跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.163) 您好!臺灣時間:2025/11/28 05:30
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:李繼廣
研究生(外文):Chi-Kwong Li
論文名稱:新混合溶劑除濕液液態比熱量測:SALT/GLYCOL/H2O系統
論文名稱(外文):Heat capacity of mixed solvent desiccant: SALT/GLYCOL/H2O systems
指導教授:李夢輝李夢輝引用關係
指導教授(外文):Meng-Hui Li
學位類別:碩士
校院名稱:中原大學
系所名稱:化學工程研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:112
中文關鍵詞:比熱除濕
外文關鍵詞:desiccant:mixed solventheat capacity
相關次數:
  • 被引用被引用:0
  • 點閱點閱:291
  • 評分評分:
  • 下載下載:29
  • 收藏至我的研究室書目清單書目收藏:0
摘要
近年來有機水溶液與鹽類系統被考慮作為可能的液體除濕劑吸收劑來吸收空氣的水氣。為了設計合理的除濕程序,需要液體除濕劑的比熱值來估算除濕設備正確的熱負載。本研究利用示差掃描熱量計(Differential Scanning Calorimeter, DSC)量測salt/glycol/H2O的比熱,量測的溫度範圍為30℃至80℃。研究的鹽類為lithium chloride (LiCl)和lithium bromide (LiBr);二醇類為diethylene glycol (DEG),triethylene glycol (TEG),tetraethylene glycol (T4EG),propylene glycol (PG)與dipropylene glycol (DPG)。三成份系統研究的四個濃度系統為鹽類(4 - 25 mass %)混合二醇類(50 - 80 mass %)。除了三成份系統之外,亦量測二醇類水溶液之比熱值。
實驗所量測之二醇類水溶液之比熱值皆以Redlich-Kister 方程式予以迴歸。實驗中所得到之二成份系統的數據共有175個數據點,其計算後所得之 和CP值的AAD% 分別為1.2% 和0.4%;而三成份系統數據有440個數據點,以Söhnel and Novotñy(1988)修正式來計算,其CP值的平均絕對百分偏差為0.4%。
本研究結果可做為液體除濕劑在除濕程序中,設計除濕液再生器部分所需熱空氣之基礎數據及計算工具。
Abstract
The aqueous-organic with salt systems have been recently considered as potential absorbents for liquid desiccants to absorb moisture from air. For rational design of the dehumidifier process, heat capacities of liquid desiccants are required to estimate the correct heating load of dehumidifier equipments. Heat capacities of salt/glycol/H2O systems have been measured in this study over the temperature range 30 to 80 °C with a differential scanning calorimeter. The salts studied are lithium chloride (LiCl) and lithium bromide (LiBr); the glycols considered are diethylene glycol (DEG), triethylene glycol (TEG), tetraethylene glycol (T4EG), propylene glycol (PG) and dipropylene glycol (DPG). For each ternary system, four systems of which (4 - 25 mass %) salt mixed with various glycols (50 - 80 mass %) were studied. In addition to ternary systems, the heat capacities of glycols and aqueous glycol solutions were also measured. A Redlich-Kister-type equation for representing excess molar heat capacity was applied to correlate the measured Cp of aqueous glycol solutions. For a total of 175 data points for aqueous glycol solutions, the overall AAD% of the calculations are 1.2 % and 0.4 % for the excess molar heat capacity and the molar heat capacity, respectively. For the salt/glycol/H2O systems, an equation proposed by Söhnel and Novotñy(1988) was used to represent the measured heat capacity data. For salt/glycol/H2O systems, the overall AAD% of the calculations are 0.4 % for 440 data points. The molar heat capacities of salt/glycol/H2O systems presented in this study are, in general, of sufficient accuracy for most engineering-design calculations for design dehumidifier equipments.
目錄
摘要……………………………………………………………………...Ⅰ
Abstract………………………………………………………………….Ⅱ
誌謝………………………………………………………………….….Ⅲ
目錄……………………………………………………………………..Ⅳ
表目錄…………………………………………………………………..Ⅵ
圖目錄…………………………………………………………………..Ⅸ
第一章 緒論……………………………………………………………...1
1-1 前言……………………………………………………………….1
1-2 液體除濕系統的裝置原理……………………………………….2
1-3 研究動機與方向………………………………………………….2
1-4 研究內容…………………………………………………………..8
第二章 DSC之量測原理……………………………………………… 12
2-1 DSC之簡介……………………………………………………… 12
2-2 DSC量測比熱之原理…………………………………………… 14
2-2-1 文獻回顧…………………………………………………….14
2-2-2 實驗上比熱之計算………………………………………….17
2-3 液態比熱之計算…………………………………………………20
2-4 液態比熱之估算…………………………………………………21
第三章 實驗…………………………………………………………….24
3-1 實驗藥品…………………………………………………………24
3-2 實驗設備…………………………………………………………24
3-3 實驗步驟…………………………………………………………25
3-3-1 樣品的製備………………………………………………...25
3-3-2 DSC爐子的清潔…………………………………………...25
3-3-3 DSC爐子的校正…………………………………………...26
3-3-4 比熱量測步驟……………………………………………...27
第四章 結果與討論…………………………………………………….30
4-1 實驗結果討論……………………………………………………30
4-1-1 纯物質系統………………………………………………...30
4-1-2 兩成分系統………………………………………………...47
4-1-3 三成分系統………………………………………………...63
第五章 結論…………………………………………………………...108
參考文獻……………………………………………………………….109





表目錄
Table 1-1 各產業之溫溼度要求………………………………………..3
Table 1-2 冷凍除濕、壓縮除濕與化學除濕的比較…………………..4
Table 1-3 液態除濕系統在市場上的運用……………………………..5
Table 1-4 Physical properties of glycols………………………………...6
Table 1-5 工業上常用之液體除濕劑比較……………………………11
Table 2-1 Group contribution for molar liquid heat capacity of
Missenard method and Chueh-Swanson method…………...23
Table 4-1 Heat capacities of H2O………….…………………………..31
Table 4-2 Heat capacities of DEG……………………………………..33
Table 4-3 Heat capacities of TEG…………………………………….. 36
Table 4-4 Heat capacities of T4EG…………………………………….38
Table 4-5 Heat capacities of PG…...…………………………………..41
Table 4-6 Heat capacities of DPG….………………………………….44
Table 4-7 Heat capacities and excess molar heat capacities of DEG (1) + H2O (2)……………………………………………………...48
Table 4-8 Heat capacities and excess molar heat capacities of TEG (1) + H2O (2)……………………………………………………...51
Table 4-9 Heat capacities and excess molar heat capacities of T4EG (1) + H2O (2)………………………………………...……………54
Table 4-10 Heat capacities and excess molar heat capacities of PG (1)
+ H2O (2)…………………………………………….……..57
Table 4-11 Heat capacities and excess molar heat capacities of DPG (1) + H2O (2)…………………………………………………..60
Table 4-12 Parameters of excess molar heat capacity for binary systems
………….………………………………………………......65
Table 4-13 Heat capacities and of LiCl (1) + DEG (2) + H2O (3)……………………………………………………66
Table 4-14 Heat capacities and of LiBr (1) + DEG (2) + H2O (3)……………………………………………………70
Table 4-15 Heat capacities and of LiCl (1) + TEG (2) + H2O (3)……………………………………………………73
Table 4-16 Heat capacities and of LiBr (1) + TEG (2) + H2O (3)……………………………………………………77
Table 4-17 Heat capacities and of LiCl (1) + T4EG (2) + H2O (3)…………………………………………………....80
Table 4-18 Heat capacities and of LiBr (1) + T4EG (2) + H2O (3)…………………………………………………....83
Table 4-19 Heat capacities and of LiCl (1) + PG (2) + H2O(3)………………………………………………….....87
Table 4-20 Heat capacities and of LiBr (1) + PG (2) + H2O(3)…………………………………….……………....90
Table 4-21 Heat capacities and of LiCl (1) + DPG (2) + H2O(3)……….……………………………………….…...94
Table 4-22 Heat capacities and of LiBr (1) + DPG (2) + H2O(3)…….……………………………………………....97
Table 4-23 Parameters of heat capacity for trinary systems……….....106


















圖目錄
Figure 1-1 液體除濕系統示意圖……………………………………….7
Figure 1-2 Vapor Pressures of the Potential Desiccant Solutions……….9
Figure 2-1 Schematic of heat flux DSC(Haines, 1995)………………..13
Figure 2-2 DSC curves for heat capacity measurement on molten
polyethylene (PE)(Haines, 1995)…………………………..16
Figure 2-3 DSC curves for heat capacity measurement……………….18
Figure 4-1 Heat capacity of H2O………………………………………32
Figure 4-2 Heat capacity of DEG……………………………………...34
Figure 4-3 Heat capacity of TEG……………………………………....37
Figure 4-4 Heat capacity of T4EG……………………………………..39
Figure 4-5 Heat capacity of PG………..……………………………....42
Figure 4-6 Heat capacity of DPG……………….……………………..45
Figure 4-7 Heat capacities of DEG, DPG, PG, TEG and T4EG………..46
Figure 4-8 Excess molar heat capacity of DEG(1) + H2O(2): Points, exptl data; lines, calculated using eq. 2-11………………..50
Figure 4-9 Excess molar heat capacity of TEG(1) + H2O(2): Points, exptl data; lines, calculated using eq. 2-11………………..53
Figure 4-10 Excess molar heat capacity of T4EG(1) + H2O(2): Points, exptl data; lines, calculated using eq. 2-11………...……..56
Figure 4-11 Excess molar heat capacity of PG(1) + H2O(2): Points, exptl data; lines, calculated using eq. 2-11……...……………...59
Figure 4-12 Excess molar heat capacity of DPG(1) + H2O(2): Points, exptl data; lines, calculated using eq. 2-11………...……..62
Figure 4-13 Excess molar heat capacities of glycols at 60℃: Points, exptl data; lines, calculated using eq. 2-11………………64
Figure 4-14 Heat capacity of LiCl (1) + DEG (2) + H2O (3)………….67
Figure 4-15 The value of for LiCl (1) + DEG (2) + H2O (3):lines, calculated using eq. 2-14…………………….…….68
Figure 4-16 Heat capacity of LiBr (1) + DEG (2) + H2O (3)………….71
Figure 4-17 The value of for LiBr (1) + DEG (2) + H2O (3).72
Figure 4-18 Heat capacity of LiCl (1) + TEG (2) + H2O (3)………….74
Figure 4-19 The value of for LiCl (1) + TEG (2) + H2O (3).75
Figure 4-20 Heat capacity of LiBr (1) + TEG (2) + H2O (3)………….78
Figure 4-21 The value of for LiBr (1) + TEG (2) + H2O (3).79
Figure 4-22 Heat capacity of LiCl (1) + T4EG (2) + H2O (3)…………81
Figure 4-23 The value of for LiCl (1) + T4EG (2) + H2O(3)……………………………………………………82
Figure 4-24 Heat capacity of LiBr (1) + T4EG (2) + H2O (3)…………84
Figure 4-25 The value of for LiBr (1) + T4EG (2) + H2O(3)……………………………………………………85
Figure 4-26 Heat capacity of LiCl (1) + PG (2) + H2O (3)………..…..88
Figure 4-27 The value of for LiCl (1) + PG (2) + H2O (3)…89
Figure 4-28 Heat capacity of LiBr (1) + PG (2) + H2O (3)………..…..91
Figure 4-29 The value of for LiBr (1) + PG (2) + H2O (3)…92
Figure 4-30 Heat capacity of LiCl (1) + DPG (2) + H2O (3)….………95
Figure 4-31 The value of for LiCl (1) + DPG (2) + H2O (3).96
Figure 4-32 Heat capacity of LiBr (1) + DPG (2) + H2O (3)………….98
Figure 4-33 The value of for LiBr (1) + DPG (2) + H2O (3).99
Figure 4-34 Figure 4-34 Heat capacities of pure, binary and ternary systems…………………………………………………..101
Figure 4-35 The value of for LiCl + glycols + H2O at 30 ℃…
…………………………………...………………………102
Figure 4-36 The value of for LiBr + glycols + H2O at 30 ℃…
……………………………………………………...…....103
Figure 4-37 Heat capacities of LiCl + glycols + H2O at 30 ℃………104
Figure 4-38 Heat capacities of LiBr + glycols + H2O at 30 ℃…...…105
參考文獻
陳昱如, “混合有機溶劑與醇胺水溶液之比熱量測:PZ/AMP/H2O及PZ/MDEA/H2O系統” , 中原大學化學工程研究所碩士論文, 2003.
劉中哲, “冷凍空調&熱交換”, 47期, 工研院資能所, 2001.
劉中哲, “冷凍空調&熱交換”, 46期, 工研院資能所, 2001.
劉中哲, “冷凍空調&熱交換”, 45期, 工研院資能所, 2001.
羅中銘, “吸收式除濕塔中除濕效率與溶液蒸氣壓之關係研究”, 中原大學化學工程研究所碩士論文, 1999.
鍾財王, “冷凍空調&熱交換”, 2期, 工研院資能所, 1999.
李勝隆, “除濕機規格表準誕生”, 環保標張簡訊, 1998.
陳道達, “熱分析”, 渤海堂, 1992.
順利水電工程有限公司, “何謂除濕及除濕方法”, 光堡冷凍空調技術網, http://www.hvacr.com.tw/mag/tech/dehum/deh-01.cfm
Anon., Chem. Eng. News, Feb. 1951, 26, p. 819.
Air Conditioning & Refirgeration News, Air Conditioning Technology, Vol.17, No. 10, July 2001.
Air Conditioning & Refirgeration News, Air Conditioning Technology, Vol.17, No. 11, August 2001.
Air Conditioning & Refirgeration News, Air Conditioning Technology, Vol.17, No. 12, September 2001.
American Society for Testing and Materials, Standard Test Method for Determining Specific Heat Capacity by Differential Scanning Calorimetry, E1269-95, 1995.
Chase, M. W., Jr. NIST-JANAF Themochemical Tables, Fourth Edition, J. Phys. Chem. Ref. Data, Monograph 9, 1998,
Chueh, C. F.; Swanson, A. C. Estimation of Liquid Heat Capacity. Chem. Eng. Prog. 1973, 69, 83-85; Can. J. Chem. Eng, 1973, 51, 596-600.
Chung, T. W.; Luo, C. M. Vapor Pressures of the Aqueous Desiccants. J. Chem. Eng Data 1999, 44, 1024-1027.
Ditmars, D. A.; Bernstein, G.; Chang, S. S.; Ishihara, S.; West, E. D. Enthalpy and Heat-Capacity Standard Reference Material – Synthetic Sapphire (a-Al2O3) from 10 to 2250 K. J. Res. Nat. Bur. Stand 1982, 87, 159-163.
Dow Chemical Company, Properties and Uses of Glycols, 1956.
Haines, P. J. Thermal Methods of Analysis: Principles, Applications and Problems; Blackie Academic & Professional: New York, 1995.
Hayden, T.; Smith, T. A.; Mather, A. E. Heat Capacity of Aqueous Methyldiethanolamiine Solutions. J. Chem. Eng. Data 1983, 28, 196-197.
Kohl, A. L.; Riesenfeld, F. C. Gas Purification; 5th ed.; Gulf: Houston, 1997.
Missenard, F. A. Comptes Rendus Acad. Sci. 1965, 260, 521.
Osborne, N. S.; Sitmson, H. F.; Ginnings, D. C. Measurements of Heat Capacity and Heat of Vaporization of Water in the Range 0℃ to 100℃. J. Res. Nat. Bur. Stand 1939, 23, 197-260.
Reid, R. C.; Prausnitz, J. M.; Poling, B. E. The properties of Gases & Liquids; 4th ed.; McGraw-Hill: New York, 1988.
Söhnel, O.; Novotñy, P. Densities of Aqueous Solutions of Inorganic Substances, Phys. Science Data 22; Elsevier: Amsterdam, 1985
Söhnel, O.; Novotñy, P. Densities of Binary Aqueous Solutions of 306 Inorganic Substances. J. Chem. Eng. Data 1988, 33, 49-55.
Stephens, M.A.; Tamplin, W.S., Saturated liquid specific heats of ethylene glycol homologues, J. Chem. Eng. Data, 1979 24, 81-82.
Union Carbide Chemical Co., Glycols, 1971.
Zaripov, Z. I. Experimental study of the isobaric heat capacity of liquid organic compounds with molecular weights of up to 4000. Teplomassoobmen Teplofiz 1982.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top