrode,” Sensors and Actuators B: Chemical, vol. 228, pp. 43-52. [6]X. Wang, X. Zhang, 2013, “Electrochemical co-reduction synthesis of graphene/nano-goldcomposites and its application to electrochemical glucose biosensor,” Electrochimica Acta, vol. 112, pp. 774-782. [7]Z. Liu, Y. Guo, C. Dong, 2015, “A high performance nonenzymatic electrochemical glucose sensor based on polyvinylpyrrolidone–graphene nanosheets–nickel nanoparticles–chitosan nanocomposite,” Talanta, vol. 137, pp. 87-93. [8]D. P. Hickey, R. C. Reid, R. D. Milton, S. D. Minteer, 2016, “A self-powered amperometric lactate biosensor based on lactate oxidase immobilized in dimethylferrocene-modified LPEI,” Biosensors and Bioelectronics, vol. 77, pp.26-31. [9]Q. Yan, T. C. Major, R. H. Bartlett, M. E. Meyerhoff, 2011, “Intravascular glucose/lactate sensors prepared with nitric oxide releasing poly(lactide-co-glycolide)-based coatings for enhanced biocompatibility,” Biosensors and Bioelectronics, vol. 26, pp. 4276-4282. [10]K. Rathee, V. Dhull, R. Dhull, S. Singh, 2016, “Biosensors based on electrochemical lactate detection: A comprehensive review,” Biochemistry and Biophysics Reports, vol. 5, pp. 35-54. [11]L. V. Shkotova, N. Y. Piechniakova, O. L. Kukla, S. V. Dzyadevych, 2016, “Thin-film amperometric multibiosensor for simultaneous determination of lactate and glucose in wine,” Food Chemistry, vol. 197, pp. 972–978. [12]A. Uzunoglu, L. A. Stanciu, 2016, “Novel CeO2–CuO-decorated enzymatic lactate biosensors operating in low oxygen environments,” Analytica Chimica Acta, vol. 909, pp. 121-128. [13]Z. P. Yang, X. Liu, C. J. Zhang, B. Z. Liu, 2015, “A high-performance nonenzymatic piezoelectric sensor based on molecularly imprinted transparent TiO2 film for detection of urea,” Biosensors and Bioelectronics, vol. 74, pp. 85-90. [14]R. Ahmad, N. Tripathy, Y. B. Hahn, 2014, “Highly stable urea sensor based on ZnO nanorods directly grown on Ag/glass electrodes,” Sensors and Actuators B: Chemical, vol. 194, pp. 290-295. [15]A. Hamilton, C. B. Breslin, 2014, “The development of a novel urea sensor using polypyrrole,” Electrochimica Acta, vol. 145, pp. 19-26. [16]M. Zhybak, V. Beni, M.Y. Vagin, E. Dempsey, A.P.F. Turner, Y. Korpan, 2016, “Creatinine and urea biosensors based on a novel ammonium ion-selective copper-polyaniline nano-composite,” Biosensors and Bioelectronics, vol. 77, pp. 505-511. [17]A. Elagli, K. Belhacene, C. Vivien, P. Dhulster, R. Froidevaux, P. Supiot, 2014, “Facile immobilization of enzyme by entrapment using aplasma-deposited organosilicon thin film,” Journal of Molecular Catalysis B: Enzymatic, vol. 110, pp. 77-86. [18]L. Reverté, B. Prieto-Simón, M. Campàs, 2016, “New advances in electrochemical biosensors for the detection of toxins: Nanomaterials, magnetic beads and microfluidics systems. A review,” Analytica Chimica Acta, vol. 908, pp. 8-21. [19]X. Zhang, Q. Liao, M. Chu, S. Liu, Y. Zhang, 2014, “Structure effect on graphene-modified enzyme electrode glucose sensors,” Biosensors and Bioelectronics, vol. 52, pp. 281-287. [20]S. Z. Bas, 2015, “Gold nanoparticle functionalized graphene oxide modified platinum electrode for hydrogen peroxide and glucose sensing,” Materials Letters, vol. 150, pp. 20-23. [21]J. Biscay, M. B. G. García, A. C. García, 2014, “Electrochemical biotin determination based on a screen printed carbon electrode array and magnetic beads,” Sensors and Actuators B: Chemical, vol. 205, pp. 426-428. [22]A. Erdem, G. Congur, 2014, “Voltammetric aptasensor combined with magnetic beads assay developed for detection of human activated protein C,” Talanta, vol. 128, pp. 428-433. [23]J. C. Chou, R. T. Chen, Y. H. Liao, J. W. Lin, C. Y. Lin, C. Y. Jhang, H. T. Chou, 2015, “Fabrication of potentiometric enzymatic glucose biosensor based on graphene and magnetic beads,” IEEE Sensors Journal, vol. 15, pp. 5278-5284. [24]X. Lin, X. Sun, S. Luo, B. Liu, C. Yang, 2016, “Development of DNA-based signal amplification and microfluidic technology for protein assay: A review,” TrAC Trends in Analytical Chemistry, vol. 80, pp. 132–148. [25]D. Zhao, Z. He, G. Wang, H. Wang, Q. Zhang, Y. Li, 2016, “A novel efficient ZnO/Zn(OH)F nanofiber arrays-based versatile microfluidic system for the applications of photocatalysis and histidine-rich protein separation,” Sensors and Actuators B: Chemical, vol. 229, pp. 281-287. [26]K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano, H. Hosono, 2004, “Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors,” Nature, vol.432, pp. 488-492. [27]H. Yabuta, M. Sano, K. Abe, T. Aiba, T. Den, and H. Kumoni, 2006, “High-mobility thin film transistor with amorphous InGaZnO4 channel fabricated by room temperature rf-magnetron sputtering,” Applied Physics Letters, vol. 89, pp. 112123-1-3. [28]D. Sun, H Matsui, C.N. Wu, H Tabata, 2015, “Surface treatment on amorphous InGaZnO4 thin film for single-stranded DNA biosensing,” Applied Surface Science, vol. 324, pp. 310-318. [29]D. J. Yang, G. C. Whitfield, N. G. Cho, P.S. Cho, Il-Doo Kim, H. M. Saltsburg, H. L. Tuller, 2012, “Amorphous InGaZnO4 films: gas sensor response and stability,” Sensors and Actuators B: Chemical, vol. 171-172, pp.1166-1171. [30]C. M. Yang, J. C. Wang, T. W. Chiang, Y.T Lin, T. W. Juan, T. C. Chen, M. Y. Shih, C. E. Lue, C. S. Lai, 2014, “Hydrogen ion sensing characteristics of IGZO/Si electrode in EGFET,” International Journal of Nanotechnology, vol. 11, pp. 15-26. [31]W. T. Sung, J. H. Chen, K. Y. Chang, 2014, “Trust function for multi-physiological signals fusion,” Measurement, Vol. 47, pp. 827–840. [32]A. A. Rezaee, M. H. Yaghmaee, A. M. Rahmani, A. H. Mohajerzadeh, 2014, “HOCA: Healthcare Aware Optimized Congestion Avoidance and control protocol for wireless sensor networks,” Journal of Network and Computer Applications, Vol. 37, pp. 216-228. [33]C. M. Yang, I. S. Wang, Y. T. Lin, C. H. Huang, T. F. Lu, C. E. Lue, 2013, “Low cost and flexible electrodes with NH3 plasma treatments in extended gate field effect transistors for urea detection,” Sensors and Actuators B: Chemical, vol.187, pp. 274-279. [34]J. Leroy, C. Dalmay, A. Landoulsi, F. Hjeij, C. Mélin, B. Bessette, C. B. M. D. Puch, S. Giraud, C. Lautrette, S. Battu, F. Lalloué, M.O. Jauberteau, A. Bessaudou, P. Blondy, A. Pothier, 2015, “Microfluidic biosensors for microwave dielectric spectroscopy,” Sensors and Actuators A: Physical, vol. 229, pp.172-181. [35]Y. Qin, P. Yeh, X. Hao, X. Cao, 2015, “Developing an ultra non-fouling SU-8 and PDMS hybrid microfluidic device by poly(amidoamine) engraftment,” Colloids and Surfaces B: Biointerfaces, vol. 127, pp. 247-255. [36]M. Javadi, S. Sheikhaei, A. S. Kashi, H. Pourmodheji, 2013, “Design of a direct conversion ultra low power ZigBee receiver RF front-end for wireless sensor networks,” Microelectronics Journal, vol. 44, pp. 347-353. [37]https://zh.wikipedia.org/wiki/ZigBee [38]L.K. Wadhwa, R. S. Deshpande, V. Priye, 2016, “Extended shortcut tree routing for ZigBee based wireless sensor network,” Ad Hoc Networks, vol. 37, pp. 295-300. [39]D. Quesada-González, A. Merkoçi, 2015, “Nanoparticle-based lateral flow biosensors,” Biosensors and Bioelectronics, vol. 73, pp. 47–63. [40]E. B. Bahadır, M. K. Sezgintürk, 2015, “Electrochemical biosensors for hormone analyses,” Biosensors and Bioelectronics, vol. 68, pp.62-71. [41]A. Tereshchenko, M. Bechelany, R. Viter, V. Khranovskyy, V. Smyntyna, N.Starodub, R. Yakimova, 2016, “Optical biosensors based on ZnO nanostructures: advantages and perspectives. A review,” Sensors and Actuators B: Chemical, vol. 229, pp. 664-677. [42]A. Ahmadalinezhad, A. Chen, 2011, “High-performance electrochemical biosensor for the detection of total cholesterol,” Biosensors and Bioelectronics, vol. 26, pp. 4508-4513. [43]A. Meena, L. Rajendran, 2010, “Mathematical modeling of amperometric and potentiometric biosensors and system of non-linear equations – Homotopy perturbation approach,” Journal of Electroanalytical Chemistry, vol. 644, pp. 50-59. [44]Y. Kanno, K. Ino, C. Sakamoto, K. Y. Inoue, M. Matsudaira, A. Suda, R. Kunikata, T. Ishikawa, H. Abe, H. Shiku, T. Matsue, 2016, “Potentiometric bioimaging with a large-scale integration (LSI)-based electrochemical device for detection of enzyme activity,” Biosensors and Bioelectronics, vol. 77, pp. 709-714. [45]C.A. Cordeiro, M.G. de Vries, T. I. F. H. Cremers, B. H. C. Westerink, 2016, “The role of surface availability in membrane-induced selectivity for amperometric enzyme-based biosensors,” Sensors and Actuators B: Chemical, vol. 223, pp. 679-688. [46]M. Verrastro, N. Cicco, F. Crispo, A. Morone, M. Dinescu, M. Dumitru, F. Favati, D. Centonze, 2016, “Amperometric biosensor based on laccase immobilized onto a screen-printed electrode by matrix assisted pulsed laser evaporation,” Talanta, vol. 154, pp. 438-445. [47]I. S. Kucherenko, D. Y. Kucherenko, O. O. Soldatkin, F. Lagarde, S. V. Dzyadevych, A. P. Soldatkin, 2016, “A novel conductometric biosensor based on hexokinase for determination of adenosine triphosphate,” Talanta, vol. 150, pp. 469-475. [48]C.C. Adley, M.P. Ryan, 2015, “Conductometric biosensors for high throughput screening of pathogens in food,” High Throughput Screening for Food Safety Assessment, pp. 315-326. [49]L. Manjakkal, K. Cvejin, J. Kulawik, K. Zaraska, D. Szwagierczak, G. Stojanovic, 2015, “Sensing mechanism of RuO2–SnO2 thick film pH sensors studied by potentiometric method and electrochemical impedance spectroscopy,” Journal of Electroanalytical Chemistry, vol. 759, pp. 82-90. [50]L. Manjakkal, E. Djurdjic, K. Cvejin, J. Kulawik, K. Zaraska, D. Szwagierczak, 2015, “Electrochemical impedance spectroscopic analysis of RuO2 based thick film pH sensors,” Electrochimica Acta, vol. 168, pp. 246–255. [51]Y. S. Chiu, C. Y. Tseng, C. T. Lee, 2012, “Nanostructured EGFET pH sensors with surface-passivated ZnO thin-film and nanorod array,” IEEE Sensors Journal, vol. 12, pp. 930-934. [52]A. Sardarinejad, D.K. Maurya, K. Alameh, 2014, “The effects of sensing electrode thickness on ruthenium oxide thin-film pH sensor,” Sensors and Actuators A: Physical, vol. 214, pp. 15-19. [53]D.K. Maurya, A. Sardarinejad, K. Alameh, 2013, “High-sensitivity pH sensor employing a sub-micron ruthenium oxide thin-film in conjunction with a thick reference electrode,” Sensors and Actuators A: Physical, vol. 203, pp. 300-303. [54]J. C. Chou, K. Y. Huang, J. S. Lin, 2000, “Simulation of time-dependent effects of pH-ISFETs,” Sensors and Actuators B: Chemical, vol. 62, pp. 88-91. [55]J. C. Chou, C. N. Hsiao, 2000, “Drift behavior of ISFETs with a-Si : H-SiO2 gate insulator,” Materials Chemistry and Physics, vol. 63, pp. 270-273. [56]K. M. Chang, C. T. Chang, K. Y. Chao, C. H. Lin, 2010, “A Novel pH-dependent drift improvement method for zirconium dioxide gated pH-ion sensitive field effect transistors,” Sensors, vol. 10, pp. 4643-4654. [57]J. C. Chou, H. M. Tsai, C. N. Shiao, J. S. Lin, 2000, “Study and simulation of the drift behaviour of hydrogenated amorphous silicon gate pH-ISFET,” Sensors and Actuators B: Chemical, vol. 62, pp. 97-101. [58]J. C. Chou, C. N. Hsiao, 2000, “The hysteresis and drift effect of hydrogenated amorphous silicon for ISFET,” Sensors and Actuators B: Chemical, vol. 66, pp. 181-183. [59]J. Yang, F. Yang, Y. Yang, G. Xing, C. Deng, Y. Shen, L. Luo, B. Lia, H. Yuan, 2016, “A proposal of “core enzyme” bioindicator in long-term Pb-Zn ore pollution areas based on topsoil property analysis,” Environmental Pollution, vol. 213, pp. 760-769. [60]B. Zhang, P. Li, H. Zhang, H. Wang, X. Li, L. Tian, N. Ali, Z. Ali, Q. Zhang, 2016, “Preparation of lipase/Zn3(PO4)2 hybrid nanoflower and its catalytic performance as an immobilized enzyme,” Chemical Engineering Journal, vol. 291, pp. 287-297. [61]L. Shen, K. C. K. Cheng, M. Schroeder, P. Yang, E. N. G. Marsha, J. Lahann, Z.Chena, 2016, “Immobilization of enzyme on a polymer surface,” Surface Science, vol. 648, pp. 53-59. [62]J. H. Kim, S. A. Jun, Y. Kwon, S. Ha, B. I. Sange, J. Kim, 2015, “Enhanced electrochemical sensitivity of enzyme precipitate coating (EPC)-based glucose oxidase biosensors with increased free CNT loadings,” Bioelectrochemistry, vol. 101, pp. 114-119. [63]L. Wu, S. Wu, Z. Xu, Y. Qiu, S. Li, H. Xu, 2016, “Modified nanoporous titanium dioxide as a novel carrier for enzyme immobilization,” Biosensors and Bioelectronics, vol. 80, pp. 59-66. [64]F. Gashtasbi, G. Ahmadian, K. A. Noghabi, 2014, “New insights into the effectiveness of alpha-amylase enzyme presentation on the Bacillus subtilis spore surface by adsorption and covalent immobilization,” Enzyme and Microbial Technology, vol. 64-65, pp. 17-23. [65]X. Huang, Y. Zhu, X. Zhang, Z. Bao, D. Y. Lei, W. Yu, J. Dai, Y. Wang, 2016, “Clam-inspired nanoparticle immobilization method using adhesive tape as microchip substrate,” Sensors and Actuators B: Chemical, vol. 222, pp. 106-111. [66]L. T. I. Živković, L. S. Živković, B. M. Babić, M. J. Kokunešoski, B. M. Jokić, I. M. Karadžić, 2015, “Immobilization of Candida rugosa lipase by adsorption onto biosafe meso/macroporous silica and zirconia,” Biochemical Engineering Journal, vol. 93, pp. 73-83. [67]M. L. E. Gutarra, L. S. M. Miranda, R. O. M. A. de Souza, 2016, “Chapter 4 – Enzyme Immobilization for Organic Synthesis, Organic Synthesis Using Biocatalysis,” pp. 99-126. [68]M. Matto, Q. Husain, 2009, “Calcium alginate–starch hybrid support for both surface immobilization and entrapment of bitter gourd (Momordica charantia) peroxidase,” Journal of Molecular Catalysis B: Enzymatic, vol. 57, pp.164-170. [69]A. Elagli, K. Belhacene, C. Vivien, P. Dhulster, R. Froidevaux, P. Supiot, 2014, “Facile immobilization of enzyme by entrapment using a plasma-deposited organosilicon thin film,” Journal of Molecular Catalysis B: Enzymatic, vol. 110, pp. 77-86. [70]G. W. Zheng, H. L. Yu, C. X. Li, J. Pan, J. H. Xu, 2011, “Immobilization of Bacillus subtilis esterase by simple cross-linking for enzymatic resolution of DL-menthyl acetate,” Journal of Molecular Catalysis B: Enzymatic, vol.70, pp. 138-143. [71]M. Ghiaci , M. Tghizadeh , A. A. Ensafi, N. Zandi-Atashbar , B. Rezaei, 2016, “Silver nanoparticles decorated anchored type ligands as new electrochemical sensors for glucose detection,” Journal of the Taiwan Institute of Chemical Engineers, In press. [72]S. M. U. Ali, O. Nur, M. Willander, B. Danielsson, 2010, “A fast and sensitive potentiometric glucose microsensor based on glucose oxidase coated ZnO nanowires grown on a thin silver wire,” Sensors and Actuators B: Chemical, vol. 145, pp. 869-874, 2010. [73]I.S. Kucherenko, O.O. Soldatkin, F. Lagarde, N. Jaffrezic-Renault, S. V. Dzyadevych, A.P. Soldatkin, 2015, “Determination of total creatine kinase activity in blood serum using an amperometric biosensor based on glucose oxidase and hexokinase, ” Talanta, vol. 144, pp. 604-611. [74]J. C. Chou, T. Y. Cheng, G. C. Ye, Y. H. Liao, S. Y. Yang, H. T. Chou, 2013, “Fabrication and investigation of arrayed glucose biosensor based on microfluidic framework,” IEEE Sensors Journal, vol. 13, pp. 4180-4187. [75]J. C. Chou, D. G. Wu, S. C. Tseng, C. C. Chen, G. C. Ye, 2013, “Application of microfluidic device for Lactic biosensor,” IEEE Sensors Journal, vol. 13, pp. 1363-1370. [76]Y. Ram, T. Yoetz-Kopelman, Y. Dror, A. Freeman, Y. Shacham-Diamand, 2016, “Impact of molecular surface charge on biosensing by electrochemical impedance spectroscopy,” Electrochimica Acta, vol. 200, pp.161-167. [77]K. Nikolaev, S. Ermakov, Y. Ermolenko, E. Averyaskina, A. Offenhäusser, Y. Mourzina, 2015, “A novel bioelectrochemical interface based on in situ synthesis of gold nanostructures on electrode surfaces and surface activation by Meerwein's salt. A bioelectrochemical sensor for glucose determination,” Bioelectrochemistry, vol. 105, pp. 34-43. [78]D.V. Ribeiro, J.C.C. Abrantes, 2016, “Application of electrochemical impedance spectroscopy (EIS) to monitor the corrosion of reinforced concrete: A new approach,” Construction and Building Materials, vol. 111, pp. 98-104. [79]http://w.pic.com.tw/newsdetail.php?id=1169. [80]J. C. Chou, Y. L. Tsai, T. Y. Cheng, Y. H. Liao, G.C. Ye, S. Y. Yang, 2014, “Fabrication of arrayed flexible screen-printed glucose biosensor based on mircofluidic framework,” IEEE Sensors Journal, vol. 14, pp. 178-183. [81]R. Vedalakshmi, V. Saraswathy, H. W. Song, N. Palaniswamy, 2009, “Determination of diffusion coefficient of chloride in concrete using Warburg diffusion coefficient, ” Corrosion Science, vol. 51, pp. 1299-1307. [82]J. C. Chou, C. M. Chu, Y. H. Liao, C. H. Huang, Y. J. Lin, H. Wu, Y. H. Nien, 2015, “Fabrication and photovoltaic properties of dye-sensitized solar cells modified by graphene oxide and magnetic bead,” IEEE Electron Device Letters, vol. 36, pp. 711-713. [83]J. C. Chou, C. Y. Jhang, Y. H. Liao, J. W. Lin, R. T. Chen, H. T. Chou, 2014 “Research of stability and interference with the potentiometric flexible arrayed glucose sensor based on microfluidic framework,” IEEE Transactions on Semiconductor Manufacturing, vol. 27, pp. 523-529. [84]R. T. Chen, 2015, “Integrating the fabrication of the differential reference electrode and graphene modified in arrayed flexible glucose biosensor system based on magnetic beads and microfluidic framework as well as the measurement and impedance analysis of the system”, National Yunlin University of Science and Technology, Master Thesis. [85]J. C. Chou, T. Y. Cheng, G. C. Ye, Y. H. Liao, S. Y. Yang, H. T. Chou, 2013, “Fabrication and Investigation of Arrayed Glucose Biosensor Based on Microfluidic Framework,” IEEE Sensors Journal, vol. 13, pp. 4180-4187. [86]S. C. Tseng, T. Y. Wu, J. C. Chou, Y. H. Liao, C. H. Lai, J. S. Chen, M. S. Huang, 2016, “Research of non-idea effect and dynamic measurement of the flexible arrayed chlorine ion sensor,” IEEE Sensors Journal, vol. 16, pp. 4683-4690. [87]https://en.wikipedia.org/wiki/Atomic-force_microscopy [88]https://en.wikipedia.org/wiki/X-ray_crystallography [89]Y. S. Chiu, C. T. Lee, L. R. Lou, S. C. Ho, C. T. Chuang, 2013, “Wide linear sensing sensors using ZnO:Ta extended-gate field-effect-transistors,” Sensors and Actuators B: Chemical, vol. 188, pp. 944-948. [90]H. H. Li, C. E. Yang, C. C. Kei, C. Y. Su, W. S. Dai, J. K. Tseng, P. Y. Yang, J. C. Chou, H. C. Cheng, 2013, “Coaxial-structured ZnO/silicon nanowires extended-gate field-effect transistor as pH sensor,” Thin Solid Films, vol. 529, pp. 173-176. [91]Z. Yule, Z. Shouan, L. Tao, 1994 “Drift characteristics of pH-ISFET output,” Chinese Journal of Semiconductors, vol. 12, pp. 838-843. [92]S. Jamasb, S. Collins, R. L. Smith, 1998, “A physical model for drift in pH ISFETs,” Sensors and Actuators B: Chemical, vol. 49, pp.146-155. [93]C. N. Tsai, J. C. Chou, T. P. Sun, S. K. Hsiung, 2005, “Study on the sensing characteristics and hysteresis effect of the tin oxide pH electrode,” Sensors and Actuators B: Chemical, vol. 108, pp. 877-882. [94]M. S. Huang, 2016, “Fabrication of arrayed flexible IGZO pH sensor and glucose biosensor modified by magnetic beads and graphene based on microfluidic framework as well as equivalent circuit analysis,” Department of Electronic Engineering, National Yunlin University of Science and Technology, Research Project. [95]A. Sardarinejad, D.K. Maurya, M. Khaled, K. Alameh, 2015, “Temperature effects on the performance of RuO2 thin-film pH sensor,” Sensors and Actuators A: Physical, vol. 233, pp. 414-421. [96]C. E. Lue, I. S. Wang, C. H. Huang, Y. T. Shiao, H. C. Wang, C. M. Yang, S. H. Hsu, C. Y. Chang, W. Wang, C. S. Lai, 2012, “pH sensing reliability of flexible ITO/PET electrodes on EGFETs prepared by a roll-to-roll process,” Microelectronics Reliability, vol. 52, pp. 1651.1654. [97]J. L. Chiang, Y. C. Chen, J. C. Chou, C. C. Cheng, 2012, “Temperature effect on AlN/SiO2 gate pH-Ion-sensitive field-Effect transistor devices,” Japanese Journal of Applied Physics, Vol 41, pp. 541-545. [98]Y. Lu, Z. Guo, J. J. Song, Q. A. Huang, S. W. Zhu, X. J. Huang, Y. Wei, 2016, “Tunable nanogap devices for ultra-sensitive electrochemical impedance biosensing,” Analytica Chimica Acta, vol. 905, pp. 58-65. [99]J. C. Chou, J. L. Chen, Y. H. Liao, J. T. Chen, C. Y. Lin, J. W. Lin, C. Y. Jhang, R. T. Chen, 2015, “Fabrication and characteristic analysis of a remote real-time monitoring applied to glucose sensor system based on microfluidic framework,” IEEE Sensors Journal, vol. 15, pp. 3234-3240. [100]S. Ameen, M. S. Akhtar, H. S. Shin, 2016, “Nanocages-augmented aligned polyaniline nanowires as unique platform for electrochemical non-enzymatic glucose biosensor,” Applied Catalysis A: General, vol. 517, pp. 21-29. [101]J. C. Chou, R. T. Chen, Y. H. Liao, J. S. Chen, M. S. Huang, H. T. Chou, 2015, “Dynamic and wireless sensing measurements of potentiometric glucose biosensor based on graphene and magnetic beads,” IEEE sensors journal, vol. 15, pp. 5718-5725. [102]A. Samphao, P. Butmee, J. Jitcharoen, Ľ. Švorc, G. Raber, K. Kalcher, 2015, “Flow-injection amperometric determination of glucose using a biosensor based on immobilization of glucose oxidase onto Au seeds decorated on core Fe3O4 nanoparticles,” Talanta, vol.142, pp. 35-42. [103]J. C. Chou, H. Y. Yang, and C. W. Chen, 2010, “Glucose biosensor of ruthenium-doped TiO2 sensing electrode by co-sputtering system” Microelectronics Reliability, vol. 50, pp. 753-756. [104]C. W. Liao, J. C. Chou, T. P. Sun, S. K. Hsiung, J. H. Hsieh, 2007 “Preliminary investigations on a glucose biosensor based on the potentiometric principle,” Sensors and Actuators B: Chemical, vol. 123, pp. 720-726. [105]http://www.wcjs.tc.edu.tw/bio/cairoom/8707/content/enzyme-01.htm [106]K. Khun, Z. H. Ibupoto, J. Lu, M. S. AlSalhi, M. Atif, A. A. Ansari, M. Willander, 2012, “Potentiometric glucose sensor based on the glucose oxidase immobilized iron ferrite magnetic particle/chitosan composite modified gold coated glass electrode,” Sensors and Actuators B: Chemical. vol. 173, pp. 698-703. [107]J. W. Lin, 2014, “Integration and fabrication of the flexible arrayed glucose biosensor based on magnetic beads and microfluidic framework,” Department of Electronic Engineering, National Yunlin University of Science and Technology, Master Thesis. [108]J. C. Chou, J. S. Chen, Y. H. Liao, C. H. Lai, M. S. Huang, T. Y. Wu, B. Y. Zhuang, S. J. Yan, H. T. Chou, C. C. Hsu, 2016, “Effect of different contents of magnetic beads on enzymatic IGZO glucose biosensor,” Materials Letters, vol. 175, pp. 241-243. [109]A. Fulati, S. M. U. Ali, M. H. Asif, N. U. H. Alvi, M. Willander, C. Brännmark, P. Strålfors, S. I. Börjesson, F. Elinder, B. Danielsson, 2010, “An intracellular glucose biosensor based on nanoflake ZnO,” Sensors and Actuators B:Chemical,vol. 150, pp. 673-680. [110]T. M. Pana, M. D. Huanga, C. W. Lina, M. H. Wu, 2010, “Development of high-κ HoTiO3 sensing membrane for pH detection and glucose biosensing,” Sensors and Actuators B: Chemical, vol. 144, pp. 139-145. [111]H. Hu, M. Feng, H. Zhan, 2015, “A glucose biosensor based on partially unzipped carbon nanotubes,” Talanta, vol. 141, pp. 66-72. [112]J.R. Anusha, C. J. Raj, B. B. Cho, A. T. Fleming, K. H. Yu, B. C. Kim, 2015, “Amperometric glucose biosensor based on glucose oxidase immobilized over chitosan nanoparticles from gladius of Uroteuthis duvauceli,” Sensors and Actuators B: Chemical, vol. 215, pp. 536-543. [113]R. Devasenathipathy, V. Mani, S. M. Chen, S. T. Huang, T. T. Huang, C. M. Lin, K. Y. Hwa, T. Y. Chen, B. J. Chen, 2015, “Glucose biosensor based on glucose oxidase immobilized at gold nanoparticles decorated graphene-carbon nanotubes,” Enzyme and Microbial Technology, vol. 78, pp. 40-45. [114]W. Ngeontae,W. Janrungroatsakul, P. Maneewattanapinyo, Sanong Ekgasit, W. Aeungmaitrepirom, T. Tuntulani, 2009, “Novel potentiometric approach in glucose biosensor using silver nanoparticles as redox marker,” Sensors and Actuators B: Chemical, vol. 137, pp. 320-326. [115]L. Fang, B. Liang, G. Yang, Y. Hu, Q. Zhu, X. Ye, 2014, “Study of glucose biosensor lifetime improvement in 37 ℃ serum based on PANI enzyme immobilization and PLGA biodegradable membrane,” Biosensors and Bioelectronics, vol. 56, pp. 91-96. [116]N. C. Sekar, S. A. M. Shaegh, S. H. Ng, L. Ge, S. N. Tan, 2014, “A paper-based amperometric glucose biosensor developed withPrussian Blue-modified screen-printed electrodes,” Sensors and Actuators B: Chemical, vol. 204, pp. 414-420. [117]C. G. d. Jesus, D. Lima, V. d. Santos, K. Wohnrath, C. A. Pessôa, 2013, “Glucose biosensor based on the highly efficient immobilization of glucose oxidase on layer-by-layer films of silsesquioxane polyelectrolyte,” Sensors and Actuators B: Chemical, vol. 186, pp.44-51.
|