跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.110) 您好!臺灣時間:2025/09/26 09:31
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:王朝建
研究生(外文):Chau-jian Wang
論文名稱:在氧化鋁上成長金與白金的和金奈米粒子
論文名稱(外文):Alloying of Au-Pt nanoclusters on thin film Al2O3/NiAl(100)
指導教授:羅夢凡
指導教授(外文):Meng-fan Luo
學位類別:碩士
校院名稱:國立中央大學
系所名稱:物理研究所
學門:自然科學學門
學類:物理學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:英文
論文頁數:71
中文關鍵詞:甲醇合金光激發電子能譜儀白金
外文關鍵詞:alloymethanolPtAuXPS
相關次數:
  • 被引用被引用:0
  • 點閱點閱:317
  • 評分評分:
  • 下載下載:38
  • 收藏至我的研究室書目清單書目收藏:0
我們利用同步輻射光源的光激發電子能譜儀(PES)來研究甲醇在良好奈
米白金觸媒模型上的吸附及分解反應,以及金與白金合金的生成與其對吸
附甲醇後的反應。
利用氣相沈積法,我們在超高真空中(小於3 x 10-10)於300 K 溫度下,
將白金奈米團簇成長在完整有序的氧化鋁薄膜Al2O3/NiAl(100)。在PES 中
我們發現白金的電性結構並不隨著白金的覆蓋量而影響,而在經過450K
的退火溫度後白金粒子有氧化的現象。
我們將甲醇在120 K 低溫下吸附於Pt/Al2O3/NiAl(100)表面上,在這之後
並加溫到各種不同的溫度。在加溫的過程中,我們發現甲醇的C1s 峰值隨
著加溫的溫度往高束縛能的方向偏移,這或許與產生的碳氫化合物吸附在
Pt 有關。我們也發現甲醇在300 K 的退火之後,產生了一個新峰值其值
與CO 吸附的峰值不同,我們認為是碳氫化合物的生成。
在研究金與白金的合金生成,由PES 所得到的結果是當合金生成時電子
會由白金傳遞到金上,並且在450 K 以上的退火溫度下白金的熱漂移與氧
化會造成合金的消失
當我們吸附甲醇在合金以及退火過的合金表面上時,由合金的增減情形
中得知當甲醇吸附在合金奈米團簇上時存在有特定的白金與金的比例。
We have studied the adsorption and decomposition of methanol on well-defined
supported Pt nanoclusters as a model catalyst and the alloying of Au-Pt nanoclusters
on thin film Al2O3/NiAl(100) by using synchrotron-based high-resolution
photoemission spectroscopy (PES).
Pt nanoclusters are deposited on well-ordered Al2O3 film grown on NiAl (100)
through vapor deposition in the ultrahigh vacuum conditions (<3 x 10-10 torr) at 300
K. By using PES we find that the electron structure of Pt doesn’t change with Pt
coverage. On annealing to 450 K the oxidized Pt form on the surface.
To study methanol decomposition, methanol was adsorbed on Pt/Al2O3/NiAl (100)
at 120 K and subsequent annealed to different temperatures. In our annealing
experiment, the C1s peak shifts towards higher binding energy with increasing
temperature, which is probably due to that the hydrocarbon-species (CHx) adsorb on
Pt nanoclusters, and the hydrocarbon-species (CHx) formed at the surface at 300 K.
According to the PES results, we observe evident shift for the Au-4f because of the
electron transfer from Pt to Au when Au-Pt alloy formed. During the annealing
procedure, the intensity of alloy decrease because of the Pt diffuse or oxidization.
There are change in intensity of Pt, pure Au, and alloy signals when adsorbing
methanol on (annealed) alloy cluster, which is probably due to a specific ratio of Pt to
Au in alloy cluster when adsorbed methanol.
Chapter 1 Introduction………………………………………………………….1
Chapter 2 Literature Survey…………………………………………………...4
2.1 Al2O3/NiAl (100)…………………………………………………………………..4
2.1.1 The properties of NiAl (100)……………………………………………...4
2.1.2 θ-Al2O3 Grown on NiAl (100)……………………………………………5
2.1.3 Metal nanoclusters grown on oxide surface………………………………7
2.2 Application of Methanol…………………………………………………………..8
2.2.1 H2 Generation from Methanol…………………………………………….8
2.2.2 Literature Survey for Methanol Decomposition………………………….9
Chapter 3 Experimental Instruments………………………………………12
3.1 Ultrahigh Vacuum (UHV) System ………………………………………………12
3.2. XPS Analysis Chamber………………………………………………………….14
3.3 X-ray Photoemission Spectroscopy (XPS) ………………………………………15
3.4 Experimental Methods ……………………………………………………….…..19
3.4.1 Sample Cleaning ………………………………………………………….19
3.4.2 Oxygen Exposure on NiAl (100)………………………………………….20
3.4.3 metal Deposition on Al2O3/NiAl (100) …………………………………..21
3.4.4 Methanol Adsorption and Decomposition ……………………………….21
Chapter 4 Results and Discussions…………………………………………..23
4.1 Growth of Pt Nanoclusters on Al2O3/NiAl (100)………………………………23
4.2 Methanol Decomposition on Pt/Al2O3/NiAl (100)..……………………………27
4.2.1 Methanol Adsorption and Decomposition on Pt/Al2O3/NiAl(100)……….27
4.2.2 Methanol Adsorption and Decomposition on Pt Clusters with
different co verage………………………………………………………..33
4.3 Growth of Pt-Au Bimetal Nanoclusters on Al2O3/NiAl (100)……...……………36
4.3.1 Au-Pt nanoclusters/Al2O3/NiAl (100)…………………………………….36
4.3.2 Annealed Au-Pt nanoclusters/Al2O3/NiAl (100)………………………….47
4.3.3 The effect of exposing methanol to Au-Pt nanoclusters…………………..54
Chapter 5 Conclusions………………………………………………….………61
Chapter 1
[1] Y. Usami, K. Kahawa, Y. Matsumura, H. Sakurai, M. Haruta, Appl.
Catal. A 171, 123 (1998)
[2] C. J. Jiang, D. L. Trimm, M. S. Wainwright, Appl. Catal. A 93, 245
(1993)
[3] M. L. Cubeiro, J. L. G. Fierro, Appl. Catal. A 168, 307 (1998)
[4] S. Velu, K. Suzuli, M. Okazaki, M. P. Kapoor, T. Osaki, F. Ohashi, J.
Catal. 194, 373 (2000)
[5] B. A. Sexton, Surf. Sci. 102, 271 (1981)
[6] K. Christmann, J. E. Demuth, J. Chem. Phys. 76, 6308 (1982)
[7] S. Schauermann, J. Hoffmann, V. Johánek, J. Hartmann, J. Libuda,
Phys. Chem. Chem. Phys. 4, 3909 (2002)
[8] F. Boccuzzi, A. Chiorino, M. Manzoli, J. Power Source 118, 304 (2003)
[9] N. Toshima, Y. Wang, Chem. Lett. (1993) 1611.
[10] N. Toshima, M. Harada, Y. Yamazaki, K. Asakura, J. Phys. Chem. 96
(1992) 9927.
[11] A.F. Lee, C.J. Baddeley, C. Hardacre, R.M. Ormerod, R.M. Lambert,
G. Schmid, H. West, J. Phys. Chem. 99 (1995) 6096.
[12] N. Toshima, M. Harada, T. Yonezawa, K. Kushihashi, K. Asakura,
J. Phys. Chem. 95 (1991) 7448.
[13] T. Yonezawa, N. Toshima, J. Mol. Catal. 83 (1993) 167.
[14] J. Turkevich, G. Kim, Science 169 (1970) 873
[15] N.T. Flynn, A.A. Gewirth, J. Raman Spectrosc. 33 (2002) 243.
[16] T. Takenaka, K. Eda, J. Colloid Interface Sci. 105 (1985) 342.
[17] H. Tada, F. Suzuki, S. Ito, T. Akita, K. Tanaka, T. Kawahara,
H. Kobayashi, J. Phys. Chem. B 106 (2002) 8714.
[18] C. Mihut, C. Descorme, D. Duprez, M.D. Amirdis, J. Catal. 212 (2002) 125.
[19] L.M. Liz-Marzan, A.P. Philipse, J. Phys. Chem. 99 (1995) 15,120.
[20] B. C. Bond, Surf. Sci. 156, 966 (1985)
[21] C. R. Henry, Surf. Sci. Rep. 31, 231 (1998)
[22] V. P. Zhdanov, B. Kasemo, Surf. Sci. Rep. 39, 25 (2000)
[23] T. P. St. Clair, D. W. Goodman, Top. Catal. 13. 5 (2000)
[24] R. Franchy, Surf. Sci. Reports 38, 195 (2000)
[25] R. Franchy, J. Masuch, P. Gassmann, Appl. Surf. Sci. 93, 317 (1996)
chapter 2
[1] Ch. ToÈlkes, R. Struck, R. David, P. Zeppenfeld, G. Comsa, Phys. Rev. Lett. 80,
2877 (1998).
[2] N. Frèmy, V. Maurice, P. Marcus, J. Am. Ceram. Soc. 86, 669 (2003)
[3] M. S. Zei, C. S. Lin, W. H. Wen, C. I. Chiang, M. F. Luo, Surf. Sci. 600, 1942
(2006)
[4] H. Kno¨zinger, J. Weitkamp, Handbook of Heterogeneous Catalysis, VCH,
Weinheim (1997).
[5] R. Franchy, J. Masuch, P. Gassmann, Appl. Surf. Sci. 93, 317 (1996)
[6] N. Frèmy, V. Maurice, P. Marcus, Surf. Interface Anal. 314, 519 (2002)
[7] P. Gassmann, R. Franchy, H. Ibach, Surf. Sci. 319, 95 (1994)
[8] K.-H. Hellwege, Ed., Landolt-Börnstein, Bd.ш/7b , Springer, Heidelberg, 1975
[9] R. P. Blum, D. Ahlbehrendt, H. Niehus, Surf. Sci. 396, 176 (1998)
[10] A. Biswas, O.C. Aktas, U. Schürmann, U. Saeed, V. Zaporojtchenko, F. Faupel,
Appl. Phys. Lett. 84 (2004) 2655.
[11] S. Nie, S.R. Emory, Science 275 (1997) 1102.
[12] T. Ioannides, X. Verykios, J. Catal. 140 (1993) 353.
[13] T. Ioannides, A.M. Efstahiou, Z.L. Zhang, X. Verykios, J. Catal. 156 (1995) 265.
[14] J. J. Spivey, Catalysis Volume 16, Royal Society of Chemistry (2002)
[15] Y. Usami, K. Kahawa, Y. Matsumura, H. Sakurai, M. Haruta, Appl.
Catal. A 171, 123 (1998)
[16] C. J. Jiang, D. L. Trimm, M. S. Wainwright, Appl. Catal. A 93, 245(1993)
[17] M. L. Cubeiro, J. L. G. Fierro, Appl. Catal. A 168, 307 (1998)
[18] S. Velu, K. Suzuli, M. Okazaki, M. P. Kapoor, T. Osaki, F. Ohashi, J.
Catal. 194, 373 (2000)
[19] J. J. Chen, Z. C. Jiang, Y. Zhou, B. R. Charkraborty, N. Winograd, Surf.
Sci. 328, 248 (1995)
[20] M. Rebholz, N. Kruse, J. Chem. Phys. 95, 7745 (1991)
[21] S. Schauermann, J. Hoffmann, V. Johánek, J. Hartmann, J. Libuda, H.
J. Freund, Catal. Lett. 84, 209 (2002)
[22] N.Kizhakevariam and E.M. Stuve, Surface Science 286(1993) 246~260
[23] Brett A. Sexton, Surface Science 102 (1981) 271 – 281.
[24] Ann W. Grant, Jane H. Larsen, C. A. Perez, S. Lehto, Martin Schmal, and
Charles T. Campbell, J. Phys. Chem. B 2001, 105, 9273-9279.
chapter 3
[1].真空技術與應用,行政院國家科學委員會精密儀器發展中心出版
[2] J. C. Vickerman, Surface Analysis -The Principal Techniques, Jon Wiley & Sons,
1997.
[3] Y. W. Yang, L. J. Fan, Langmuir 18, 1157-1164 (2002)
[4] S. Hofmann, In Practical Surface Analysis, Auger and X-ray
Photoelectron Spectroscopy, D. Briggs, M. P. Seah, Eds., John Wiley & Sons,
1990
[5] H. Lüth, Surfaces and Interfaces of Solids, Springer-Verlag, 1993
[6] P. Gassmann, R. Franchy, H. Ibach, Surf. Sci. 319, 95 (1994)
chapter 4
[1] W. Song, M. Yoshitake, Appli. Surf. Sci. 241, 164 (2005)
[2]. P. Konova, A. Naydenov, Cv. Venkov, D. Mehandjiev, D. Andreeva, T.
Tabakova, J.
Mol. Catal. A 213, 235 (2004).
[3]. C. P. Vinod,*ab J. W. Niemantsverdrieta and B. E. Nieuwenhuys*, Phys . Chem.
Chem. Phys . , 2 0 0 5 , 7 , 1 8 2 4 – 1 8 2 9.
[4] S.D. Sartale, H.W. Shiu, M.H. Ten, J.Y. Huang, M.F. Luo. / Surface Science 600
(2006) 4978–4985
[5] M. Ba umer, H. ‥ -J. Freund, Prog. Surf. Sci. 61 (1999) 127.
[6] J. Libuda, M. Ba umer, H. ‥ -J. Freund, J. Vac. Sci. Technol. A 12
(1994) 2259.
[7] Th. Bertrams, F. Winkelmann, T. Uttich, H.-J. Freund, H. Neddermeyer,
Surf. Sci. 331–333 (1995) 1515.
[8] M. Klimenkov, S. Nepijko, H. Kuhlenbeck, M. Ba umer, R. Schlo gl, ‥ ‥
H.-J. Freund, Surf. Sci. 391 (1997) 27.
[9] M. Klimenkov, H. Kuhlenbeck, S.A. Nepijko, Surf. Sci. 539 (2003)
31.
[10] T.J. Minvielle, R.L. White, M.L. Hildner, R.J. Wilson, Surf. Sci. 366
(1996) L755.
[11] E.I. Altman, R.J. Gorte, J. Phys. Chem. 93 (1989) 1993.
[12] N. Ernst, B. Duncombe, G. Bozdech, M. Naschitzki, H.-J. Freund,
Ultramicroscopy 79 (1999) 231.
[13] Y. Murata, M. Kundu, A. Ikeda, H. Fujimoto, M. Matsumoto, Surf.
Sci. 493 (2001) 114.
[14] S. Roberts, R.J. Gorte, J. Chem. Phys. 93 (1990) 5337.
[15] N. Toshima, Y. Wang, Chem. Lett. (1993) 1611.
[16] N. Toshima, M. Harada, Y. Yamazaki, K. Asakura, J. Phys. Chem. 96
(1992) 9927.
[17] A.F. Lee, C.J. Baddeley, C. Hardacre, R.M. Ormerod, R.M. Lambert,
G. Schmid, H. West, J. Phys. Chem. 99 (1995) 6096.
[18] N. Toshima, M. Harada, T. Yonezawa, K. Kushihashi, K. Asakura,
J. Phys. Chem. 95 (1991) 7448.
[19] T. Yonezawa, N. Toshima, J. Mol. Catal. 83 (1993) 167.
[20] S. Devarajan et al. / Journal of Colloid and Interface Science 290 (2005) 117–129
[21] G. Kresse, M. Schmid, E. Napetschnig, M. Shishkin, L. Ko hler, P. ‥
Varga, Science 308 (2005) 1440.
[22] M.S. Zei *, C.S. Lin, W.H. Wen, C.I. Chiang, M.F. Luo, Surface Science 600
(2006) 1942–1951
[23] C.T. Campbell, Surf. Sci. Rep. 27 (1997) 1.
[24] C.R. Henry, Surf. Sci. Rep. 31 (1998) 231.
[25] M. Valden, X. Lai, D.W. Goodman, Science 281 (1998) 1647.
[26] H.-J. Freund, Surf. Sci. 500 (2002) 271.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊