跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.41) 您好!臺灣時間:2026/01/13 08:58
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳旻宏
研究生(外文):CHEN, MIN-HUNG
論文名稱:紫外光固化之透明高分子封裝薄膜之平坦化研究
論文名稱(外文):Surface Planarization of Flexible Transparent UV Curing Polymeric Thin-film Encapsulation Adhesive by Bar Coating
指導教授:汪昆立
指導教授(外文):WANG, KUN-LI
口試委員:廖德章陳志堅黃聲東汪昆立
口試委員(外文):LIAW, DER-JANGCHEN, JYH-CHIENHUANG, SHENG-TUNGWANG, KUN-LI
口試日期:2019-07-25
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:化學工程與生物科技系生化與生醫工程碩士班
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:105
中文關鍵詞:紫外光固化平坦化梯狀聚倍半矽氧烷AFMWVTR
外文關鍵詞:UV CuringPlanarizationLadder-structured polysilsesquioxanesAFMWVTR
相關次數:
  • 被引用被引用:1
  • 點閱點閱:407
  • 評分評分:
  • 下載下載:75
  • 收藏至我的研究室書目清單書目收藏:1
本研究以含丙烯酸酯基團之矽氧烷單體,經由溶膠凝膠反應合成梯狀聚倍半矽氧烷樹脂(Ladder-structured polysilsesquioxanes),分別利用封端OH基、不同塗佈溫度、使用消泡機、消泡劑或稀釋劑後,再加入光起始劑製出具有紫外光固化型有機奈米複合膠材,藉棒形自動塗佈機塗佈,經紫外光固化後在軟性基材PET上,並進行性質檢測。
結果顯示:塗佈固化後平均膜厚0.54微米;表面鉛筆硬度介於 2H到4H;黏著性由百格測試方法檢測,結果均可達5B;平坦度經由原子力顯微鏡(AFM),可達到:平均值粗糙度Ra=0.229奈米、均方根粗糙度Rq=0.287奈米、最大高度差粗糙度Rz=2.671奈米;透光度於可見光550奈米下介於91.1到92.8%間;水氣滲透率(WVTR)介於: 3.4至4.1 (g/m2-day)。由結果顯示:此梯狀聚倍半矽氧烷樹脂材料已達到工業化要求。
另外,濺鍍一層厚度50奈米氧化鋁(Al2O3)於梯狀聚倍半矽氧烷樹脂層上,平坦度經由原子力顯微鏡(AFM),可達到: Ra=0.676奈米、Rq=0.844奈米、Rz=6.345奈米;水氣滲透率(WVTR):0.407 gm/m2-day,顯示出氧化鋁無機層可以降低水氣滲透率。
上述結果可見:此有機奈米複合膠材對PET具備固化迅速、透光率優、平坦化佳、附著力高;若另外添加氧化鋁(Al2O3),則能使水氣阻隔性提高不少。另外,單一層單一材料,且高溫度,有助於薄膜塗佈平坦化。期許能有效應用於工業軟性電子元件封裝或相關領域,提升產品效能及延長使用壽命。

In this research, ladder-structured polysilsesquioxanes were synthesized by sol-gel reaction using acrylate groups containing acrylate groups. To make different way of synthesizing blocked OH groups, or different coating temperatures, or using defoaming machine, or adding diluent or defoamer, to change organic resin coating conditions. Before UV coating, these different resins are mixed with photo-initiator, respectively. Finally, these organic nanocomposites would be coated by stick automatic coating machine and be cured in UV light on the substrate of 125μm PET.
The results show that the average film thickness after coating and curing was 0.54μm; the pencil hardness was between 2H to 4H; the adhesion by cross-cut test were all up to 5B; the flatness was achieved by AFM: arithmetical mean deviation roughness Ra=0.229 nm, root mean square deviation roughness Rq=0.287 nm, maximum height od profile roughness Rz=2.671 nm; the optical transmittances of substrates PET at visible light 550 nm are from 91.1 to 92.8%; the water vapor transmission rate (WVTR) is between 3.4 to 4.1 gm/m2-day. As stated above, they show that the ladder-like polysesquioxane resin material has reached industrial standard requirements.
In addition, one layer from 50 nanometers of alumina (Al2O3) is sputtered on the ladder layer of polysilsesquioxane resin, and the results show that value of AFM at Ra=0.676 nm, Rq=0.844 nm, Rz=6.345 nm; and WVTR is 0.407 (g/m2-day). These data exhibit that the inorganic layer of aluminum oxide can reduce WVTR obviously.
To sum up, these results show that the organic nanocomposite adhesive has fast curing, excellent light transmittance, good flatness and high adhesion to PET. If aluminum oxide (Al2O3) is additionally added on polysesquioxane layer, the water vapor barrier property can be improved a lot. In addition, coating one organic material in high temperature for one single layer, which can raise the planarization to the film. On the whole, this photo-curable organic resin is expected to apply for soft electronic components in opto-electronic industry to improve efficiency and extend service life on electronic products.

摘要 i
Abstract iii
誌謝 v
目錄 vi
圖目錄 x
附圖目錄 xii
表目錄 xiv
第一章 緒論 1
1.1 前言 1
1.2 研究背景與動機 3
第二章 文獻回顧 9
2.1 軟性有機電子薄膜封裝發展 9
2.2 液滴運動 11
2.3 無溶劑塗佈技術 12
2.3.1 旋轉塗佈 (Spin coating) 12
2.3.2 離心旋轉塗佈 (Off-centre spin coating) 13
2.3.3 滴落塗佈 (Drop casting) 13
2.3.4 棒型塗佈 (Bar coating) 14
2.3.5 溶液剪切塗佈 (Solution shearing) 15
2.4 液滴成膜產生之現象與因素 16
2.4.1 圈環現象 (Ring stain or Coffee ring effect) 16
2.4.2 多重圈環現象 (Multiple ring formation) 16
2.4.3 表面張力與接觸角 17
2.4.4 溶解度 18
2.4.5 蒸氣壓 18
2.4.6 黏滯性 19
2.5 溶膠-凝膠法 (Sol-gel process) 20
2.5.1 溶膠-凝膠技術歷史 20
2.5.2 溶膠-凝膠法反應程序 20
2.5.3 醇鹽(Alkoxides)的水解和縮合反應 22
2.5.4 梯形聚倍半矽氧烷 24
2.6 紫外光固化 28
2.6.1 紫外光反應機制和配方 28
2.6.2 紫外光觸發自由基聚合[59] 29
2.6.3 紫外光觸發陽離子聚合[59] 30
2.6.4 光起始劑之選擇(自由基) 31
第三章 實驗部分 34
3.1 實驗藥品 34
3.2 儀器設備 36
3.3 薄膜平坦化設計概念 40
3.4 配方命名與組成 41
3.5 實驗設計架構 43
3.6 合成反應步驟 45
3.6.1 酸催化合成溶膠-凝膠寡聚物 45
3.6.2 鹼催化合成溶膠-凝膠寡聚物 46
3.6.3 酸催化後的寡聚物之酯化封端反應 46
3.7 性能鑑定項目與樣品製作 48
3.7.1 薄膜樣品製作 48
3.7.2 底材附著力測試 48
3.7.3 鉛筆硬度測試 49
3.7.4 水氣滲透率測試 49
3.7.5 光學測試 50
3.7.6 薄膜厚度測試 51
3.7.7 表面形貌鑑定 51
第四章 結果與討論 53
4.1 寡聚物A與酯化封端反應之IR鑑定 53
4.2 黏度分析 55
4.3 膜厚 56
4.4 硬度與附著性 57
4.5 透光度與色度 59
4.6 表面缺陷與粒子數 62
4.6.1 OM影像 62
4.6.2 顆粒數 (Particle) 63
4.6.3 缺陷數 64
4.7 表面粗糙度 66
4.7.1 表面粗糙度數值 66
4.7.2 AFM表面影像 69
4.8 水氣滲透率 71
4.9 水接觸角 73
4.10 熱性質 74
4.11 最佳配方之選擇 77
4.12 平坦化成效確認 80
第五章 結論 83
參考文獻 84
附圖 92

[1]林恒勤,高性質間隔層製作與有機高分子薄膜平坦化研究,國立中正大學,2006。
[2]陳泰宏、柯政達等人,「可撓式面板構裝與背光模組技術」,工業材料雜誌,第二百六十三期,2008,第99-109頁。
[3]工研院工業材料研究所陶瓷積體電路實驗室,「薄膜製程與基板的整合應用」,電子材料雜誌,第二十一期,2004,第44-49頁。
[4]劉淑芬,工研院材化所,「軟性被動元件材料技術發展」,工業材料雜誌,第二百六十三期,2008,第69-81頁。
[5]洪銘聰,工研院材化所,「軟電封裝材料技術簡介」,工業材料雜誌,第二百七十二期,2009,第51-52頁。
[6]王麗菁、陳世明等人,「可撓式顯示器及其表面硬質膜層之技術發展」,工業材料雜誌,第三百八十九期,2019,第46-53頁。
[7]楊文傑,光固化樹脂配方之開發:高阻水氣性封裝材,薄膜平坦化塗裝材,低收縮率列印材,國立臺北科技大學,2017。
[8]Kwon, J.H., Jeong, E.G., et al., Design of Highly Water Resistant, Impermeable, and Flexible Thin-Film Encapsulation Based on Inorganic/Organic Hybrid Layers., ACS Applied Materials & Interfaces, 11, 2019, pp.3251-3261.
[9]陳凱琪、陳文彬,「潛談軟性顯示器用保護層材料技術」,工業材料雜誌,第二百七十三期,2009,第114-119頁。
[10]Zantye, P.B., Kumar, A., et al., Chemical mechanical planarization for microelectronics applications, Materials Science and Engineering, 45, 2004, pp.89-220.
[11]Wolters, P., Planrization in electronic components, http://www.peter-wolters.com/cmp/cmpmultilevel.htm, 2018-01-20.
[12]宋健民,「CMP的超越技術-台灣主導全球半導體製造的契機 (上) 」,工業材料雜誌,第二百五十三期,2008,第159-169頁。
[13]蘇俊瑋、林志成等人,「軟性電子紙用基板材料」,工業材料雜誌,第二百九十四期,2011,第142-149頁。
[14]Park, S., Vosguerichian, M., et al., A Review of Fabrication and Applications of Carbon Nanotube Film-Based Flexible Electronics., Nanoscale, 5, 2013, pp.1727-1752.
[15]Zardetto, V., Brown, T.M., et al., A. Substrates for Flexible Electronics: A Practical Investigation on the Electrical, Film Flexibility, Optical, Temperature, and Solvent Resistance Properties., J. Polym. Sci., Part B: Polym. Phys., 49, 2011, pp.638-648.
[16]McCoul, D. and Hu, W., Recent Advances in Stretchable and Transparent Electronic Materials., Adv. Electron Mater., 2, 1500407, 2016.
[17]Nathan, A., Ahnood, A., et al., Flexible Electronics: The Next Ubiquitous Platform., Proc. IEEE, 100, 2012, pp.1486-1517.
[18]Kim, S.J., Choi, K., et al., Materials for Flexible, Stretchable Electronics: Graphene and 2d Materials., Annu. Rev. Mater. Res., 45, 2015, pp.63-84.
[19]Liu, Z., Xu, J., et al., Flexible Electronics Based on Inorganic Nanowires., Chem. Soc. Rev., 44, 2015, pp.161-192.
[20]Wang, B., Huang, W., et al., High‑k Gate Dielectrics for Emerging Flexible and Stretchable Electronics., Chemical Reviews, 118, 2018, pp.5690-5754.
[21]Manglik, R.M., Joga, M.A., et al., Damped harmonic system modeling of post-impact drop-spread dynamics on a hydrophobic surface., Physics of Fluids, 25, 082112, 2013.
[22]Yang, J., Zhao Z., et al., Insight into High-Performance Conjugated Polymers for Organic Field-Effect Transistors., Chem, 4, 2018, pp.1-38.
[23]Zhang, F., Di, C.A., et al., Ultrathin film organic transistors: precise control of semiconductor thickness via spin-coating., Adv. Mater., 25, 2013, pp.1401–1407.
[24]Yuan, Y., Giri, G., et al., Ultra-high mobility transparent organic thin film transistors grown by an off-centre spincoating method., Nat. Commun., 5, 2014, pp.3005.
[25]Luo, C., Kyaw, A.K., et al., General strategy for self-assembly of highly oriented nanocrystalline semiconducting polymers with high mobility. Nano Lett., 14, 2014, pp.2764-2771.
[26]Bucella, S.G., Luzio, A., et al., Macroscopic and high-throughput printing of aligned nanostructured polymer semiconductors for MHz large-area electronics., Nat. Commun., 6, 2015, pp.8394.
[27]Giri, G., Verploegen, E., et al., Tuning charge transport in solution-sheared organic semiconductors using lattice strain., Nature, 480, 2011, pp.504-508.
[28]Deegan, R.D., Bakajin, O., et al., Capillary flowas the cause of ring stains fromdried liquid drops., Nature, 389, 1997, pp.827-829.
[29]Yunker, P.J., Still, T., et al., Suppression of the coffee-ring effect by shape-dependent capillary interactions., Nature, 476, 2011, pp.308-311.
[30]Shmuylovich, L., Shen, A.Q., et al., Surface Morphology of Drying Latex Films:  Multiple Ring Formation., Langmuir, 189, 2002, pp.3441-3445.
[31]三洋貿易株式会社, 接触角とは何か, https://www.sanyo-si.com/learn/report/01/, 2017-12-06.
[32]Volkov, A.N. and Zhigilei, L.V., Melt dynamics and melt-through time in continuous wave laser heating of metal films: Contributions of the recoil vapor pressure and Marangoni effects, International Journal of Heat and Mass Transfer, 112, 2017, pp.300-317.
[33]Ebelmen, M., Annales de chimie et de physique.,16, 1846, pp.129.
[34]Hench, L.L. and West, J.K., The sol-gel process, Chemical Reviews, 90, 1990, pp.33-72.
[35]Schroeder, H., Oxide layer deposited from organic solution., Phys. Thin Film, 5, 1969, pp.87-141.
[36]Dislich, H., New Routes to Multicomponent Oxide Glasses., Angewandte Chemie International Edition in English, 10, 6, 1971, pp.363-370.
[37]Xu, Q., Zhang F., et al., Facile synthesis of casein-based silica hybrid nano-composite for coatings: Effects of silane coupling agent., Progress in Organic Coatings, 88, 2015, pp.1-7.
[38]Xu, L., Shen, Y., et al., Preparation of vinyl silica-based organic/inorganic nanocomposites and superhydrophobic polyester surfaces from it., Colloid and Polymer Science, 293, 8, 2015, pp.2359-2371.
[39]He, T. and Zhou, S., Preparation of tough silicon-oxo coatings with enhanced hardness from moisture-curable polysiloxane and silica alcosol., Journal of Coatings Technology and Research, 12, 4, 2015, pp.767-776.
[40]Ghanbari, S., Kazemzadeh, E., et al., A facile method for synthesis and dispersion of silica nanoparticles in water-based drilling fluid., Colloid and Polymer Science, 294, 2, 2015, pp.381-388.
[41]Choi, S.S., Lee, A.S., et al., Synthesis and characterization of UV-curable ladder-like polysilsesquioxane., Journal of Polymer Science Part A: Polymer Chemistry 49, 23, 2011, pp.5012-5018.
[42]Jeon, H., Lee, A.S.S., et al., Preparation of highly emissive, thermally stable, UV-cured polysilsesquioxane/ZnO nanoparticle composites., Journal of Applied Polymer Science, 132, 33, 42333, 2015, pp.1-7.
[43]Park, S., Lee, A.S., et al., Side-chain engineering of ladder-structured polysilsesquioxane membranes for gas separations. Journal of Membrane Science, 516, 2016, pp.202-214.
[44]Slabaugh, W.H., Jirgensons S.B., et al., A short textbook of colloid chemistry., Journal of Chemical Education, 39, 12, 1962, pp.656.
[45]Esposito, S., “Traditional” sol-gel chemistry as a powerful tool for the preparation of supported metal and metal oxide catalysts., Materials, 12, 2019, pp.668.
[46]Danks, A.E., Hall, S.R., et al., The revolution of ‘sol-gel’ chemistry as a technique for materials synthesis., Material Horizons, 3, 2016, pp.91-112.
[47]Brown, J.F., Vogt, L.H., et al., Double chain polymers of phenylsilses quioxane., J. Am. Chem. Soc., 82, 23, 1960, pp.6194-6195.
[48]Choi, S.S., Lee, H.S., et al., High photo- and electroluminescence efficiencies of ladder-like structured polysilsesquioxane with carbazole groups., Journal of Materials Chemistry, 20, 44, 2010, pp.9852-9854.
[49]Chang, S., Matsumoto, T., et al., Synthesis and characterization of heptacyclic laddersiloxanes and ladder polysilsesquioxane., Applied Organometallic Chemistry, 24, 3, 2010, pp.241-246.
[50]Choi, S.S., Lee, A.S., et al., Synthesis and characterization of UV-curable ladder-like polysilsesquioxane., Journal of Polymer Science Part A: Polymer Chemistry, 49, 23, 2011, pp.5012-5018.
[51]Jeon, H., Lee, A.S.S., et al., Preparation of highly emissive, thermally stable, UV-cured polysilsesquioxane/ZnO nanoparticle composites., Journal of Applied Polymer Science, 132, 33, 42333, 2015, pp.1-7.
[52]陳蔓萱,紫外光固化之阻水氣高分子奈米複合材之置備及特性研究,國立臺北科技大學,2018。
[53]Gotro, J., UV Curing Part Nine: “If You Can’t Measure It, You Can’t Manage It”. ~ Peter Drucker., https://polymerinnovationblog.com/uv-curing-part-nine-cant-measure-cant-manage-peter-drucker/., 2018-03-09.
[54]Bolton, J.R. and Linden, K.G., Standardization of Methods for Fluence (UV Dose) Determination in Bench-Scale UV Experiments., Journal of Environmental Engineering, 129, 3, 2003, pp.209-215.
[55]Endruweit, A., Johnson, M.S., et al., Polym. Compos., 27, 2006 , pp.119.
[56]Ravve, A., Light-Associated Reactions of Synthetic Polymers, Springer, New York, USA, 2006.
[57]Schnabel, W., Polymers and Light: Fundamentals and Technical Applic-aions, Wiley-VCH, Berlin, Germany, 2004.
[58]Cristian, M.F., Juliana O., et al., State-of-the-Art and Future Challenges of UV Curable Polymer-Based Smart Materials for Printing Technologies., Advanced Material Technology, 4, 1800618, 2019, pp.1-16.
[59]El-Roz, M., Lalevée, J., et al., Radical and cationic photopolymerization: new pyrylium and thiopyrylium salt-based photoinitiating systems., J. Polym. Sci. Part A: Polym. Chem., 46, 2008, pp.7369-7375.
[60]Yagci, Y., Jockusch, S., et al., Photoinitiated polymerization: advances, challenges, and opportunities, Macromolecules, 43, 2010, pp.6245-6260.
[61]V. Shukla, M. Bajpai, et al., Review of basic chemistry of UV-curing technology., Pigment Resin Technol., 33, 2004, pp.272-279.
[62]Javadi, A., Mehr, H.S., et al., Cure-on-command technology: A review of the current state of the art., Progress in Organic Coatings, 100, 2016, pp.2-31.
[63]Soucek, M.D. and Ren, X., Chapter 2 UV-curable coating technologies, Photocured Materials, The Royal Society of Chemistry, 2015, pp.15-48.
[64] Jonsson, S., Sundell, P.E., et al., Radiation chemistry aspects of polymerization and crosslinking. A review and future environmental trends in ‘non-acrylate’ chemistry., Prog. Org. Coat., 27, 1996, pp.107-122.
[65]Weil, E.D., Radiation curing: Science and technology., Polymers for Advanced Technologies, 4, 1993, pp.47-47.
[66]Durmaz, Y.Y., Moszner, N., et al., Visible light initiated free radical promoted cationic polymerization using acylgermane based photoinitiator in the presence of onium salts., Macromolecules, 41, 2008, pp.6714-6718.
[67]Wu, S., Sears, M.T., et al., Siloxane modified cycloaliphatic epoxide UV coating., Prog. Org. Coat., 36, 1999, pp.89-101.
[68]Wu, S., Sears, M.T., et al., Synthesis of reactive diluents for cationic cycloaliphatic epoxide UV coatings., Polymer, 40, 1999, pp.5675-5686.
[69]Decker, C., Photoinitiated crosslinking polymerisation., Progress in Polymer Science (Oxford), 21, 4, 1996, pp.593-650.
[70]Decker, C., Kinetic study and new applications of UV radiation curing. , Macromolecular Rapid Communications, 23, 18, 2002, pp.1067-1093.
[71]Photoinitiators for UV Curing Key Products Selection Guide 2003, Ciba Specialty Chemicals.
[72]Wikipedia, CIELAB color space, https://en.wikipedia.org/wiki/CIELAB_color_space., 2019-06-05.
[73]Iqualitrol Opassy Industry Instrument Co., Ltd., Surface roughness, http://iqualitrol-com.sell.everychina.com/p-107532878-non-destructive-portable-surface-roughness-tester-with-sophisticated-sensor-ra.html., 2019-05-21.
[74]Aguiar, H., Structural study of sol–gel silicate glasses by IR and Raman spectroscopies., Journal of Non-Crystalline Solids, 355, 8, 2009, pp.475-480.
[75]Lee, J.S., Free-standing, polysilsesquioxane-based inorganic/organic hybrid membranes for gas separations., Journal of Membrane Science, 475, 2015, pp.384-394.
[76]Pan, K., Synthesis of phenyl silicone resin with epoxy and acrylate group and its adhesion enhancement for addition-cure silicone encapsulant with high refractive index., Journal of Adhesion Science and Technology, 30, 24, 2016, pp.2699-2709.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top