|
[1] Australian sign language dataset, April 1999. http://kdd.ics.uci.edu/databases/auslan/auslan.data.html. [2] R. K. Ando and T. Zhang. A framework for learning predictive structures from multiple tasks and unlabeled data. The Journal of Machine Learning Research, 6:1817–1853, 2005. [3] N. Anjum and A. Cavallaro. Multifeature object trajectory clustering for video analysis. IEEE Transactions on Circuits and Systems for Video Technology, 18(11):1555–1564, 2008. [4] G. Antonini and J. P. Thiran. Counting pedestrians in video sequences using trajectory clustering. IEEE Transactions on Circuits and Systems for Video Technology, 16(8):1008–1020, 2006. [5] I. Atmosukarto, N. Ahuja, and B. Ghanem. Action recognition using discriminative structured trajectory groups. In IEEE Winter Conference on Applications of Computer Vision, pages 899–906. IEEE, 2015. [6] L. Baraldi, F. Paci, G. Serra, L. Benini, and R. Cucchiara. Gesture recognition in ego-centric videos using dense trajectories and hand segmentation. In IEEE Conference on Computer Vision and Pattern Recognition Workshops, pages 702–707. IEEE, 2014. [7] F. Bashir, A. Khokhar, and D. Schonfeld. Automatic object trajectory-based motion recognition using gaussian mixture models. In IEEE International Conference on Multimedia and Expo, pages 1532 –1535, 2005. [8] F. I. Bashir, A. A. Khokhar, and D. Schonfeld. Segmented trajectory based indexing and retrieval of video data. In International Conference on Image Processing, volume 2, pages 623–626, 2003. [9] F. I. Bashir, A. A. Khokhar, and D. Schonfeld. Object trajectory-based activity classification and recognition using hidden Markov models. IEEE Transactions on Image Processing, 16(7):1912–1919, 2007. [10] F. I. Bashir, A. A. Khokhar, and D. Schonfeld. Real-time motion trajectory-based indexing and retrieval of video sequences. IEEE Transactions on Multimedia, 9(1):58–65, 2007. [11] D. Batra, T. Chen, and R. Sukthankar. Space-time shapelets for action recognition. In IEEE Workshop on Motion and video Computing, pages 1–6, 2008. [12] H. Bay, T. Tuytelaars, and L. Van Gool. Surf: Speeded up robust features. In European Conference on Computer Vision, pages 404–417, 2006. [13] C. M. Bishop. Pattern recognition and machine learning. Springer, 2006. [14] M. Blank, L. Gorelick, E. Shechtman, M. Irani, and R. Basri. Actions as space-time shapes. In IEEE International Conference on Computer Vision, volume 2, pages 1395–1402, 2005. [15] A. Bobick and J. Davis. The recognition of human movement using temporal templates. IEEE Transactions on Pattern Analysis and Machine Intelligence, 23(3):257–267, 2001. [16] L. Chen, H. Liao, M. Ko, J. Lin, and G. Yu. A new LDA-based face recognition system which can solve the small sample size problem. Pattern recognition, 33(10):1713–1726, 2000. [17] W. Chen and S.-F. Chang. Motion trajectory matching of video objects. In Storage and Retrieval for Media Databases, pages 544–553, 2000. [18] M. Cristani, R. Raghavendra, A. Del Bue, and V. Murino. Human behavior analysis in video surveillance: A social signal processing perspective. Neurocomputing, 100:86–97, 2013. [19] N. Dalal and B. Triggs. Histograms of oriented gradients for human detection. In IEEE Conference on Computer Vision and Pattern Recognition, volume 1, pages 886–893. IEEE, 2005. [20] J. Daugman. Two-dimensional spectral analysis of cortical receptive field profiles. Vision Research, 20(10):847–856, 1980. [21] R. De Geest and T. Tuytelaars. Dense interest features for video processing. In IEEE International Conference on Image Processing, pages 5771–5775. IEEE, 2014. [22] X. Deng, X. Liu, M. Song, J. Cheng, J. Bu, and C. Chen. Lf-eme: Local features with elastic manifold embedding for human action recognition. Neurocomputing, 99:144–153, 2013. [23] P. Doll´ar. Piotr’s Computer Vision Matlab Toolbox (PMT). http://vision.ucsd.edu/˜pdollar/toolbox/doc/index.html. [24] P. Doll´ar, V. Rabaud, G. Cottrell, and S. Belongie. Behavior recognition via sparse spatio-temporal features. In IEEE International Workshop on Visual Surveillance and Performance Evaluation of Tracking and Surveillance, pages 65–72. IEEE, 2005. [25] P. Doll´ar, V. Rabaud, G. Cottrell, and S. Belongie. Behavior recognition via sparse spatio-temporal features. In IEEE International Workshop on Visual Surveillance and Performance Evaluation of Tracking and Surveillance, pages 65–72, 2005. [26] P. Doll´ar, V. Rabaud, G. Cottrell, and S. Belongie. Behavior recognition via sparse spatio-temporal features. In IEEE International Workshop on Visual Surveillance and Performance Evaluation of Tracking and Surveillance, pages 65–72, 2005. [27] P. Doll´ar, Z. Tu, P. Perona, and S. Belongie. Integral channel features. In The British Machine Vision Conference, volume 2, page 5, 2009. [28] R. O. Duda, P. E. Hart, and D. G. Stork. Pattern Classification. Wiley-Interscience,2 edition, 2000. [29] A. Dyana and S. Das. Trajectory representation using Gabor features for motionbased video retrieval. Pattern Recognition Letters, 30(10):877–892, 2009. [30] A. Dyana and S. Das. Mst-css (multi-spectro-temporal curvature scale space), a novel spatio-temporal representation for content-based video retrieval. IEEE Transactions on Circuits and Systems for Video Technology, 20(8):1080–1094, 2010. [31] A. Efros, A. Berg, G. Mori, and J. Malik. Recognizing action at a distance. In Proceedings of the International Conference on Computer Vision, volume 2, pages 726–733, 2003. [32] A. Fathi and G. Mori. Action recognition by learning mid-level motion features. In IEEE Conference on Computer Vision and Pattern Recognition, pages 1–8, 2008. [33] B. Fernando, E. Gavves, J. Oramas, A. Ghodrati, and T. Tuytelaars. Modeling video evolution for action recognition. In IEEE Conference on Computer Vision and Pattern Recognition, volume 2, page 8, 2015. [34] R. Fraile and S. Maybank. Vehicle trajectory approximation and classification. In British Machine Vision Conference, pages 832–840, 1998. [35] Y. Freund and R. E. Schapire. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of Computer and System Sciences, 55:119–139, 1997. [36] K. Fukunaga. Introduction to Statistical Pattern Recognition. Academic Press, 1990. [37] K. Fukunaga and J. M. Mantock. Nonparametric discriminant analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence, 5(6):671–677, 1983. [38] L. Gorelick, M. Blank, E. Shechtman, M. Irani, and R. Basri. Actions as spacetime shapes. IEEE Transactions on Pattern Analysis and Machine Intelligence, 29(12):2247–2253, 2007. [39] T. Guha and R. K. Ward. Learning sparse representations for human action recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 34(8):1576–1588, 2012. [40] M. T. Harandi, C. Sanderson, S. Shirazi, and B. C. Lovell. Kernel analysis on grassmann manifolds for action recognition. Pattern Recognition Letters, 34(15):1906–1915, 2013. [41] C. Harris and M. Stephens. A combined corner and edge detector. In Alvey vision conference, volume 15, pages 147–151, 1988. [42] P. Hespanha and D. Kriegman. Eigenfaces vs. Fisherfaces: Recognition using class specific linear projection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 19(7):711, 1997. [43] J.-W. Hsieh, S.-L. Yu, and Y.-S. Chen. Motion-based video retrieval by trajectory matching. IEEE Transactions on Circuits and Systems for Video Technology, 16(3):396–409, 2006. [44] W. Hu, D. Xie, T. Tan, and S. Maybank. Learning activity patterns using fuzzy selforganizing neural network. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 34(3):1618–1626, 2004. [45] A. Iosifidis, A. Tefas, and I. Pitas. Minimum class variance extreme learning machine for human action recognition. IEEE Transactions on Circuits and Systems for Video Technology, 23(11):1968–1979, 2013. [46] A. Jain, K. Nandakumar, and A. Ross. Score normalization in multimodal biometric systems. Pattern recognition, 38(12):2270–2285, 2005. [47] H. Jhuang, T. Serre, L. Wolf, and T. Poggio. A biologically inspired system for action recognition. In IEEE International Conference On Computer Vision, pages 1–8, 2007. [48] S. Jones and L. Shao. Content-based retrieval of human actions from realistic video databases. Information Sciences, 236:56–65, 2013. [49] S. Jones, L. Shao, J. Zhang, and Y. Liu. Relevance feedback for real-world human action retrieval. Pattern Recognition Letters, 33(4):446–452, 2012. [50] Y. Ke, R. Sukthankar, and M. Hebert. Efficient visual event detection using volumetric features. In IEEE International Conference on Computer Vision, volume 1, pages 166–173, 2005. [51] S. Khalid. Motion-based behaviour learning, profiling and classification in the presence of anomalies. Pattern Recognition, 43(1):173–186, 2010. [52] S. Khalid and S. Razzaq. Frameworks for multivariate m-mediods based modeling and classification in euclidean and general feature spaces. Pattern Recognition, 45:1092–1103, 2012. [53] T.-K. Kim and R. Cipolla. Canonical correlation analysis of video volume tensors for action categorization and detection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 31(8):1415–1428, 2009. [54] T.-K. Kim, K.-Y. K.Wong, and R. Cipolla. Tensor canonical correlation analysis for action classification. In IEEE Conference on Computer Vision and Pattern Recognition, pages 1–8. IEEE, 2007. [55] T. G. Kolda and B.W. Bader. Tensor decompositions and applications. SIAM review, 51(3):455–500, 2009. [56] W. Kong and S. Ranganath. Signing exact english (SEE): modeling and recognition. Pattern Recognition, 41(5):1638–1652, 2008. [57] A. Kovashka and K. Grauman. Learning a hierarchy of discriminative space-time neighborhood features for human action recognition. In IEEE Conference on Computer Vision and Pattern Recognition, pages 2046–2053. IEEE, 2010. [58] K. Lai, J. Konrad, and P. Ishwar. A gesture-driven computer interface using kinect. In IEEE Southwest Symposium on Image Analysis and Interpretation, pages 185–188. IEEE, 2012. [59] I. Laptev and T. Lindeberg. Space-time interest points. In IEEE International Conference on Computer Vision, volume 1, pages 432–439, 2003. [60] I. Laptev and P. P´erez. Retrieving actions in movies. In IEEE International Conference On Computer Vision, pages 1–8, 2007. [61] Q. V. Le, W. Y. Zou, S. Y. Yeung, and A. Y. Ng. Learning hierarchical invariant spatio-temporal features for action recognition with independent subspace analysis. In IEEE Conference on Computer Vision and Pattern Recognition, pages 3361–3368. IEEE, 2011. [62] H.-K. Lee and J. H. Kim. An HMM-based threshold model approach for gesture recognition. IEEE Transactions on pattern analysis and machine intelligence, 21(10):961–973, 1999. [63] H. Li, J. Tang, S. Wu, Y. Zhang, and S. Lin. Automatic detection and analysis of player action in moving background sports video sequences. IEEE Transactions on Circuits and Systems for Video Technology, 20(3):351–364, 2010. [64] Z. Li, D. Lin, and X. Tang. Nonparametric Discriminant Analysis for Face Recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 31(4):755–761, 2009. [65] W. Lin, M.-T. Sun, R. Poovendran, and Z. Zhang. Group event detection with a varying number of group members for video surveillance. IEEE Transactions on Circuits and Systems for Video Technology, 20(8):1057–1067, 2010. [66] Y.-Y. Lin, J.-F. Tsai, and T.-L. Liu. Efficient discriminative local learning for object recognition. In IEEE International Conference On Computer Vision, pages 598–605, 2009. [67] A.-A. Liu, Y.-T. Su, P.-P. Jia, Z. Gao, T. Hao, and Z.-X. Yang. Multipe/singleview human action recognition via part-induced multitask structural learning. IEEE Transactions on Cybernetics, 45(6):1194–1208, 2015. [68] J. Liu, B. Kuipers, and S. Savarese. Recognizing human actions by attributes. In IEEE Conference on Computer Vision and Pattern Recognition, pages 3337–3344. IEEE, 2011. [69] J. Liu, J. Luo, and M. Shah. Recognizing realistic actions from videos in the wild. In IEEE Conference on Computer Vision and Pattern Recognition, pages 1996–2003, 2009. [70] J. Liu and M. Shah. Learning human actions via information maximization. In IEEE Conference on Computer Vision and Pattern Recognition, 2008. [71] D. Lowe. Distinctive image features from scale-invariant keypoints. International journal of computer vision, 60(2):91–110, 2004. [72] Y. M. Lui. Human gesture recognition on product manifolds. The Journal of Machine Learning Research, 13(1):3297–3321, 2012. [73] Y. M. Lui. Tangent bundles on special manifolds for action recognition. IEEE Transactions on Circuits and Systems for Video Technology, 22(6):930–942, 2012. [74] Y. M. Lui and J. R. Beveridge. Tangent bundle for human action recognition. In IEEE International Conference on Automatic Face & Gesture Recognition andWorkshops, pages 97–102. IEEE, 2011. [75] Y. M. Lui, J. R. Beveridge, and M. Kirby. Action classification on product manifolds. In IEEE Conference on Computer Vision and Pattern Recognition, pages 833–839. IEEE, 2010. [76] S. G. M. Bregonzio and T. Xiang. Recognising action as clouds of space-time interest points. In IEEE Conference on Computer Vision and Pattern Recognition, pages 1948–1955, 2009. [77] A. J. Ma, P. C. Yuen, W. W. Zou, and J.-H. Lai. Supervised spatio-temporal neighborhood topology learning for action recognition. IEEE Transactions on Circuits and Systems for Video Technology, 23(8):1447–1460, 2013. [78] X. Ma, F. I. Bashir, A. A. Khokhar, and D. Schonfeld. Event analysis based on multiple interactive motion trajectories. IEEE Transactions on Circuits and Systems for Video Technology, 19(3):397–406, 2009. [79] J. A. Mikel D. Rodriguez and M. Shah. Action mach a spatio-temporal maximum average correlation height filter for action recognition. In IEEE Conference on Computer Vision and Pattern Recognition, pages 1–8. IEEE, 2008. [80] R. Minhas, A. A. Mohammed, and Q. J. Wu. Incremental learning in human action recognition based on snippets. IEEE Transactions on Circuits and Systems for Video Technology, 22(11):1529–1541, 2012. [81] A. Mittal and L. S. Davis. m2 tracker: a multi-view approach to segmenting and tracking people in a cluttered scene. International Journal of Computer Vision, 51(3):189–203, 2003. [82] T. Moeslund, A. Hilton, and V. Kr¨uger. A survey of advances in vision-based human motion capture and analysis. Computer Vision and Image Understanding, 104(2-3):90–126, 2006. [83] B. Moghaddam and G. Shakhnarovich. Boosted dyadic kernel discriminants. In Advances in Neural Information Processing Systems, pages 761–768, 2002. [84] A. Naftel and S. Khalid. Classifying spatiotemporal object trajectories using unsupervised learning in the coefficient feature space. Multimedia Systems, 12(3):227–238, 2006. [85] A. Naftel and S. Khalid. Motion trajectory learning in the dft-coefficient feature space. In IEEE International Conference on Computer Vision Systems, pages 47–47, 2006. [86] G. Nagendar, S. G. Bandiatmakuri, M. G. Tandarpally, and C. Jawahar. Action recognition using canonical correlation kernels. In Asian Conference on Computer Vision, pages 479–492. Springer, 2013. [87] J. C. Nascimento, M. A. T. Figueiredo, and J. S. Marques. Trajectory classification using switched dynamical hidden markov models. IEEE Transactions on Image Processing, 19(5):1338–1348, 2010. [88] J. Niebles, H. Wang, and L. Fei-Fei. Unsupervised learning of human action categories using spatial-temporal words. International Journal of Computer Vision, 79(3):299–318, 2008. [89] J. C. Niebles, H. Wang, and L. Fei-Fei. Unsupervised learning of human action categories using spatial-temporal words. International Journal of Computer Vision, 79(3):299–318, 2008. [90] S. Nowozin, G. Bakir, and K. Tsuda. Discriminative subsequence mining for action classification. In International Conference on Computer Vision, 2007. [91] T. Ogata, W. Christmas, J. Kittler, and S. Ishikawa. Improving human activity detection by combining multi-dimensional motion descriptors with boosting. In International Conference on Pattern Recognition, pages 295–298, 2006. [92] S. O’Hara and B. A. Draper. Scalable action recognition with a subspace forest. In IEEE Conference on Computer Vision and Pattern Recognition, pages 1210–1217. IEEE, 2012. [93] R. Poppe. A survey on vision-based human action recognition. Image and Vision Computing, 28(6):976–990, 2010. [94] A. Psarrou, S. Gong, and M. Walter. Recognition of human gestures and behaviour based on motion trajectories. Image and Vision Computing, 20(5-6):349–358, 2002. [95] C. Rao, A. Yilmaz, and M. Shah. View-invariant representation and recognition of actions. International Journal of Computer Vision, 50(2):203–226, 2002. [96] M. Raptis, I. Kokkinos, and S. Soatto. Discovering discriminative action parts from mid-level video representations. In IEEE Conference on Computer Vision and Pattern Recognition, pages 1242–1249. IEEE, 2012. [97] A. Ross and A. Jain. Information fusion in biometrics. Pattern recognition letters, 24(13):2115–2125, 2003. [98] C. Rougier, J. Meunier, A. St-Arnaud, and J. Rousseau. Robust video surveillance for fall detection based on human shape deformation. IEEE Transactions on Circuits and Systems for Video Technology, 21(5):611–622, 2011. [99] S. Sadanand and J. J. Corso. Action bank: A high-level representation of activity in video. In IEEE Conference on Computer Vision and Pattern Recognition, pages 1234–1241. IEEE, 2012. [100] S. Savarese, A. DelPozo, J. C. Niebles, and L. Fei-Fei. Spatial-temporal correlatons for unsupervised action classification. In IEEE Workshop on Motion and video Computing, 2008. [101] S. Scherer, M. Glodek, G. Layher, M. Schels, M. Schmidt, T. Brosch, S. Tschechne, F. Schwenker, H. Neumann, and G. Palm. A generic framework for the inference of user states in human computer interaction. Journal on Multimodal User Interfaces, 6(3-4):117–141, 2012. [102] B. Sch¨olkopf, A. Smola, and K. M¨uller. Nonlinear component analysis as a kernel eigenvalue problem. Neural computation, 10(5):1299–1319, 1998. [103] C. Sch¨uldt, I. Laptev, and B. Caputo. Recognizing human actions: A local SVM approach. In International Conference on Pattern Recognition, volume 3, pages 32–36, 2004. [104] P. Scovanner, S. Ali, and M. Shah. A 3-dimensional sift descriptor and its application to action recognition. In International conference on Multimedia, pages 357–360, 2007. [105] L. Shao, X. Zhen, D. Tao, and X. Li. Spatio-temporal laplacian pyramid coding for action recognition. IEEE Transactions on Cybernetics, 44(6):817–827, 2014. [106] F. Shi, E. Petriu, and R. Laganiere. Sampling strategies for real-time action recognition. In IEEE Conference on Computer Vision and Pattern Recognition, pages 2595–2602. IEEE, 2013. [107] Y. Song, D. Demirdjian, and R. Davis. Continuous body and hand gesture recognition for natural human-computer interaction. ACM Transactions on Interactive Intelligent Systems, 2(1):5, 2012. [108] Y. Song, Y.-T. Zheng, S. Tang, X. Zhou, Y. Zhang, S. Lin, and T.-S. Chua. Localized multiple kernel learning for realistic human action recognition in videos. IEEE Transactions on Circuits and Systems for Video Technology, 21(9):1193–1202, 2011. [109] D. Sun, S. Roth, and M. J. Black. Secrets of optical flow estimation and their principles. In IEEE Conference on Computer Vision and Pattern Recognition, pages 2432–2439. IEEE, 2010. [110] A. Torralba, K. P. Murphy, andW. T. Freeman. Sharing visual features for multiclass and multiview object detection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 29(5):854–869, 2007. [111] E. Ustunel, X. Chen, D. Schonfeld, and A. A. Khokhar. Null-space representation for view-invariant motion trajectory classification-recognition and indexing-retrieval. In IEEE International Conference on Acoustics, Speech and Signal Processing, pages 809–812, 2008. [112] M. Vlachos, D. Gunopoulos, and G. Kollios. Discovering similar multidimensional trajectories. In International Conference on Data Engineering, pages 673–684, 2002. [113] H. Wang, A. Kl¨aser, C. Schmid, and C.-L. Liu. Action recognition by dense trajectories. In IEEE Conference on Computer Vision and Pattern Recognition, pages 3169–3176. IEEE, 2011. [114] H.Wang, A. Kl¨aser, C. Schmid, and C.-L. Liu. Dense trajectories and motion boundary descriptors for action recognition. International Journal of Computer Vision, 103(1):60–79, 2013. [115] D. Weinland, R. Ronfard, and E. Boyer. Free viewpoint action recognition using motion history volumes. Computer Vision and Image Understanding, 104(2-3):249–257, 2006. [116] G. Willems, T. Tuytelaars, and L. Van Gool. An efficient dense and scale-invariant spatio-temporal interest point detector. In European Conference on Computer Vision, pages 650–663, 2008. [117] S. Wu and Y. Li. Flexible signature descriptions for adaptive motion trajectory representation, perception and recognition. Pattern Recognition, 42(1):194–214, 2009. [118] X. Wu, D. Xu, L. Duan, and J. Luo. Action recognition using context and appearance distribution features. In IEEE Conference on Computer Vision and Pattern Recognition, pages 489–496. IEEE, 2011. [119] X. Wu, D. Xu, L. Duan, J. Luo, and Y. Jia. Action recognition using multilevel features and latent structural svm. IEEE Transactions on Circuits and Systems for Video Technology, 23(8):1422–1431, 2013. [120] M. Yang, D. Dai, L. Shen, and L. Van Gool. Latent dictionary learning for sparse representation based classification. In IEEE Conference on Computer Vision and Pattern Recognition, pages 4138–4145. IEEE, 2014. [121] M.-H. Yang, N. Ahuja, and M. Tabb. Extraction of 2D motion trajectories and its application to hand gesture recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 24(8):1061–1074, 2002. [122] A. Yilmaz and M. Shah. Actions sketch: A novel action representation. In IEEE conference on Computer Vision and Pattern Recognition, volume 1, pages 984–989, 2005. [123] H.-S. Yoon, J. Soh, Y. J. Bae, and H. S. Yang. Hand Gesture Recognition Using Combined Features of Location, Angle and Velocity. Pattern Recognition, 34(7):1491–1501, 2001. [124] H. Yu and J. Yang. A direct LDA algorithm for high-dimensional data–with application to face recognition. Pattern Recognition, 34(10):2067–2070, 2001. [125] C. Yuan, W. Hu, G. Tian, S. Yang, and H. Wang. Multi-task sparse learning with beta process prior for action recognition. In IEEE Conference on Computer Vision and Pattern Recognition, pages 423–429. IEEE, 2013. [126] Z. Zhang, Y. Hu, S. Chan, and L.-T. Chia. Motion context: A new representation for human action recognition. In European Conference on Computer Vision, pages 817–829, 2008. [127] X. Zhen, L. Shao, D. Tao, and X. Li. Embedding motion and structure features for action recognition. IEEE Transactions on Circuits and Systems for Video Technology, 23(7):1182–1190, 2013.
|