跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.62) 您好!臺灣時間:2025/11/17 14:56
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:徐明賢
研究生(外文):Ming-Hsien Hsu
論文名稱:低溫冷卻與微量潤滑影響鈦合金磨削性能之研究
論文名稱(外文):A Study on Grinding Performance with Cryogenic Cooling and Minimum Quantity Lubrication for Titanium Alloy
指導教授:林盛勇
學位類別:碩士
校院名稱:國立虎尾科技大學
系所名稱:創意工程與精密科技研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:113
中文關鍵詞:磨削鈦合金微量潤滑液態氮冷卻
外文關鍵詞:Grindingtitanium alloyminimum quantity lubricationliquid nitrogen cooling
相關次數:
  • 被引用被引用:2
  • 點閱點閱:647
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
隨著鈦合金應用層面的加廣,相關零件加工品質之要求亦隨之提高,必須經過磨削加工才能滿足功能要求。鈦合金的低熱傳導率與高化學活性,使磨削高溫聚積在加工表層,造成砂輪黏附、堵塞磨損與加工表面之熱損傷,眾多困難已成為其未能廣泛應用的主要因素。因此本文針對磨削性能與加工品質,結合國內外熱烈研究之綠色製造技術來進行一系列之探討。
本研究運用二種綠色製造技術(MQL微量潤滑、液態氮冷卻)及傳統大量澆注冷卻以CBN磨輪執行鈦合金之磨削實驗。於磨削實驗過程中使用動力計與頻譜分析儀分別監測磨削力及振動量,並觀察在不同實驗參數下的磨屑、表面微觀與表面粗糙度,進行實驗數據分析探討。結果顯示,與傳統澆注濕磨削相比,微量油霧提供磨削加工區的潤滑及壓縮空氣的冷卻效果,減少砂輪的黏附有助於磨削力的降低。另從流動型磨屑觀察可得知,微霧油改善了磨削型態,得到比傳統濕磨削更好的加工面品質。而液態氮深冷加工充分發揮了冷卻優勢與特質使磨削區溫度處於低溫狀態,有助降低工件材料韌性與化學活性所形成砂輪黏附,保持磨粒鋒利進而提升磨削性能,促使磨削力、振動量與表面品質控制在較低的穩定水準。綜觀整體磨削性能表現可得知,提高磨削線速度與降低磨削深度可有效降低磨削力,減少砂輪黏附,獲得較佳的加工面品質。

Along with widening applications of titanium alloy, the requirement to the machining quality of related parts has been heightened, and their functions could be fulfilled only through grinding process. Due to the low thermal conductivity and high chemical activity of titanium alloy, the high temperature of grinding would be concentrated on the surface layer, which would cause the grinding wheel adhesion and loading, as well as heat damage on the ground surface. Numerous difficulties have become the major factors resulting in its failure of extensive application. For this reason, this study investigated the grinding performance and grinding quality in combination of the green manufacturing technology under hot research both at home and abroad.
This study conducted the grinding experiment on titanium alloy by two kinds of green manufacturing technologies (minimum quantity lubrication and liquid nitrogen cooling), and the conventional coolant by CBN grinding wheel. Dynamometer and spectrum analyzer were used in the grinding experiment to monitor the grinding force and vibration, respectively. The chips under different process parameters, surface morphology and surface roughness were observed to conduct analysis and discussion of the experimental data. The result showed that compared with the conventional coolant grinding, the minimum quantity oil mist provided lubrication for the grinding zone, as well as cooling effect of compressed air to reduce grinding wheel adhesion so as to reduce the grinding force. Observation on the flowing-type chip found that the minimum quantity oil mist improved the grinding conditions, and achieved a better ground surface quality than that of the conventional coolant grinding. Processing by cryogenic cooling has exhibited the cooling advantages and characteristics to maintain the grinding area at a low-temperature state, which could help to reduce material toughness of the workpiece and the grinding wheel adhesion resulted by chemical activity. Moreover, it could also maintain the abrasive grit under a sharp status to improve the grinding performance, and keep the grinding force, vibration magnitude and surface quality controlled under a lower and stable level. From the synthesis results and investigations, it shows that when increasing wheel speed and decreasing depth of cut that will be reduced the grinding force and grinding wheel adhesion, and the quality of ground surface will thus be improved.


中文摘要 …………………………………………………………… i
Abstract …………………………………………………………… ii
誌謝 …………………………………………………………… iv
目錄 …………………………………………………………… v
表目錄 …………………………………………………………… vi
圖目錄 …………………………………………………………… vii
第一章 前言……………………………………………………… 1
1.1 研究背景………………………………………………… 1
1.2 研究動機與目的………………………………………… 3
1.3 文獻回顧………………………………………………… 5
1.4 論文架構………………………………………………… 14
第二章 理論基礎………………………………………………… 15
2.1 微量潤滑技術…………………………………………… 15
2.2 低溫冷卻技術…………………………………………… 16
2.3 難加工材料……………………………………………… 16
2.4 CBN磨輪特性……………………………………………… 18
2.5 磨削機構………………………………………………… 18
2.5.1 砂輪-工件的幾何接觸…………………………………… 19
2.5.2 磨削力…………………………………………………… 22
2.6 表面粗糙度……………………………………………… 23
第三章 實驗方法與設備………………………………………… 24
3.1 磨輪組成與工件材料性質……………………………… 25
3.2 實驗儀器設備與規格…………………………………… 26
3.3 實驗方法與執行步驟…………………………………… 33
第四章 結果與討論……………………………………………… 38
4.1 磨削力…………………………………………………… 38
4.2 主軸頭座振動量………………………………………… 49
4.3 完成面品質……………………………………………… 59
4.3.1 表面粗糙度……………………………………………… 59
4.3.2 表面微觀………………………………………………… 63
4.4 磨屑型態………………………………………………… 69
第五章 結論與建議……………………………………………… 79
參考文獻 …………………………………………………………… 81
附錄 …………………………………………………………… 86
Extended Abstract …………………………………………………………… 110
作者簡歷 …………………………………………………………… 113


[1]T. Tawakoli, M.J. Hadad, M.H. Sadeghi, A. Daneshi, S. Stöckert, 2009, A. Rasifard, An experimental investigation of the effects of workpiece and grinding parameters on minimum quantity lubrication—MQL grinding, International Journal of Machine Tools & Manufacture, Vol.49, pp.924-932.
[2]B. Shen, A.P. Malshe, P. Kalita, A.J. Shih, 2008, Performance of novel MoS2 nanoparticles based grinding fluids in minimum quantity lubrication grinding, Transactions of NAMRI/SME, Vol.36, pp.357-364.
[3]B. Shen, A.J. Shih, S.C. Tung, 2008, Application of nanofluids in minimum quantity lubrication grinding, Society of Tribologists and Lubrication Engineers Tribology Transactions, Vol.51, pp.730-737.
[4]N.R. Dhar, M. Hossain, M. Kamruzzaman, 2005, MQL applications in grinding of 16MnCr5 steel: a comparison with wet and dry grinding, Proceedings of the International Conference on Mechanical Engineering, pp.28- 30.
[5]M.H. Sadeghi, M.J. Haddad, T. Tawakoli, M. Emami, 2009, Minimal quantity lubrication-MQL in grinding of Ti–6Al–4V titanium alloy, Int J. Adv. Manuf. Technol, Vol.44, pp.487-500.
[6]C. Li, S.C. Xiu, G. Cai, 2008, Application of lubrication theory to optimise grinding fluid supply-surface integrity evaluation, Advanced Design and Manufacture to Gain a Competitive Edge, Vol.3, pp.273-282.
[7]T. Nguyen, I. Zarudi, L.C. Zhang, 2007, Grinding-hardening with liquid nitrogen: mechanisms and technology, International Journal of Machine Tools & Manufacture, Vol.47, pp.97–106.
[8]L.R. da Silva, E.C. Bianchi, R.Y. Fusse, R.E. Catai, T.V. Franca, P. R. Aguiar, 2007, Analysis of surface integrity for minimum quantity lubricant—MQL in grinding, International Journal of Machine Tools & Manufacture,Vol.47, pp. 412-418.
[9]K. Ramesh, H. Huang, L. Yin, 2004, Analytical and experimental investigation of coolant velocity in high speed grinding, International Journal of Machine Tools & Manufacture, Vol.44, pp.1069-1076.
[10]J. Alves, U. Fernandes, C. Júnior, E. Bianchi, P. Aguiar, E. Silva, 2009, Application of the minimum quantity lubrication (MQL) technique in the plunge cylindrical grinding operation, J. of Braz. Soc. of Mech. Sci. & Eng.,Vol.XXX1, pp.1-4.
[11]T. Tawakoli, M.J. Hadad, M.H. Sadeghi, 2010, Investigation on minimum quantity lubricant-MQL grinding of 100Cr6 hardened steel using different abrasive and coolant–lubricant types, International Journal of Machine Tools & Manufacture, Vol.50, pp.698-708.
[12]X. Xu, Y. Yu, H. Huang, 2003, Mechanisms of abrasive wear in the grinding of titanium (TC4) and nickel (K417) alloys, Science Direct Wear, Vol.255, pp.1421-1426.
[13]S. Paul and A.B. Chattopadhyay, 1996, The effect of cryogenic cooling on grinding force, Int. J. Mach. Tools Manufact., Vol. 36, No. 1, pp.63-72.
[14]H.Z. Choi, S.W. Lee, H.D. Jeong, 2001, A comparison of the cooling effects of compressed cold air and coolant for cylindrical with a CBN wheel, Journal of Materials Processing Technology, Vol. 111, pp. 265-268.
[15]S. Paul and A.B. Chattopadhyay, 1995, Effects of cryogenic cooling by liquid nitrogen jet on force, temperature and surface residual stresses in grinding steels, Cryogenics, pp.515-523.
[16]河田圭一、佐藤豊、水野和康、栗田浩和,油膜付水滴加工液を用いたエンドミル加工の加工精度,愛知県工業技術センター研究報告, 37卷, 2001。
[17]河田圭一、佐藤豊、水野和康,油膜付水滴加工液を用いた高硬度材のエンドミル加工,研究論文。
[18]李長河、蔡光起、修世超,2006,低溫冷卻磨削機理的研究,金剛石與磨料磨具工程,第2期,55-57頁。
[19]侯亞麗、李長河、丁玉成,2009,綠色切削磨削加工技術,43卷,3-6頁。
[20]李蓉、王愛玲、鄭智貞、劉永姜、郭以偉,2007,霧狀油膜水滴冷卻潤滑車削試驗研究,現代製造工程,2卷,13-16頁。
[21]李蓉、王愛玲、鄭智貞、劉永姜、郭以偉,2007,霧狀油膜水滴切削液對車削力的影響分析,機械工程與自動化,3卷,82-84頁。
[22]王愛玲、魏源遷、祝錫晶、王俊元、吳秀玲,2005,油膜水滴加工液的磨削性能,機械工程學報,41卷,208-211頁。
[23]趙彩虹、王雲峰,2008,基於綠色製造的低溫氣動噴霧冷卻技術的基礎研究,Science & Technology Information, 32卷,239-240頁。
[24]A. Gołabczak, T. Koziarski, 2005, Assessment method of cutting ability of CBN grinding wheels, International Journal of Machine Tools & Manufacture, Vol.45, pp.1256-1260.
[25]Ichida, R. Sato, Y. Morimoto, Y. Inoue, 2006, Profile grinding of superalloys with ultrafine-crystalline CBN wheels, JSME International Journal, Vol.49, pp.94-99.
[26]S.A. Bentley, N.P. Goh and D.K. Aspinwall, 2001, Reciprocating surface grinding of a gamma titanium aluminide intermetallic alloy, Journal of Materials Processing Technology, Vol.118, pp.22-28.
[27]H. Huang, L. Yin, L. Zhou, 2003, High speed grinding of silicon nitride with resin bond diamond wheels, Journal of Materials Processing Technology,Vol.141, pp.329-336.
[28]R. Hood, F. Lechner, D. K. Aspinwall, W. Voice, 2007, Creep feed grinding of gamma titanium aluminide and burn resistant titanium alloys using SiC abrasive, International Journal of Machine Tools & Manufacture, Vol.47, pp.1486-1492.
[29]R. Hood, D. K. Aspinwall, W. Voice, 2007, Creep feed grinding of a gamma titanium aluminide intermetallic alloy using SiC abrasives, Journal of Materials Processing Technology, Vol.191, pp.210-214.
[30]A. Abdullah, A. Pak, M. Farahi, M. Barzegari, 2007, Profile wear of resin-bonded nickel-coated diamond wheel and roughness in creep-feed grinding of cemented tungsten carbide, Journal of Materials Processing Technology, Vol.183, pp.165-168.
[31]任敬心、康仁科、吳小玲、史興寬,2000,鈦合金的磨削燒傷和磨削裂紋,製造技術與機床,10卷,40-42頁。
[32]盛曉敏、唐昆、余劍武、宓海青、陳濤,TC4鈦合金超高速磨削工藝試驗研究, 湖南大學學報自然科學版,35卷,28-32頁。
[33]郭力,2008,鈦合金材料超高速磨削濕式溫度場的有限元仿真,湖南文理學院學報自然科學版,20卷,56-60頁。
[34]張紅霞、陳五一、陳志同,2008,SG砂輪磨削鈦合金燒傷機理,北京航空航太大學學報,34卷, 22-26頁。
[35]張紅霞、陳五一、馬建峰,2008,SG砂輪磨削航空合金溫度研究,工具技術,42卷, 7-11頁。
[36]陳濤、盛曉敏、宓海青,2007,40Cr超高速磨削工藝實驗研究,湖南大學學報自然科學版,34卷,39-43頁。
[37]蔡光起、鞏亞東、宋貴亮,2002,磨削技術理論與應用,東北大學出版社。


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top