|
[1]林恒勤,高性質間隔層製作與有機高分子薄膜平坦化研究,國立中正大學,2006。 [2]陳泰宏、柯政達等人,「可撓式面板構裝與背光模組技術」,工業材料雜誌,第二百六十三期,2008,第99-109頁。 [3]工研院工業材料研究所陶瓷積體電路實驗室,「薄膜製程與基板的整合應用」,電子材料雜誌,第二十一期,2004,第44-49頁。 [4]劉淑芬,工研院材化所,「軟性被動元件材料技術發展」,工業材料雜誌,第二百六十三期,2008,第69-81頁。 [5]洪銘聰,工研院材化所,「軟電封裝材料技術簡介」,工業材料雜誌,第二百七十二期,2009,第51-52頁。 [6]王麗菁、陳世明等人,「可撓式顯示器及其表面硬質膜層之技術發展」,工業材料雜誌,第三百八十九期,2019,第46-53頁。 [7]楊文傑,光固化樹脂配方之開發:高阻水氣性封裝材,薄膜平坦化塗裝材,低收縮率列印材,國立臺北科技大學,2017。 [8]Kwon, J.H., Jeong, E.G., et al., Design of Highly Water Resistant, Impermeable, and Flexible Thin-Film Encapsulation Based on Inorganic/Organic Hybrid Layers., ACS Applied Materials & Interfaces, 11, 2019, pp.3251-3261. [9]陳凱琪、陳文彬,「潛談軟性顯示器用保護層材料技術」,工業材料雜誌,第二百七十三期,2009,第114-119頁。 [10]Zantye, P.B., Kumar, A., et al., Chemical mechanical planarization for microelectronics applications, Materials Science and Engineering, 45, 2004, pp.89-220. [11]Wolters, P., Planrization in electronic components, http://www.peter-wolters.com/cmp/cmpmultilevel.htm, 2018-01-20. [12]宋健民,「CMP的超越技術-台灣主導全球半導體製造的契機 (上) 」,工業材料雜誌,第二百五十三期,2008,第159-169頁。 [13]蘇俊瑋、林志成等人,「軟性電子紙用基板材料」,工業材料雜誌,第二百九十四期,2011,第142-149頁。 [14]Park, S., Vosguerichian, M., et al., A Review of Fabrication and Applications of Carbon Nanotube Film-Based Flexible Electronics., Nanoscale, 5, 2013, pp.1727-1752. [15]Zardetto, V., Brown, T.M., et al., A. Substrates for Flexible Electronics: A Practical Investigation on the Electrical, Film Flexibility, Optical, Temperature, and Solvent Resistance Properties., J. Polym. Sci., Part B: Polym. Phys., 49, 2011, pp.638-648. [16]McCoul, D. and Hu, W., Recent Advances in Stretchable and Transparent Electronic Materials., Adv. Electron Mater., 2, 1500407, 2016. [17]Nathan, A., Ahnood, A., et al., Flexible Electronics: The Next Ubiquitous Platform., Proc. IEEE, 100, 2012, pp.1486-1517. [18]Kim, S.J., Choi, K., et al., Materials for Flexible, Stretchable Electronics: Graphene and 2d Materials., Annu. Rev. Mater. Res., 45, 2015, pp.63-84. [19]Liu, Z., Xu, J., et al., Flexible Electronics Based on Inorganic Nanowires., Chem. Soc. Rev., 44, 2015, pp.161-192. [20]Wang, B., Huang, W., et al., High‑k Gate Dielectrics for Emerging Flexible and Stretchable Electronics., Chemical Reviews, 118, 2018, pp.5690-5754. [21]Manglik, R.M., Joga, M.A., et al., Damped harmonic system modeling of post-impact drop-spread dynamics on a hydrophobic surface., Physics of Fluids, 25, 082112, 2013. [22]Yang, J., Zhao Z., et al., Insight into High-Performance Conjugated Polymers for Organic Field-Effect Transistors., Chem, 4, 2018, pp.1-38. [23]Zhang, F., Di, C.A., et al., Ultrathin film organic transistors: precise control of semiconductor thickness via spin-coating., Adv. Mater., 25, 2013, pp.1401–1407. [24]Yuan, Y., Giri, G., et al., Ultra-high mobility transparent organic thin film transistors grown by an off-centre spincoating method., Nat. Commun., 5, 2014, pp.3005. [25]Luo, C., Kyaw, A.K., et al., General strategy for self-assembly of highly oriented nanocrystalline semiconducting polymers with high mobility. Nano Lett., 14, 2014, pp.2764-2771. [26]Bucella, S.G., Luzio, A., et al., Macroscopic and high-throughput printing of aligned nanostructured polymer semiconductors for MHz large-area electronics., Nat. Commun., 6, 2015, pp.8394. [27]Giri, G., Verploegen, E., et al., Tuning charge transport in solution-sheared organic semiconductors using lattice strain., Nature, 480, 2011, pp.504-508. [28]Deegan, R.D., Bakajin, O., et al., Capillary flowas the cause of ring stains fromdried liquid drops., Nature, 389, 1997, pp.827-829. [29]Yunker, P.J., Still, T., et al., Suppression of the coffee-ring effect by shape-dependent capillary interactions., Nature, 476, 2011, pp.308-311. [30]Shmuylovich, L., Shen, A.Q., et al., Surface Morphology of Drying Latex Films: Multiple Ring Formation., Langmuir, 189, 2002, pp.3441-3445. [31]三洋貿易株式会社, 接触角とは何か, https://www.sanyo-si.com/learn/report/01/, 2017-12-06. [32]Volkov, A.N. and Zhigilei, L.V., Melt dynamics and melt-through time in continuous wave laser heating of metal films: Contributions of the recoil vapor pressure and Marangoni effects, International Journal of Heat and Mass Transfer, 112, 2017, pp.300-317. [33]Ebelmen, M., Annales de chimie et de physique.,16, 1846, pp.129. [34]Hench, L.L. and West, J.K., The sol-gel process, Chemical Reviews, 90, 1990, pp.33-72. [35]Schroeder, H., Oxide layer deposited from organic solution., Phys. Thin Film, 5, 1969, pp.87-141. [36]Dislich, H., New Routes to Multicomponent Oxide Glasses., Angewandte Chemie International Edition in English, 10, 6, 1971, pp.363-370. [37]Xu, Q., Zhang F., et al., Facile synthesis of casein-based silica hybrid nano-composite for coatings: Effects of silane coupling agent., Progress in Organic Coatings, 88, 2015, pp.1-7. [38]Xu, L., Shen, Y., et al., Preparation of vinyl silica-based organic/inorganic nanocomposites and superhydrophobic polyester surfaces from it., Colloid and Polymer Science, 293, 8, 2015, pp.2359-2371. [39]He, T. and Zhou, S., Preparation of tough silicon-oxo coatings with enhanced hardness from moisture-curable polysiloxane and silica alcosol., Journal of Coatings Technology and Research, 12, 4, 2015, pp.767-776. [40]Ghanbari, S., Kazemzadeh, E., et al., A facile method for synthesis and dispersion of silica nanoparticles in water-based drilling fluid., Colloid and Polymer Science, 294, 2, 2015, pp.381-388. [41]Choi, S.S., Lee, A.S., et al., Synthesis and characterization of UV-curable ladder-like polysilsesquioxane., Journal of Polymer Science Part A: Polymer Chemistry 49, 23, 2011, pp.5012-5018. [42]Jeon, H., Lee, A.S.S., et al., Preparation of highly emissive, thermally stable, UV-cured polysilsesquioxane/ZnO nanoparticle composites., Journal of Applied Polymer Science, 132, 33, 42333, 2015, pp.1-7. [43]Park, S., Lee, A.S., et al., Side-chain engineering of ladder-structured polysilsesquioxane membranes for gas separations. Journal of Membrane Science, 516, 2016, pp.202-214. [44]Slabaugh, W.H., Jirgensons S.B., et al., A short textbook of colloid chemistry., Journal of Chemical Education, 39, 12, 1962, pp.656. [45]Esposito, S., “Traditional” sol-gel chemistry as a powerful tool for the preparation of supported metal and metal oxide catalysts., Materials, 12, 2019, pp.668. [46]Danks, A.E., Hall, S.R., et al., The revolution of ‘sol-gel’ chemistry as a technique for materials synthesis., Material Horizons, 3, 2016, pp.91-112. [47]Brown, J.F., Vogt, L.H., et al., Double chain polymers of phenylsilses quioxane., J. Am. Chem. Soc., 82, 23, 1960, pp.6194-6195. [48]Choi, S.S., Lee, H.S., et al., High photo- and electroluminescence efficiencies of ladder-like structured polysilsesquioxane with carbazole groups., Journal of Materials Chemistry, 20, 44, 2010, pp.9852-9854. [49]Chang, S., Matsumoto, T., et al., Synthesis and characterization of heptacyclic laddersiloxanes and ladder polysilsesquioxane., Applied Organometallic Chemistry, 24, 3, 2010, pp.241-246. [50]Choi, S.S., Lee, A.S., et al., Synthesis and characterization of UV-curable ladder-like polysilsesquioxane., Journal of Polymer Science Part A: Polymer Chemistry, 49, 23, 2011, pp.5012-5018. [51]Jeon, H., Lee, A.S.S., et al., Preparation of highly emissive, thermally stable, UV-cured polysilsesquioxane/ZnO nanoparticle composites., Journal of Applied Polymer Science, 132, 33, 42333, 2015, pp.1-7. [52]陳蔓萱,紫外光固化之阻水氣高分子奈米複合材之置備及特性研究,國立臺北科技大學,2018。 [53]Gotro, J., UV Curing Part Nine: “If You Can’t Measure It, You Can’t Manage It”. ~ Peter Drucker., https://polymerinnovationblog.com/uv-curing-part-nine-cant-measure-cant-manage-peter-drucker/., 2018-03-09. [54]Bolton, J.R. and Linden, K.G., Standardization of Methods for Fluence (UV Dose) Determination in Bench-Scale UV Experiments., Journal of Environmental Engineering, 129, 3, 2003, pp.209-215. [55]Endruweit, A., Johnson, M.S., et al., Polym. Compos., 27, 2006 , pp.119. [56]Ravve, A., Light-Associated Reactions of Synthetic Polymers, Springer, New York, USA, 2006. [57]Schnabel, W., Polymers and Light: Fundamentals and Technical Applic-aions, Wiley-VCH, Berlin, Germany, 2004. [58]Cristian, M.F., Juliana O., et al., State-of-the-Art and Future Challenges of UV Curable Polymer-Based Smart Materials for Printing Technologies., Advanced Material Technology, 4, 1800618, 2019, pp.1-16. [59]El-Roz, M., Lalevée, J., et al., Radical and cationic photopolymerization: new pyrylium and thiopyrylium salt-based photoinitiating systems., J. Polym. Sci. Part A: Polym. Chem., 46, 2008, pp.7369-7375. [60]Yagci, Y., Jockusch, S., et al., Photoinitiated polymerization: advances, challenges, and opportunities, Macromolecules, 43, 2010, pp.6245-6260. [61]V. Shukla, M. Bajpai, et al., Review of basic chemistry of UV-curing technology., Pigment Resin Technol., 33, 2004, pp.272-279. [62]Javadi, A., Mehr, H.S., et al., Cure-on-command technology: A review of the current state of the art., Progress in Organic Coatings, 100, 2016, pp.2-31. [63]Soucek, M.D. and Ren, X., Chapter 2 UV-curable coating technologies, Photocured Materials, The Royal Society of Chemistry, 2015, pp.15-48. [64] Jonsson, S., Sundell, P.E., et al., Radiation chemistry aspects of polymerization and crosslinking. A review and future environmental trends in ‘non-acrylate’ chemistry., Prog. Org. Coat., 27, 1996, pp.107-122. [65]Weil, E.D., Radiation curing: Science and technology., Polymers for Advanced Technologies, 4, 1993, pp.47-47. [66]Durmaz, Y.Y., Moszner, N., et al., Visible light initiated free radical promoted cationic polymerization using acylgermane based photoinitiator in the presence of onium salts., Macromolecules, 41, 2008, pp.6714-6718. [67]Wu, S., Sears, M.T., et al., Siloxane modified cycloaliphatic epoxide UV coating., Prog. Org. Coat., 36, 1999, pp.89-101. [68]Wu, S., Sears, M.T., et al., Synthesis of reactive diluents for cationic cycloaliphatic epoxide UV coatings., Polymer, 40, 1999, pp.5675-5686. [69]Decker, C., Photoinitiated crosslinking polymerisation., Progress in Polymer Science (Oxford), 21, 4, 1996, pp.593-650. [70]Decker, C., Kinetic study and new applications of UV radiation curing. , Macromolecular Rapid Communications, 23, 18, 2002, pp.1067-1093. [71]Photoinitiators for UV Curing Key Products Selection Guide 2003, Ciba Specialty Chemicals. [72]Wikipedia, CIELAB color space, https://en.wikipedia.org/wiki/CIELAB_color_space., 2019-06-05. [73]Iqualitrol Opassy Industry Instrument Co., Ltd., Surface roughness, http://iqualitrol-com.sell.everychina.com/p-107532878-non-destructive-portable-surface-roughness-tester-with-sophisticated-sensor-ra.html., 2019-05-21. [74]Aguiar, H., Structural study of sol–gel silicate glasses by IR and Raman spectroscopies., Journal of Non-Crystalline Solids, 355, 8, 2009, pp.475-480. [75]Lee, J.S., Free-standing, polysilsesquioxane-based inorganic/organic hybrid membranes for gas separations., Journal of Membrane Science, 475, 2015, pp.384-394. [76]Pan, K., Synthesis of phenyl silicone resin with epoxy and acrylate group and its adhesion enhancement for addition-cure silicone encapsulant with high refractive index., Journal of Adhesion Science and Technology, 30, 24, 2016, pp.2699-2709.
|