跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.59) 您好!臺灣時間:2025/10/12 10:50
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:鄭吉翔
研究生(外文):CHENG, CHI-HSIANG
論文名稱:雙模操作之小型化鑿孔接地面帶通濾波器
論文名稱(外文):A Compact Band-Pass Slotted-Ground-Plane Filter for Dual-Mode Operation
指導教授:王健仁
指導教授(外文):WANG, CHIEN-JEN
口試委員:王健仁李坤洲湯敬文
口試委員(外文):WANG, CHIEN-JENLEE, KUN-CHOUTANG, CHING-WEN
口試日期:2019-07-29
學位類別:碩士
校院名稱:國立臺南大學
系所名稱:電機工程學系碩博士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:124
中文關鍵詞:差模態訊號共模態訊號鑿孔接地面共振器帶通濾波器等效電路模型
外文關鍵詞:differential mode (DM) signalcommon mode (CM) signalslotted-ground-plane resonatorband-pass filterequivalent circuit model
相關次數:
  • 被引用被引用:1
  • 點閱點閱:144
  • 評分評分:
  • 下載下載:3
  • 收藏至我的研究室書目清單書目收藏:0
本研究乃為設計新穎鑿孔接地面結構之共振元件,探討差模態與共模態等雙模態訊號之傳輸特性,藉由數個技術實現雙模態訊號操作且具相同操作頻段通帶特性之平衡式饋入小型化帶通濾波器。
濾波器本體是在接地面上蝕刻兩條對稱性曲折形槽孔作為訊號濾除與通過之共振器單元,訊號導入分別為雙饋入/雙饋出之微帶線型式,亦即平衡式饋入。當差模態與共模態操作時,訊號會在結構對稱面上形成完美電導體與完美磁導體等邊界條件,產生電場耦合或不匹配現象,使得共振器在兩種模態有不同激發。論文中亦探討金屬微帶線饋入位置與鑿孔接地面共振器模態激發之原理,可對此類共振器的傳輸模態與特性有更深的瞭解。利用共振器邊界條件對不同模態之差異性來設計一矩形槽孔共振器,在不影響共模態響應下,可補償差模態響應。再者,利用強耦合饋入結構達成雙模態之帶通響應。為抑制高頻雜散響應,亦在各饋入線端加上髮夾形帶拒濾波器,有效地改善高頻通帶外特性。最後,我們亦萃取差模態與共模態操作時之對應等效電路模型,可準確預測其共振模態與獲得設計準則。
所提出帶通濾波器之差模態與共模態操作之頻寬分別為3.84與3.83 GHz,帶內漣波響應為1.5與2 dB,高頻雜散頻帶抑制在6-12 GHz時,插入損失約為-18 與 -20 dB。

In this thesis, the design procedure and propagation characteristics of a compact band-pass filter for dual-mode operation have been presented, including the differential mode (DM) and common mode (CM). By utilizing a balanced feeding structure and several new techniques, the slotted-ground-plane component as a resonant element achieves the same operating frequency band in the differential mode and common mode.
The embodiment of the band-pass filter consists of a two-meandered-slot resonator, a balanced feeding structure, a rectangular slot, rectangular coupling stubs and several modified hairpin resonators connected the feedline. With the help of the even-odd analysis method, the perfect electrical conductor (PEC) and perfect magnetic conductor (PMC) boundary conditions will be excited in the symmetrical plane of the two-meandered-slot resonator such that the electric coupling or the impedance mismatch will be achieved. Therefore, the resonant modes of the two-meandered-slot resonator are different in CM and DM, thus resulting in the different operating frequency bands. To improve the frequency-band mismatch in two operation modes, a rectangular slot is embedded in the two-meandered-slot resonator. Furthermore, a rectangular stub is added at the feedline to excite a strongly coupling effect and to generate a band-pass frequency performance. Finally, to suppress the spurious signals in high-frequency band, modified hairpin resonators are used and placed at the feedlines. In addition, an equivalent circuit model for DM and CM operation is extracted to predict the resonant modes and to obtain design criteria accurately.
The measured DM and CM ripple levels of the proposed filter in the pass bands are 1.5 and 2.0 dB with operation bandwidths of about 3.84 and 3.83 GHz, respectively. Furthermore, the measured DM and CM out-of-band rejection are –18 and -20 dB from 6 to 12 GHz, respectively.

中文摘要 i
英文摘要 ⅲ
致謝 v
目次 ⅵ
表目次 viii
圖目次 ix
第一章 緒論 1
1.1 研究動機 1
1.2 鑿孔接地面共振器之簡介 2
1.3 差動傳輸線之簡介 9
1.4 平衡式濾波器之簡介 12
1.5 章節概述 27
第二章 平衡式帶通濾波器之設計理論 28
2.1 耦合傳輸線之特性與奇/偶模態分析法 29
2.2 奇模態(差模態)傳輸分析 33
2.3 偶模態(共模態)傳輸分析 38
2.4 奇模態(差模態)與偶模態(共模態)之阻抗分析 42


第三章 雙模操作之小型化鑿孔接地面帶通濾波器 44
3.1 概述 44
3.2 新型鑿孔接地面共振器之原理 46
3.3 微帶線饋入位置與鑿孔接地面共振器激發之設計準則 48
3.4 雙模態帶通濾波器結構與設計流程 55
3.4.1 雙槽孔共振器(Prototype) 57
3.4.2 彎折C形雙槽孔共振器 65
3.4.3 嵌入中心槽孔共振器 80
3.4.4 強耦合饋入結構 87
3.4.5 置入髮夾形共振器(Proposed) 91
第四章 等效電路模型建立與特性探討 100
4.1 應用合成理論與等效變壓器萃取電路模型 101
4.2 電路量測數據與分析 112
4.3 參數變異分析 116
第五章 結論 119
參考文獻 120

[1] D. J. Woo, T. K. Lee, J. W. Lee, C. S. Pyo, and W. K. Choi, “Novel U-slot and V-slot DGSs for bandstop filter with improved Q factor,” IEEE Trans. Wirless Comp. Lett., vol. 54, no. 6, pp. 2840-2846, Jun. 2006.
[2] D. Ahn, J. S. Park, C. S. Kim, J. N. Kim, Y. Qian, and T. Itoh, “A design of the low-pass filter using the novel microstrip defected ground structure,” IEEE Trans. Microw. Theory Tech., vol. 49, no. 1, pp. 86–93, Jan. 2001.
[3] H. J. Chen, T. H. Huang, C. S. Chang, L. S. Chen, N. F. Wang, Y. H. Wang, and M. P. Houng, “A novel cross-shape DGS applied to design ultra-wide stopband low-pass filters,” IEEE Trans. Wirless Comp. Lett., vol. 16, no. 5, pp. 252-254, May. 2006.
[4] P. Mondal, M. K. Mandal and A. Chakrabarty, “Compact ultra-wideband bandpass filter with improved upper stopband,” IEEE Microwave Wireless Compon. Lett., vol. 17, no. 9, pp. 643-645, Sept. 2007.
[5] J. Yang, C. Gu, and W. Wu, “Design of novel compact coupled microstrip power divider with harmonic suppression,” IEEE Trans. Wirless Comp. Lett., vol. 18, no. 9, pp. 572-574, Sep. 2008.
[6] Y. C. Jeong, S. G. Jeong, J. S. Lim, and S. Nam, “A new method to suppress harmonics using 1/4 Bias Line combined by defected ground structure in power amplifiers,” IEEE Trans. Wirless Comp. Lett., vol. 13, no. 12, pp. 538-540, Dec. 2003.
[7] W.T. Liu, C.H. Tsai, T.W. Han, and, T.L. Wu, “An embedded common mode suppression filter for gHz differential signals using periodic defected ground plane”, IEEE Microw. Wirel. Compon. Lett., 2008, 18, pp. 248–250
[8] J. H. Choi, P. W. C. Hon, and T. Itoh, “Dispersion analysis and design of planar electromagnetic bandgap ground plane for broadband common-mode suppression,” IEEE Microwave Wireless Compon. Lett., vol. 24,no. 11, pp. 772–774, Nov. 2014.
[9] S.J. Wu, C.H. Tsai, and T.L. Wu,“A novel wideband common-mode suppression filter for gigahertz differential signals using coupled patterned ground structure, ” IEEE Trans. Microw. Theory Tech., 2009, 57, pp. 848–855
[10] T.B. Lim and L. Zhu, “A differential-mode wideband bandpass filter on microstrip line for UWB application,” IEEE Microw. Wireless Compon.Lett., vol 19, no. 10, pp. 632–634, Oct. 2009.
[11] Q.X. Chu and L.L. Qiu, “Wideband balanced filters with high selectivity and common-mode suppression,” IEEE Trans. Microwave Theory Tech., vol. 63, no. 10, pp. 3462–3468, Oct. 2015.
[12] A.F. Prieto, A. Lujambio, J. Martel, F. Medina, F. Mesa, and R.R. Boix, “Simple and compact balanced bandpass filters based on magnetically coupled resonators,” IEEE Trans. Microw. Theory Tech., vol. 63, pp.1843–1853, Jun. 2015.
[13] Y.J. Lu, S.Y. Chen, and P. Hsu, “A differential-mode wideband bandpass filter with enhanced common-mode suppression using slotline resonator,” IEEE Microw. Wireless Compon. Lett., vol. 22, no. 10, pp. 503-505, Oct. 2012.
[14] D. Chen, H. Bu, L. Zhu, and C. Cheng, “A Dm wideband bandpass filter on slotline multi-mode resonator with controllable bandwidth,” IEEE Microwave Wireless Compon. Lett., vol. 25, no. 1, pp. 28–30, Jan. 2015.
[15] R. Ludwig and G. Bogdanov ,RF Circuit Design : Theory and Applications. Pearson, 2009.
[16] R.B. Wu ,“High-speed Digital System EM Design,” 台灣大學課堂講義,2011
[17] J. Reed and G.J . Wheeler, “A method of analysis of symmetrical four-port networks, ” IRE Trans. Microw. Theory Tech., 1956, 4, (4), pp. 246– 52
[18] X. Guo, L. Zhu, J. P. Wang, and W. Wu, “Wideband microstrip -to-microstrip vertical transitions via multiresonant modes in a slotline resonator,” IEEE Trans. Microw. Theory Techn., vol. 63, no. 6, pp. 1902–1909, Jun. 2015.
[19] X.C. Zhang, Z.H. Liao, and X. Yang, “Microstrip phase inverters with different harmonic waves,” Int J RF and Microwave Comp Aid Eng. pp.28-29, August.2018.
[20] J.S. Hong and M. J. Lancaster, “Coupling of microstrip square openloop resonator for cross-coupled planar microwave filters,” IEEE Trans. Microw. Theory Techn., vol. 44, no. 11, pp. 2099–2109, Nov. 1996
[21] L.H. Hsieh and K. Chang, ‘‘Compact elliptic-function low-pass filters using microstrip stepped-impedance hairpin resonators,’’ IEEE Trans. Microw. Theory Techn., vol. 51, no. 1, pp. 193–199, Jan. 2003
[22] X. Guo, L. Zhu, K.W. Tam, and W. Wu, ‘‘Wideband differential dandpass filters on multimode slotline resonator with intrinsic common-mode rejection,’’ IEEE Trans. Microw. Theory Techn., vol. 63, no. 5, pp. 1587–1594, May 2015.
[23] K. Song, T. Pan, Y. Fan, and Q. Xue, “Compact ultra-wideband bandpass filters using half-wavelength slotline resonators,” IET Microw., Antennas Propag., vol. 6, no. 4, pp. 475–481, Mar. 2012.
[24] R. Li and L. Zhu, “Ultra-wideband (UWB) bandpass filters with hybrid microstrip/slotline structures,” IEEE Microw. Wireless Compon. Lett., vol. 17, no. 11, pp. 778–590, Nov. 2007.
[25] D. M. Pozar, Microwave and RF Wireless Systems, John Wiley, New York, 2001.
[26] 翁敏航, “射頻與被動元件設計,” 東華書局, 95年.
[27] D. M. Pozar, Microwave Engineering, 3nd ed. New York: Wiley, 2005.
[28] K.C. Gupta, R. Garg, I. Bahl, and P. Bhartia, Microstrip Lines and Slotlines, 2nd ed. Norwood, MA, USA: Artech House, 1996.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top