跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.134) 您好!臺灣時間:2025/11/13 14:50
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:許珮瑩
研究生(外文):Hsu, Pei-Ying
論文名稱:基於深度學習與知識圖譜嵌入開發具解釋性之基金推薦系統
論文名稱(外文):A Novel Explainable Mutual Fund Recommendation System Based on Deep Learning Techniques with Knowledge Graph Embeddings
指導教授:陳安斌陳安斌引用關係黃思皓黃思皓引用關係
指導教授(外文):Chen, An-PinHuang, Szu-Hao
口試委員:姜林杰祐彭文志林瑞嘉黃思皓陳安斌
口試委員(外文): Huang, Szu-Hao Chen, An-Pin
口試日期:2019-07-12
學位類別:碩士
校院名稱:國立交通大學
系所名稱:資訊管理研究所
學門:電算機學門
學類:電算機一般學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:英文
論文頁數:86
中文關鍵詞:知識圖譜基金推薦可解釋推薦可解釋AI
外文關鍵詞:knowledge graphfund recommendationexplainable recommendationexplainable AI
相關次數:
  • 被引用被引用:0
  • 點閱點閱:481
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
隨著近年來深度學習模型在各行各業的發展與成功,各式利用深度學習的推薦應用也精彩紛呈。然而,應用複雜模型的推薦系統雖然準確率大幅提升,卻缺乏可解釋性,降低使用者的信任及滿意度,進而降低推薦系統的價值。因此,模型如何在高準確度與可解釋性之間取得平衡,甚至是在取得高精確度的情形下保有解釋力,成為推薦系統領域越來越熱門的議題。

在此篇論文中,我們面臨的問題為:希望能準確預測並推薦投資人下個月購買的基金,並附有推薦的解釋。為此,本論文利用知識圖譜的架構特性,利用深度學習技術將顧客與基金及其他解釋因子嵌入為特徵向量,使用知識圖譜的翻譯式模型進行訓練,將傳統網路無法學習的結構性知識加入,取得個人化的基金推薦及解釋。此外,我們考慮到基金推薦的特性,改變訓練方式,進一步將單步的解釋拓展為複雜解釋,並採用各解釋的稀有性建立另一個解釋指標,幫助使用者在解釋力與稀有度中取得理想的客製化解釋。最後,我們認為基於知識圖譜的架構具有非常彈性的使用方式,並藉此延伸出一系列特殊推薦的應用。

透過基金實際購買資料集的實證,我們證實此架構能有效的提供高準確度的推薦,且由知識圖譜中關係的抽換證實本架構能夠有效學習結構性知識,同時驗證加入顧客與基金的特徵資料有助於模型的嵌入學習。最後,我們透過數個解釋範例呈現一般解釋、複雜解釋及特殊推薦的結果,展現本架構在解釋上的效力。
Since deep learning based models have gained success in various fields during recent years, many recommendation systems also start to take advantage of the deep learning techniques. However, while the deep learning based recommendation systems have achieved high recommendation performance, the lack of interpretability may reduce users' trust and satisfaction, while limiting the model to wide adoption in the real world. As a result, to strike a balance between high accuracy and interpretability, or even obtain both of them at the same time, has become a popular issue among the researches of recommendation systems.

In this thesis, we would like to predict and recommend the funds that would be purchased by the customers in the next month, while providing explanations simultaneously. To achieve the goal, we leverage the structure of knowledge graph, and take advantage of deep learning techniques to embed customers and funds features to a unified latent space. We fully utilize the structure knowledge which cannot be learned by the traditional deep learning models, and get the personalized recommendations and explanations. Moreover, we extend the explanations to more complex ones by changing the training procedure of the model, and proposed a measure to rate for the customized explanations while considering strength and uniqueness of the explanations at the same time. Finally, we regard that the knowledge graph based structure could be extended to other applications, and proposed some possible special recommendations accordingly.

By evaluating on the dataset of mutual fund transaction records, we verify the effectiveness of our model to provide precise recommendations, and also evaluate the assumptions that our model could utilize the structure knowledge well. Last but not least, we conduct some case study of explanations to demonstrate the effectiveness of our model to provide usual explanations, complex explanations, and other special recommendations.
摘要 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i
Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii
Acknowledgement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii
Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv
List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii
List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Background and Problem Setting . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Research Goal and Contributions . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.4 Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.1 Explainable Artificial Intelligence (XAI) Approaches . . . . . . . . . . . . . . 7
2.1.1 Global Intepretability Approaches . . . . . . . . . . . . . . . . . . . . 7
2.1.2 Local Interpretability Approaches . . . . . . . . . . . . . . . . . . . . 8
2.1.3 Transparent Model Design Approaches . . . . . . . . . . . . . . . . . 9
2.2 Recommender System Approaches . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2.1 Collaborative Filtering Approaches . . . . . . . . . . . . . . . . . . . 10
2.2.2 Deep Learning Based Approaches . . . . . . . . . . . . . . . . . . . . 11
2.2.3 Knowledge Graph Embeddings Approaches . . . . . . . . . . . . . . . 13
2.3 Explainable Recommendation Systems Approaches . . . . . . . . . . . . . . . 14
2.3.1 Explainble Recommender Systems . . . . . . . . . . . . . . . . . . . . 14
2.3.2 Display Types of Explainable Recommender System . . . . . . . . . . 16
2.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3 Proposed Knowledge Graph-based Recommendation . . . . . . . . . . . . . . . . 19
3.1 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.2 System Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.3 Knowledge Graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.3.1 Introduction of Knowledge Graph . . . . . . . . . . . . . . . . . . . . 22
3.3.2 Overview of Translation Based Models . . . . . . . . . . . . . . . . . 23
3.3.3 Entities and Relations in our Framework . . . . . . . . . . . . . . . . . 26
3.4 Deep Neural Network Embeddings . . . . . . . . . . . . . . . . . . . . . . . . 26
3.5 Learning of Recommendation with Deep Neural Knowledge Graph Embeddings 29
3.5.1 Recommendation of Deep Neural Network Knowledge Graph Embeddings
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.5.2 Training Procedure of Our Framework . . . . . . . . . . . . . . . . . . 31
3.5.3 Recommendation of Our Framework . . . . . . . . . . . . . . . . . . 33
4 Explainable Mutual Fund Recommendation System . . . . . . . . . . . . . . . . 35
4.1 Recommendation Explanation with Knowledge Graph . . . . . . . . . . . . . 35
4.2 Composition of Explanations . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.2.1 Training of the Composition of Explanations . . . . . . . . . . . . . . 38
4.2.2 Generating Composition of Explanations . . . . . . . . . . . . . . . . 41
4.3 Recommendation Explanation Concerning Rarity . . . . . . . . . . . . . . . . 41
4.3.1 Computing Uniqueness of Explanations . . . . . . . . . . . . . . . . . 42
4.3.2 Rating for Explanations . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.4 Extended Applications of Explainable Recommendation . . . . . . . . . . . . 46
5 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
5.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
5.1.1 Data Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
5.1.2 Data Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
5.1.3 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
5.2 Performance of Knowledge Graph Based Recommendation System . . . . . . 53
5.2.1 Experimental Settings . . . . . . . . . . . . . . . . . . . . . . . . . . 53
5.2.2 Parameter Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . 54
5.2.3 Performance Evaluation of Knowledge Graph Based Recommendation
System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
5.3 Recommendation Performance of Different Relations Sets With Entity Features 61
5.3.1 Embedding Without Entity Description . . . . . . . . . . . . . . . . . 62
5.3.2 Embedding With Entity Description . . . . . . . . . . . . . . . . . . . 63
5.4 System Demonstration of Recommendation with Explanations . . . . . . . . . 65
5.4.1 Recommendation with Explanations . . . . . . . . . . . . . . . . . . . 66
5.4.2 Recommendation with Composition of Explanations . . . . . . . . . . 67
5.4.3 Composition of Explanations with Ratings . . . . . . . . . . . . . . . 68
5.4.4 Recommendation Performance of Explanations Composition . . . . . . 71
5.5 Demonstration of Extended Applications . . . . . . . . . . . . . . . . . . . . . 72
6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
[1] Z. C. Lipton, “The mythos of model interpretability,” arXiv preprint arXiv:1606.03490, 2016.
[2] N. Tintarev and J. Masthoff, “Designing and evaluating explanations for recommender systems,” in Recommender systems handbook. Springer, 2011, pp. 479–510.
[3] J. B. Schafer, J. Konstan, and J. Riedl, “Recommender systems in e-commerce,” in Proceedings of the 1st ACM conference on Electronic commerce. ACM, 1999, pp. 158–166.
[4] Q. Ai, V. Azizi, X. Chen, and Y. Zhang, “Learning heterogeneous knowledge base embeddings for explainable recommendation,” Algorithms, vol. 11, no. 9, p. 137, 2018.
[5] X. Wang, D. Wang, C. Xu, X. He, Y. Cao, and T.-S. Chua, “Explainable reasoning over knowledge graphs for recommendation,” arXiv preprint arXiv:1811.04540, 2018.
[6] D. Pedreschi, F. Giannotti, R. Guidotti, A. Monreale, L. Pappalardo, S. Ruggieri, and F. Turini, “Open the black box data-driven explanation of black box decision systems,” arXiv preprint arXiv:1806.09936, 2018.
[7] K. Patel, J. Fogarty, J. A. Landay, and B. Harrison, “Investigating statistical machine learning as a tool for software development,” in Proceedings of the SIGCHI Conference on Human Factors in Computing Systems. ACM, 2008, pp. 667–676.
[8] S. Kaufman, S. Rosset, C. Perlich, and O. Stitelman, “Leakage in data mining: Formulation, detection, and avoidance,” ACM Transactions on Knowledge Discovery from Data (TKDD), vol. 6, no. 4, p. 15, 2012.
[9] M. Van Lent, W. Fisher, and M. Mancuso, “An explainable artificial intelligence system for small-unit tactical behavior,” in Proceedings of the national conference on artificial intelligence. Menlo Park, CA; Cambridge, MA; London; AAAI Press; MIT Press; 1999, 2004, pp. 900–907.
[10] R. Guidotti, A. Monreale, S. Ruggieri, F. Turini, F. Giannotti, and D. Pedreschi, “A survey of methods for explaining black box models,” ACM Computing Surveys (CSUR), vol. 51, no. 5, p. 93, 2018.
[11] M. Craven and J. W. Shavlik, “Extracting tree-structured representations of trained networks,” in Advances in neural information processing systems, 1996, pp. 24–30.
[12] U. Johansson and L. Niklasson, “Evolving decision trees using oracle guides,” in 2009 IEEE Symposium on Computational Intelligence and Data Mining. IEEE, 2009, pp. 238–244.
[13] H. F. Tan, G. Hooker, and M. T. Wells, “Tree space prototypes: Another look at making tree ensembles interpretable,” arXiv preprint arXiv:1611.07115, 2016.
[14] Y. Lou, R. Caruana, and J. Gehrke, “Intelligible models for classification and regression,” in Proceedings of the 18th ACM SIGKDD international conference on Knowledge discovery and data mining. ACM, 2012, pp. 150–158.
[15] Y. Lou, R. Caruana, J. Gehrke, and G. Hooker, “Accurate intelligible models with pairwise interactions,” in Proceedings of the 19th ACM SIGKDD international conference on Knowledge discovery and data mining. ACM, 2013, pp. 623–631.
[16] A. Nguyen, A. Dosovitskiy, J. Yosinski, T. Brox, and J. Clune, “Synthesizing the preferred inputs for neurons in neural networks via deep generator networks,” in Advances in Neural Information Processing Systems, 2016, pp. 3387–3395.
[17] J. Chen, L. Song, M. J. Wainwright, and M. I. Jordan, “Learning to explain:
An information-theoretic perspective on model interpretation,” arXiv preprint arXiv:
1802.07814, 2018.
[18] K. Simonyan, A. Vedaldi, and A. Zisserman, “Deep inside convolutional networks: Visualising image classification models and saliency maps,” arXiv preprint arXiv:1312.6034, 2013.
[19] J. T. Springenberg, A. Dosovitskiy, T. Brox, and M. Riedmiller, “Striving for simplicity: The all convolutional net,” arXiv preprint arXiv:1412.6806, 2014.
[20] M. T. Ribeiro, S. Singh, and C. Guestrin, “Why should i trust you?: Explaining the predictions of any classifier,” in Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining. ACM, 2016, pp. 1135–1144.
[21] ——, “Anchors: High-precision model-agnostic explanations,” in Thirty-Second AAAI Conference on Artificial Intelligence, 2018.
[22] R. Guidotti, A. Monreale, S. Ruggieri, D. Pedreschi, F. Turini, and F. Giannotti, “Local rule-based explanations of black box decision systems,” 2018.
[23] S. M. Lundberg and S.-I. Lee, “A unified approach to interpreting model predictions,” in Advances in Neural Information Processing Systems, 2017, pp. 4765–4774.
[24] P. W. Koh and P. Liang, “Understanding black-box predictions via influence functions,” arXiv preprint arXiv:1703.04730, 2017.
[25] X. Zhang, A. Solar-Lezama, and R. Singh, “Interpreting neural network judgments via minimal, stable, and symbolic corrections,” arXiv preprint arXiv:1802.07384, 2018.
[26] K. Xu, J. Ba, R. Kiros, K. Cho, A. Courville, R. Salakhudinov, R. Zemel, and Y. Bengio, “Show, attend and tell: Neural image caption generation with visual attention,” in International conference on machine learning, 2015, pp. 2048–2057.
[27] Q. Zhang, Y. N. Wu, and S.-C. Zhu, “Interpretable convolutional neural networks,” in The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2018, pp. 8827–8836.
[28] M. Tsang, H. Liu, S. Purushotham, P. Murali, and Y. Liu, “Neural interaction
transparency (nit): Disentangling learned interactions for improved interpretability,” in Advances in Neural Information Processing Systems 31, S. Bengio, H. Wallach,
H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett, Eds. Curran Associates, Inc., 2018, pp. 5809–5818. [Online]. Available: http://papers.nips.cc/paper/7822-neural-interaction-transparency-nit-disentangling-learned-interactions-for-improved-interpretability.pdf
[29] O. Li, H. Liu, C. Chen, and C. Rudin, “Deep learning for case-based reasoning through prototypes: A neural network that explains its predictions,” arXiv preprint arXiv:1710.04806, 2017.
[30] J. S. Breese, D. Heckerman, and C. Kadie, “Empirical analysis of predictive algorithms for collaborative filtering,” in Proceedings of the Fourteenth conference on Uncertainty in artificial intelligence. Morgan Kaufmann Publishers Inc., 1998, pp. 43–52.
[31] X. Su and T. M. Khoshgoftaar, “A survey of collaborative filtering techniques,” Advances in artificial intelligence, vol. 2009, 2009.
[32] Y. Koren, “Factorization meets the neighborhood: a multifaceted collaborative filtering model,” in Proceedings of the 14th ACM SIGKDD international conference on Knowledge discovery and data mining. ACM, 2008, pp. 426–434.
[33] B. M. Sarwar, G. Karypis, J. A. Konstan, J. Riedl et al., “Item-based collaborative filtering recommendation algorithms.” Www, vol. 1, pp. 285–295, 2001.
[34] L. Si and R. Jin, “Flexible mixture model for collaborative filtering,” in Proceedings of the 20th International Conference on Machine Learning (ICML-03), 2003, pp. 704–711.
[35] M. Balabanović and Y. Shoham, “Fab: content-based, collaborative recommendation,” Communications of the ACM, vol. 40, no. 3, pp. 66–72, 1997.
[36] P. Melville, R. J. Mooney, and R. Nagarajan, “Content-boosted collaborative filtering for improved recommendations,” Aaai/iaai, vol. 23, pp. 187–192, 2002.
[37] S. Zhang, L. Yao, A. Sun, and Y. Tay, “Deep learning based recommender system: A survey and new perspectives,” ACM Computing Surveys (CSUR), vol. 52, no. 1, p. 5, 2019.
[38] X. He, L. Liao, H. Zhang, L. Nie, X. Hu, and T.-S. Chua, “Neural collaborative filtering,” in Proceedings of the 26th International Conference on World Wide Web. International World Wide Web Conferences Steering Committee, 2017, pp. 173–182.
[39] G. K. Dziugaite and D. M. Roy, “Neural network matrix factorization,” arXiv preprint arXiv:1511.06443, 2015.
[40] S. Li, J. Kawale, and Y. Fu, “Deep collaborative filtering via marginalized denoising autoencoder,” in Proceedings of the 24th ACM International on Conference on Information and Knowledge Management. ACM, 2015, pp. 811–820.
[41] S. Sedhain, A. K. Menon, S. Sanner, and L. Xie, “Autorec: Autoencoders meet collaborative filtering,” in Proceedings of the 24th International Conference on World Wide Web. ACM, 2015, pp. 111–112.
[42] X. Zhao, L. Xia, L. Zhang, Z. Ding, D. Yin, and J. Tang, “Deep reinforcement learning for page-wise recommendations,” in Proceedings of the 12th ACM Conference on Recommender Systems. ACM, 2018, pp. 95–103.
[43] G. Zheng, F. Zhang, Z. Zheng, Y. Xiang, N. J. Yuan, X. Xie, and Z. Li, “Drn: A deep reinforcement learning framework for news recommendation,” in Proceedings of the 2018 World Wide Web Conference on World Wide Web. International World Wide Web Conferences Steering Committee, 2018, pp. 167–176.
[44] Q. Zhang, J. Wang, H. Huang, X. Huang, and Y. Gong, “Hashtag recommendation for multimodal microblog using co-attention network.” in IJCAI, 2017, pp. 3420–3426.
[45] H. Wang, S. Xingjian, and D.-Y. Yeung, “Collaborative recurrent autoencoder: Recommend while learning to fill in the blanks,” in Advances in Neural Information Processing Systems, 2016, pp. 415–423.
[46] R. Burke, “Integrating knowledge-based and collaborative-filtering recommender systems,” in Proceedings of the Workshop on AI and Electronic Commerce, 1999, pp. 69–72.
[47] T. D. Noia, V. C. Ostuni, P. Tomeo, and E. D. Sciascio, “Sprank: Semantic path-based ranking for top-n recommendations using linked open data,” ACM Transactions on Intelligent Systems and Technology (TIST), vol. 8, no. 1, p. 9, 2016.
[48] X. Yu, X. Ren, Y. Sun, Q. Gu, B. Sturt, U. Khandelwal, B. Norick, and J. Han, “Personalized entity recommendation: A heterogeneous information network approach,” in Proceedings of the 7th ACM international conference on Web search and data mining. ACM, 2014, pp. 283–292.
[49] A. Bordes, N. Usunier, A. Garcia-Duran, J. Weston, and O. Yakhnenko, “Translating embeddings for modeling multi-relational data,” in Advances in neural information processing systems, 2013, pp. 2787–2795.
[50] Z. Wang, J. Zhang, J. Feng, and Z. Chen, “Knowledge graph embedding by translating on hyperplanes,” in Twenty-Eighth AAAI conference on artificial intelligence, 2014.
[51] Y. Lin, Z. Liu, M. Sun, Y. Liu, and X. Zhu, “Learning entity and relation embeddings for knowledge graph completion,” in Twenty-ninth AAAI conference on artificial intelligence, 2015.
[52] G. Ji, S. He, L. Xu, K. Liu, and J. Zhao, “Knowledge graph embedding via dynamic mapping matrix,” in Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), vol. 1, 2015, pp. 687–696.
[53] J. Feng, M. Huang, M. Wang, M. Zhou, Y. Hao, and X. Zhu, “Knowledge graph embedding by flexible translation,” in Fifteenth International Conference on the Principles of Knowledge Representation and Reasoning, 2016.
[54] T. Trouillon, J. Welbl, S. Riedel, É. Gaussier, and G. Bouchard, “Complex embeddings for simple link prediction,” in International Conference on Machine Learning, 2016, pp. 2071–2080.
[55] B. Yang, W.-t. Yih, X. He, J. Gao, and L. Deng, “Embedding entities and relations for learning and inference in knowledge bases,” arXiv preprint arXiv:1412.6575, 2014.
[56] Z. Sun, Z.-H. Deng, J.-Y. Nie, and J. Tang, “Rotate: Knowledge graph embedding by relational rotation in complex space,” 2019.
[57] F. Zhang, N. J. Yuan, D. Lian, X. Xie, and W.-Y. Ma, “Collaborative knowledge base embedding for recommender systems,” in Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining. ACM, 2016, pp. 353–362.
[58] R. He, W.-C. Kang, and J. McAuley, “Translation-based recommendation,” in Proceedings of the Eleventh ACM Conference on Recommender Systems. ACM, 2017, pp. 161–169.
[59] H. Wang, F. Zhang, J. Wang, M. Zhao, W. Li, X. Xie, and M. Guo, “Ripplenet: Propagating user preferences on the knowledge graph for recommender systems,” in Proceedings of the 27th ACM International Conference on Information and Knowledge Management. ACM, 2018, pp. 417–426.
[60] Y. Zhang, G. Lai, M. Zhang, Y. Zhang, Y. Liu, and S. Ma, “Explicit factor models for explainable recommendation based on phrase-level sentiment analysis,” in Proceedings of the 37th international ACM SIGIR conference on Research & development in information retrieval. ACM, 2014, pp. 83–92.
[61] Y. Zhang and X. Chen, “Explainable recommendation: A survey and new perspectives,” 2018.
[62] Y. Koren, R. Bell, and C. Volinsky, “Matrix factorization techniques for recommender systems,” Computer, no. 8, pp. 30–37, 2009.
[63] X. Chen, Z. Qin, Y. Zhang, and T. Xu, “Learning to rank features for recommendation over multiple categories,” in Proceedings of the 39th International ACM SIGIR conference on Research and Development in Information Retrieval. ACM, 2016, pp. 305–314.
[64] B. Abdollahi and O. Nasraoui, “Explainable matrix factorization for collaborative filtering,” in Proceedings of the 25th International Conference Companion on World Wide Web. International World Wide Web Conferences Steering Committee, 2016, pp. 5–6.
[65] J. McAuley and J. Leskovec, “Hidden factors and hidden topics: understanding rating dimensions with review text,” in Proceedings of the 7th ACM conference on Recommender systems. ACM, 2013, pp. 165–172.
[66] Y. Wu and M. Ester, “Flame: A probabilistic model combining aspect based opinion mining and collaborative filtering,” in Proceedings of the Eighth ACM International Conference on Web Search and Data Mining. ACM, 2015, pp. 199–208.
[67] W. Lin, S. A. Alvarez, and C. Ruiz, “Efficient adaptive-support association rule mining for recommender systems,” Data mining and knowledge discovery, vol. 6, no. 1, pp. 83–105, 2002.
[68] J. Davidson, B. Liebald, J. Liu, P. Nandy, T. Van Vleet, U. Gargi, S. Gupta, Y. He, M. Lambert, B. Livingston et al., “The youtube video recommendation system,” in Proceedings of the fourth ACM conference on Recommender systems. ACM, 2010, pp. 293–296.
[69] F. Costa, S. Ouyang, P. Dolog, and A. Lawlor, “Automatic generation of natural language explanations,” in Proceedings of the 23rd International Conference on Intelligent User Interfaces Companion. ACM, 2018, p. 57.
[70] S. Chang, F. M. Harper, and L. G. Terveen, “Crowd-based personalized natural language explanations for recommendations,” in Proceedings of the 10th ACM Conference on Recommender Systems. ACM, 2016, pp. 175–182.
[71] X. Chen, Y. Zhang, H. Xu, Y. Cao, Z. Qin, and H. Zha, “Visually explainable recommendation,” arXiv preprint arXiv:1801.10288, 2018.
[72] C. Chen, M. Zhang, Y. Liu, and S. Ma, “Neural attentional rating regression with reviewlevel explanations,” in Proceedings of the 2018 World Wide Web Conference on World Wide Web. International World Wide Web Conferences Steering Committee, 2018, pp. 1583–1592.
[73] G. Peake and J. Wang, “Explanation mining: Post hoc interpretability of latent factor models for recommendation systems,” in Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. ACM, 2018, pp. 2060–2069.
[74] H. Park, H. Jeon, J. Kim, B. Ahn, and U. Kang, “Uniwalk: Explainable and accurate recommendation for rating and network data,” arXiv preprint arXiv:1710.07134, 2017.
[75] 刘知远, 孙茂松, 林衍凯, and 谢若冰, “知识表示学习研究进展,” 计算机研究与发展, vol. 53, no. 2, pp. 247–261, 2016.
[76] R. Fu, J. Guo, B. Qin, W. Che, H. Wang, and T. Liu, “Learning semantic hierarchies via word embeddings,” in Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), vol. 1, 2014, pp. 1199–1209.
[77] R. Xie, Z. Liu, J. Jia, H. Luan, and M. Sun, “Representation learning of knowledge graphs with entity descriptions,” in Thirtieth AAAI Conference on Artificial Intelligence, 2016.
[78] Y. Lin, Z. Liu, H. Luan, M. Sun, S. Rao, and S. Liu, “Modeling relation paths for representation learning of knowledge bases,” arXiv preprint arXiv:1506.00379, 2015.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top