跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.41) 您好!臺灣時間:2026/01/14 04:24
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳美均
研究生(外文):Mei-Jun Chen
論文名稱:ZER 抑制 UVA 誘導黑色素生成及美白機制之探討
論文名稱(外文):ZER inhibits UVA-induced Melanogenesis : Studies Disclosed the Depigmenting Effects of ZER.
指導教授:許游章
指導教授(外文):You-Cheng Hseu
學位類別:碩士
校院名稱:中國醫藥大學
系所名稱:藥用化妝品學系碩士班
學門:醫藥衛生學門
學類:藥學學類
論文種類:學術論文
論文出版年:2018
畢業學年度:106
語文別:中文
論文頁數:148
中文關鍵詞:紫外線A角質細胞抗氧化轉錄因子黑色素細胞黑色素刺激素酪胺酸酶黑色素斑馬魚
外文關鍵詞:UVAHaCaTNrfB16F1α-MSHTyrosinasemelaninzebrafish
相關次數:
  • 被引用被引用:0
  • 點閱點閱:299
  • 評分評分:
  • 下載下載:16
  • 收藏至我的研究室書目清單書目收藏:0
對於紫外光造成皮膚色素沉著的探討, UVA 的探討仍尚未多,而紅球薑 (Z. zerumbet) 中的環狀倍半萜烯類成分 ZER 具有廣泛的生物活性,但現今仍未有 ZER 美白功效相關的研究。經 UVA 照射後的角質細胞會釋放出α-黑色素细胞刺激素 (α-MSH) ,此激素會誘導黑色素細胞生成黑色素,因此本篇以人類正常皮膚角質細胞 (HaCaT) 與小鼠黑色素瘤細胞 (B16F10) 進行探討添加 ZER 後對降低 UVA 造成的色素沉著的改善之功效以及機制進行深入探討。
本篇首先探討 ZER 在 HaCaT 中的抗氧化功效, HaCaT 在 ZER濃度 10 μM 以下時都沒有顯著死亡,且能顯著促進抗氧化轉錄因子 (Nrf2) 及抗氧化相關因子的蛋白表現量,這意味著 Nrf2 途徑的活化可能達到抗氧化的作用。之後再來探討 ZER 在 B16F10 中的抗黑色素生成功效。首先 ZER 顯著降低黑色素含量且無細胞毒性,且下調了黑色素生成中起作用的關鍵蛋白質小眼畸形相關轉錄因子 (MITF) 、酪胺酸酶和酪胺酸脢相關蛋白-1的蛋白表現量。加入 ZER 的 B16F10 細胞表現出 p-ERK 表現量增加的現象,這意味著 MAPK/ERK 途徑的活化可能造成抑制黑色素生成的作用。
結論, ZER 能通過調節 MAPK / ERK 途徑來抑制 MITF 和黑色素生成酶的表現進而抑制黑色素合成以達到美白效果。最後在斑馬魚的部分,分別在黑色素生成前及生成後加入 ZER ,結果顯示, ZER 不但能預防黑色素生成,也能達到淡斑效果。
For the study of skin pigmentation caused by ultraviolet light, the investigation of UVA has not yet been much, and the cyclic sesquiterpenoid component ZER in Z. zerumbet has extensive biological activity, but there is still no whitening efficacy related research of ZER.. The keratinocytes after UVA irradiation release α-melanocyte stimulating hormone (α-MSH), which induces the production of melanin by melanocytes, so this article uses human normal skin keratinocytes (HaCaT) and mouse melanoma cells ( B16F10) to investigate the effect and mechanism of improving the pigmentation caused by UVA after adding ZER. This article first explores the antioxidant efficacy of ZER in HaCaT. HaCaT has no significant death at ZER concentrations below 10 μM and can significantly promote protein expression of antioxidant transcription factor (Nrf2) and antioxidant-related factors, which means activation of the Nrf2 pathway may achieve antioxidant effects. Then we will discuss the anti-melanogenesis efficiency of ZER in B16F10. First, ZER significantly reduced melanin content and was non-cytotoxic, and down-regulated the protein expression of key protein-deficient transcription factor (MITF), tyrosinase, and tyrosine-related protein-1, which play a key role in melanogenesis. B16F10 cells added to ZER showed an increase in the expression of p-ERK, suggesting that activation of the MAPK/ERK pathway may result in inhibition of melanin production. In conclusion, ZER can inhibit the expression of MITF and melanin producing enzyme by regulating the MAPK/ERK pathway and inhibit melanin synthesis to achieve whitening effect. Finally, in the part of the zebrafish, ZER was added before and after the formation of melanin. The results showed that ZER can not only prevent melanin production, but also achieve the effect of blemishes.
目錄
中文摘要 I
ABSTRACT II
表目錄 VIII
圖目錄 IX
縮寫表 XI
第一章、前言 1
第二章、文獻探討 3
第2-1節 皮膚 4
2-1-1. 皮膚的介紹 4
2-1-3. 皮膚的功能 6
第2-2節紫外線 7
2-2-1. 紫外線介紹 7
2-2-2. 紫外線的分類 8
2-2-3. 紫外線對於身體的影響 9
第2-3節 自由基 11
2-3-1. 自由基的介紹 11
2-3-2. 自由基的來源 11
2-3-3. 紫外線與自由基 12
2-3-4. UVA誘導細胞生成ROS 12
2-3-5. 自由基的種類 14
第2-4節 抗氧化訊息傳遞路徑 15
2-4-1. 抗氧化轉錄因子Nrf2 15
2-4-2. Keap1 16
2-4-3. ARE 16
2-4-4. Nrf2的活化機制 16
第2-5節 抗氧化防禦系統 18
2-5-1. 酵素抗氧化系統 19
2-5-2. 非酵素抗氧化系統 21
第2-6節 黑色素 24
2-6-1. 黑色素生成的途徑 25
2-6-2. 影響黑色素生合成的相關因子 26
第2-7節 斑馬魚 30
2-7-1. 斑馬魚的簡介 30
2-7-2. 斑馬魚胚胎發育過程及各時期特徵 30
2-7-3. 斑馬魚研究 32
2-7-4. 斑馬魚與黑色素 33
2-7-5. 斑馬魚飼養方式 33
2-7-6. 斑馬魚飼料 35
第2-8節 ZER 39
2-8-1. ZER 的簡介 39
2-8-2. ZER 的來源 40
2-8-3. ZER 的生物醫學特性及應用 41
第三章、研究動機與實驗架構 44
第3-1節 研究背景 45
第3-2節 研究目的 46
第3-3節 實驗架構圖 46
第四章、實驗材料與方法 48
第4-1節 實驗材料 49
第4-2節 實驗方法 53
4-2-1. 細胞培養 53
4-2-2. 細胞存活率 (cell viability)分析 - MTT assay 57
4-2-3. ROS產量測定 59
4-2-4. 細胞總蛋白質萃取 60
4-2-5. 細胞核與細胞質蛋白質萃取 62
4-2-6. 蛋白質定量 64
4-2-7. 西方墨點法 65
4-2-8. 免疫螢光染色 71
4-2-9. GSH含量測定 73
4-2-10. α-MSH濃度測定 75
4-2-11. RNA干擾 79
4-2-12. 黑色素含量檢測 81
4-2-13. 條件培養基 83
4-2-14. 斑馬魚黑色素含量測定 84
4-2-15. 斑馬魚酪胺酸酶活性測定 85
4-2-14. Zerumbone配製 86
4-2-15. 統計分析 86
第五章、結果 87
第5-1節 ZER透過Nrf2路徑促進抗氧化酵素大量表現,以保護人類皮膚角質細胞(HaCaT)降低UVA誘導的氧化壓力傷害並減少黑色素細胞刺激激素(α-MSH)的生成 88
5-1-1. ZER調控HaCaT細胞株中Nrf2進行抗氧化壓力的能力 88
5-1-2. ZER活化抗氧化系統抑制UVA誘導生成黑色素細胞刺激相關因子 93
第5-2節 ZER抑制黑色素細胞生成黑色素之機制探討 96
5-2-1. ZER調控B16F10細胞株進行抗黑色素生成的能力 96
5-2-2. ZER抑制α-MSH誘導調控相關訊息傳導路徑 103
5-2-3. ZER活化ERK途徑調控相關訊息傳導路徑 105
第5-3節 ZER減少斑馬魚黑色素細胞的生成 111
5-3-1. ZER降低斑馬魚黑色素的生成量 111
第六章、討論 120
第6-1節 ZER透過Nrf2路徑調節第二型解毒酵素保護HaCaT細胞降低UVA所誘導的氧化壓力與促黑激素 121
6-1-1. UVA與ZER的背景 121
6-1-2. ZER促進HaCaT細胞Nrf2路徑活化抵抗UVA造成的氧化壓力 121
6-1-3. ZER對HaCaT細胞抑制UVA誘導生成黑色素細胞刺激相關因子 122
第6-2節 ZER抑制B16F10細胞黑色素生成之機制探討 123
6-2-1. ZER對α-MSH(條件培養液)誘導B16F10細胞Tyrosinase之影響 123
6-2-2. ZER對α-MSH誘導B16F10細胞的抗黑色素生成功效 124
6-2-3. ZER對B16F10細胞ERK路徑之影響 124
第6-3節. ZER抑制Zebrafish黑色素生成之機制探討 125
6-3-1. ZER對在黑色素形成之前的斑馬魚美白功效 125
6-3-2. ZER對在黑色素形成之後的斑馬魚美白作用 126
第七章、結論 127
第7-1節ZER對人類皮膚角質細胞誘導Nrf2路徑保護細胞免於UVA誘導的氧化壓力 128
第7-2節ZER對B16F10細胞抑制α-MSH誘導生成黑色素之機制探討 129
參考文獻 130


1.Ovaere P, Lippens S, Vandenabeele P, Declercq W. (2009)The emerging roles of serine protease cascades in the epidermis". Trends in Biochemical Sciences., 34 (9): 453–463.
2. http://en.wikipedia.org/wiki/Epidermis
3. James, William; Berger, Timothy; Elston, Dirk (2005). Andrews'' Diseases of the Skin: Clinical Dermatology (10th ed.). Saunders. Pages 1, 11–12. ISBN 0-7216-2921-0.
4.Breitkreutz, D; Mirancea, N; Nischt, R. Basement membranes in skin: Unique matrix structures with diverse functions?. Histochemistry and cell biology. 2009, 132 (1): 1–10. PMID 19333614. doi:10.1007/s00418-009-0586-0
5.Smith MM, Melrose J. Proteoglycans in normal and healing skin. Advances in Wound Care. 2015, 4 (3): 152–73.
6.Madison KC. (2003). Barrier function of the skin: "la raison d''être" of the epidermis. Journal of Investigative Dermatology. 121(2):231-41.
7.The ozone layer protects humans from this.Lyman, T. Victor Schumann. Astrophysical Journal. 1914, 38: 1–4.
8. Shaw, P. S., Gupta R Fau - Lykke, K. R., and Lykke, K. R. Characterization of an ultraviolet and a vacuum-ultraviolet irradiance meter with synchrotron radiation. Applied Optics. Vol. 41, Issue 34, pp. 7173-7178 (2002)
9. Davies H., Bignell G.R., Cox C., Stephens P., Edkins S., Clegg S., Teague J., Woffendin H., Garnett M.J., and Bottomley W. (2002) Mutations of the BRAF gene in human cancer. Nature417, 949-954
10.Beissert S., and Schwarz T. (2009) Ultraviolet-induced immunosuppression: implications for photocarcinogenesis. in Skin Cancer after Organ Transplantation, Springer. pp 109-121
11.Kato Y., Igarashi H., Kanno H., Tanaka K., and Yoshida A. (2009) Metabolic changes during cataract formation by ultraviolet radiation in the incubated rabbit lens. [Hokkaido igaku zasshi] The Hokkaido journal of medical science84, 423-430
12.Varma S. D., Kovtun S., and Hegde K. R. (2011) Role of UV irradiation and oxidative stress in cataract formation. Medical prevention by nutritional antioxidants and metabolic agonists. Eye & contact lens37, 233
13.Wang J., Löfgren S., Dong X., Galichanin K., and Söderberg P.G. (2011) Dose-response relationship for α-tocopherol prevention of ultraviolet radiation induced cataract in rat. Experimental eye research93, 91-97
14. Cheeseman KH, Slater TF. An introduction to free radical biochemistry. British Medical Bulletin. 1993;49:481–93.
15. Lobo V, Patil A, Phatak A, Chandra N. Free radicals, antioxidants and functional foods: Impact on human health. Pharmacognosy Reviews. 2010;4(8):118-26.
16. Bagchi K, Puri S. Free radicals and antioxidants in health and disease. East Mediterranean Health Journal. 1998;4:350–60.
17. Liu T, Stern A, Roberts LJ. The isoprostanes: Novel prostanglandin-like products of the free radical catalyzed peroxidation of arachidonic acid. Journal of Biomedical Science. 1999;6:226–35.
18. Ebadi M. Antioxidants and free radicals in health and disease: An introduction to reactive oxygen species, oxidative injury, neuronal cell death and therapy in neurodegenerative diseases. Arizona: Prominent Press; 2001.
19. A. Aroun, J.L. Zhong, R.M. Tyrrell, C. Pourzand. Iron, oxidative stress and the example of solar ultraviolet a radiation. Photochemical & Photobiological Sciences., 11 (2012), 118-134.
20. C. Kielbassa, L. Roza, B. Epe. Wavelength dependence of oxidative DNA damage induced by UV and visible light. Carcinogenesis., 18 (1997), 811-816.
21. A. Stary, C. Robert, A. Sarasin. Deleterious effects of ultraviolet A radiation in human cells. Mutation Research., 383 (1997), 1-8.
22. Ghaderi-Shekhi Abadi P, Shirazi FH, Joshaghani M, Moghimi HR. Influence of formulation of ZnO nanoblokes containing metallic ions dopants on their cytotoxicity and protective factors: An in vitro study on human skin cells exposed to UVA radiation. Toxicology Reports., 2018 Mar 6;5:468-479.
23. Kamenisch Y, Ivanova I, Drexler K, Berneburg M. UVA, metabolism and melanoma: UVA makes melanoma hungry for metastasis. Experimental Dermatology. 2018 Apr 15;1–9.
24. Yong Hun Chi, Seol Ki Paeng, Min Ji Kim, Gwang Yong Hwang, Sarah Mae B. Melencion, Hun Taek Oh, Sang Yeol Lee. Redox-dependent functional switching of plant proteins accompanying with their structural changes. Frontiers in Plant Science. 2013; 4: 277.
25. Hiramoto K, Yamate Y. Gp91phox-derived reactive oxygen species/urocortin 2/corticotropin-releasing hormone receptor type 2 play an important role in long-term ultraviolet a eye irradiation-induced photoaging. Journal of Photochemistry and Photobiology, 2016, 92(1): 180–186.
26. Ko GA, Cho SK. Phytol suppresses melanogenesis through proteasomal degradation of MITF via the ROS-ERK signaling pathway. Chemico-Biological Interactions. 2018 Apr 25;286:132-140.
27. G.S. Liu, H. Peshavariya, M. Higuchi, A.C. Brewer, C.W. Chang, E.C. Chan, G.J. Dusting. Microphthalmia-associated transcription factor modulates expression of NADPH oxidase type 4: a negative regulator of melanogenesis. Free Radical Biology and Medicine., 52 (2012), 1835-1843.
28. C. Jiménez-Cervantes, M. Martínez-Esparza, C P C, N. Daum, F. Solano, J.C. García-Borrón. Inhibition of melanogenesis in response to oxidative stress. transient downregulation of melanocyte differentiation markers and possivle involvement of microphtalmia transcription factor. Journal of Cell Science., 114 (2001), 2335-2344.
29. E.S. Kim, S.J. Park, M.J. Goh, Y.J. Na, D.S. Jo, Y.K. Jo, J.H. Shin, E.S. Choi, H.K. Lee, J.Y. Kim, H.B. Jeon, J.C. Kim, D.H. Cho. Mitochondrial dynamics regulate melanogenesis through proteasomal degradation of MITF via ROS-ERK activation. Pigment Cell & Melanoma Research., 27 (2014), 1051-1062.
30. F. Liu, Y. Fu, F.L. Meyskens Jr. MITF regulates cellular response to reactive oxygen species through transcriptional regulation of APE-1/Ref-1. Journal of Investigative Dermatology., 129 (2009), 422-431.
31. Sana Ben Othman and Tomio Yabe. Use of hydrogen peroxide and peroxyl radicals to induce oxidative stress in neuronal cells. Agricultural Science, 2015, 3:40-45.
32. Kovacic P, Pozos RS, Somanathan R, Shangari N, O''Brien PJ. Mechanism of mitochondrial uncouplers, inhibitors, and toxins: focus on electron transfer, free radicals, and structure-activity relationships. Current Medicinal Chemistry. 2005: 12: 2601-23.
33. Pastor N, Weinstein H, Jamison E, Brenowitz M. A detailed interpretation of OH radical footprints in a TBP-DNA complex reveals the role of dynamics in the mechanism of sequencespecific binding. Journal of Molecular Biology. 2000: 304: 55-68.
34. Valko M, Izakovic M, Mazur M, Rhodes CJ, Telser J. Role of oxygen radicals in DNA damage and cancer incidence. Molecular and Cellular Biochemistry. 2004: 266: 37-56.
35. Gu Q, Yang X, Lin L, et al. Genetic ablation of solute carrier family 7a3a leads to hepatic steatosis in zebrafish during fasting. Hepatology, 2014, 60(6): 1929-1941.
36. Carr AC, McCall MR, Frei B. Oxidation of LDL by myeloperoxidase and reactive nitrogen species: reaction pathways and antioxidant protection. Arteriosclerosis, Thrombosis, and Vascular Biology. 2000: 20: 1716-23.
37. Keum YS, Choi BY: Molecular and chemical regulation of the Keap1-Nrf2 signaling pathway. Molecules. 2014; 19: 10074-10089.
38. Nasiri HR, Linge S, Ullmann D. Thermodynamic profiling of inhibitors of Nrf2:Keap1 interactions. Bioorganic & Medicinal Chemistry Letters 2016 Jan 15;26(2):526-529.
39. Carmona-Aparicio L, Pérez-Cruz C, Zavala-Tecuapetla C, Granados-Rojas L, Rivera-Espinosa L, Montesinos-Correa H, Hernández-Damián J, Pedraza-Chaverri J, Sampieri A, Coballase-Urrutia E, Cárdenas-Rodríguez N. Overview of Nrf2 as Therapeutic Target in Epilepsy. International Journal of Molecular Sciences. 2015 Aug 7;16(8):18348-67.
40. Lo S C, Li X, Henzl M T, et al. Structure of the Keap1 Nrf2 interface provides mechanistic insight into Nrf2 signaling. The EMBO Journal. 2006, 25(15):3605-17.
41. Kumar H, Kim IS, More SV, Kim BW, Choi DK. Natural product-derived pharmacological modulators of Nrf2/ARE pathway for chronic diseases. Natural Product Reports., 2014 Jan;31(1):109-39.
42. 姜敏,高振,李風森 綜述。Keap1-Nrf2-ARE通路與慢性阻塞性肺疾病氧化/抗氧化失衡關係。國際病理科學與臨床雜誌,2013, 33(2), 165-169
43. 黎孝韻、曾國慶。自由基及抗氧化物功能的探討。The Journal of Pharmacy臨床藥學;第24卷第2期;95-103。
44. 衛生福利部食品藥物管理署
45. http://www.healthofall.com/a2017316148244/
46. Meng-Ling Wu, Yen-Chun Ho, and Shaw-Fang Yet. A Central Role of Heme Oxygenase-1 in Cardiovascular Protection. Antioxidants & Redox Signaling. 2011 Oct 1;15(7):1835-46.
47. 郭靜娟。人體奇蹟自身細胞的Nrf2轉錄因子,能夠抗氧化抗發炎和癌症腫瘤預防。健康紅綠燈。2014,10。
48. Valko M, Leibfritz D, Moncol J, et al. Free radicals and antioxidants in normal physiological functions and human disease. International Journal Of Biochemistry & Cell Biology. 2007: 39: 44-84.
49. Chelikani P, Fita I, Loewen PC. Diversity of structures and properties among catalases. Cellular and Molecular Life Sciences. 2004;61:192–208.
50. Gaetani G, Ferraris A, Rolfo M, Mangerini R, Arena S, Kirkman H. Predominant role of catalase in the disposal of hydrogen peroxide within human erythrocytes. Blood. 1996;87:1595–9.
51. Brigelius-Flohe R. Tissue-specific functions of individual glutathione peroxidases. Free Radical Biology & Medicine. 1999;27:951–65.
52. Hayes J, Flanagan J, Jowsey I. Glutathione transferases. Annual Review of Pharmacology and Toxicology. 2005;45:51–88.
53. Pastore A, Federici G, Bertini E, Piemonte F. Analysis of glutathione:
implication in redox and detoxification. Clinica Chimica Acta. 2003: 333: 19-39.
54. Padayatty S, Katz A, Wang Y, Eck P, Kwon O, Lee J, et al. Vitamin C as an antioxidant: Evaluation of its role in disease prevention. Journal of the American College of Nutrition. 2003;22:18–35.
55. Carr A, Frei B. Does vitamin C act as a pro-oxidant under physiological conditions? FASEB Journal. 1999: 13: 1007-24.
56. Herrera E, Barbas C. Vitamin E: Action, metabolism and perspectives. Journal of Physiology and Biochemistry. 2001;57:43–56.
57. Brigelius-Flohe R, Traber M. Vitamin E: Function and metabolism. FASEB Journal. 1999;13:1145–55.
58. Traber MG, Atkinson J. Vitamin E, antioxidant and nothing more. Free radical biology and medicine. 2007;43:4–15.
59. Wang X, Quinn P. Vitamin E and its function in membranes. Progress in Lipid Research. 1999;38:309–36.
60. Di Martino A, Trusova ME, Postnikov PS, Sedlarik V. Enhancement of the antioxidant activity and stability of β-carotene using amphiphilic chitosan/nucleic acid polyplexes. International Journal of Biological Macromolecules. 2018 Jun 3;117:773-780.
61. Valko M, Leibfritz D, Moncol J, et al. Free radicals and antioxidants in normal physiological functions and human disease. International Journal Of Biochemistry & Cell Biology. 2007: 39: 44-84.
62. William M. Johnson, Amy L. Wilson-Delfosse and John. J. Mieyal. Dysregulation of Glutathione Homeostasis in Neurodegenerative Diseases. Nutrients 2012, 4(10), 1399-1440.
63. 趙強:自由基(Free Radicals)。 美 食天下 1997;第64期, 1997.3 P116。
64. Nassar E, Mulligan C, Taylor L, Kerksick C, Galbreath M, Greenwood M, et al. Effects of a single dose of N-Acetyl-5-methoxytryptamine (Melatonin) and resistance exercise on the growth hormone/IGF-1 axis in young males and females. Journal of the International Society of Sports Nutrition. 2007;4:14.
65. Caniato R, Filippini R, Piovan A, Puricelli L, Borsarini A, Cappelletti E. Melatonin in plants. Advances in Experimental Medicine and Biology. 2003;527:593–7.
66. Tan DX, Manchester LC, Reiter RJ, Qi WB, Karbownik M, Calvo JR. Significance of melatonin in antioxidative defense system: Reactions and products. Biological Signals and Receptors. 2000;9:137–59.
67. Jaeschke H, Gores GJ, Cederbaum AI, Hinson JA, Pessayre D, Lemasters JJ. Mechanisms of hepatotoxicity. Toxicological Sciences. 2002;65:166–76.
68. Ito S & Wakamatsu K. Quantitative analysis of eumelanin and pheomelanin in humans, mice, and other animals: a comparative review. Pigment Cell Research. 2003; 16:523-31.
69. SAN D''Mello, GJ Finlay, BC Baguley and Marjan E. (2016) Signaling Pathways in Melanogenesis. International Journal of Molecular Sciences. 2016, 17(7), 1144
70. Vivek T Natarajan, Parul Ganju, Amrita Ramkumar, Ritika Grover & Rajesh S Gokhale. (2014) Multifaceted pathways protect human skin from UV radiation. Nature Chemical Biology. volume 10, pages 542–551.
71. Millington GW. The role of proopiomelanocortin (POMC) neurones in feeding behaviour. Nutrition & Metabolism. September 2007, 4: 18.
72. Busca, R.; Ballotti, R. Cyclic AMP a key messenger in the regulation of skin pigmentation. Pigment Cell Research. 2000, 13, 60–69
73. Imokawa G., Kobayashi T., Miyagishi M., Higashi K., Yada Y. The role of endothelin-1 in epidermal hyperpigmentation and signaling mechanisms of mitogenesis and melanogenesis. Pigment Cell Research. 1997;10:218–228.
74. Te-Sheng Chang. Natural Melanogenesis Inhibitors Acting Through the Down-Regulation of Tyrosinase Activity. Materials. 2012 Sep; 5(9): 1661–1685.
75. Salducci, M.; Andre, N.; Guere, C.; Martin, M.; Fitoussi, R.; Vie, K.; Cario-Andre, M. Factors secreted by irradiated aged fibroblasts induce solar lentigo in pigmented reconstructed epidermis. Pigment Cell Melanoma Research. 2014, 27, 502–504.
76. Dahlin, J.S.; Ekoff, M.; Grootens, J.; Löf, L.; Amini, R.M.; Hagberg, H.; Ungerstedt, J.S.; Olsson-Strömberg, U.; Nilsson, G. KIT signaling is dispensable for human mast cell progenitor development. Blood 2017, 130, 1785–1794.
77. Kim, D.S.; Park, S.H.; Kwon, S.B.; Park, E.S.; Huh, C.H.; Youn, S.W.; Park, K.C. Sphingosylphosphorylcholine-induced ERK activation inhibits melanin synthesis in human melanocytes. Pigment Cell Reserch. 2006, 19, 146–153.
78. Pin-Hui Li, Li-Heng Liu, Cheng-Chung Chang, Rong Gao, Chung-Hang Leung, Dik-Lung Ma and Hui-Min David Wang. Silencing Stem Cell Factor Gene in Fibroblasts to Regulate Paracrine Factor Productions and Enhance c-Kit Expression in Melanocytes on Melanogenesis. International Journal of Molecular Sciences. 2018, 19, 1475
79. Wu, Z.; Li, Y.; MacNeil, A.J.; Junkins, R.D.; Berman, J.N.; Lin, T.J. Calcineurin–Rcan1 Interaction Contributes to Stem Cell Factor–Mediated Mast Cell Activation. The Journal of Immunology. 2013, 191, 5885–5894.
80. Feng, Z.C.; Riopel, M.; Popell, A.; Wang, R. A survival Kit for pancreatic beta cells: Stem cell factor and c-Kit receptor tyrosine kinase. Diabetologia. 2015, 58, 654–665.
81. Kim, D.S.; Park, S.H.; Kwon, S.B.; Park, E.S.; Huh, C.H.; Youn, S.W.; Park, K.C. Sphingosylphosphorylcholine-induced ERK activation inhibits melanin synthesis in human melanocytes. Pigment Cell Research. 2006, 19, 146–153.
82. Pin-Hui Li, Li-Heng Liu, Cheng-Chung Chang, Rong Gao, Chung-Hang Leung, Dik-Lung Ma and Hui-Min David Wang. Silencing Stem Cell Factor Gene in Fibroblasts to Regulate Paracrine Factor Productions and Enhance c-Kit Expression in Melanocytes on Melanogenesis. International Journal of Molecular Sciences. 2018, 19, 1475
83. Kim, D.S.; Hwang, E.S.; Lee, J.E.; Kim, S.Y.; Kwon, S.B.; Park, K.C. Sphingosine-1-phosphate decreases melanin synthesis via sustained ERK activation and subsequent MITF degradation. Journal of Cell Science. 2003, 116, 1699–1706.
84. Levy, C.; Khaled, M.; Fisher, D.E. MITF: Master regulator of melanocyte development and melanoma oncogene. Trends in Molecular Medicine. 2006, 12, 406–414.
85. Kim, Y.J.; Uyama, H. Tyrosinase inhibitors from natural and synthetic sources: Structure, inhibition mechanism and perspective for the future. Cellular and Molecular Life Sciences. 2005, 62, 1707–1723.
86. Froese, Rainer, Daniel Pauly, eds. (2007). Danio rerio in FishBase. 2007年March月版本
87.Zebra Danio.
http://thefishdoctor.co.uk/breeding-zebrafish-zebra-danios/
88. Goldshmit, Yona; Sztal, Tamar E.; Jusuf, Patricia R.; Hall, Thomas E.; Nguyen-Chi, Mai; Currie, Peter D. Fgf-Dependent Glial Cell Bridges Facilitate Spinal Cord Regeneration in Zebrafish. The Journal of Neuroscience. 2012, 32 (22): 7477–92.34.
89. Spence, Rowena; Gerlach, Gabriele; Lawrence, Christian; Smith, Carl. The behaviour and ecology of the zebrafish, Danio rerio. Biological reviews of the Cambridge Philosophical Society. 2007, 83 (1): 13–34.
90. Gerhard, G. S.; Kauffman, E. J.; Wang, X; Stewart, R; Moore, J. L.; Kasales, C. J.; Demidenko, E; Cheng, K. C. Life spans and senescent phenotypes in two strains of Zebrafish (Danio rerio). Experimental Gerontology. 2002, 37 (8–9): 1055–68.
91. Spence, Rowena; Gerlach, Gabriele; Lawrence, Christian; Smith, Carl. The behaviour and ecology of the zebrafish, Danio rerio. Biological reviews of the Cambridge Philosophical Society. 2007, 83 (1): 13–34.38.
92. K. Kenneth Hisaoka; Helen I. Battle. The normal developmental stages of the zebrafish, brachydanio rerio (hamilton-buchanan). Journal of Morphology. 6 Feb 2005, 102 (2): 311 – 327
93. In Memory of George Streisinger, "Founding Father" of Zebrafish Developmental and Genetic Research. University of Oregon. September 23, 2015.
94. Brustein et al. 2003
95. Drummond, I. A. Kidney development and disease in the zebrafish. Journal of the American Society of Nephrology. 2005, 16 (2): 299–304
96. Bernardos, Rebecca L.; Barthel, Linda K.; Meyers, Jason R.; Raymond, Pamela A. Late-Stage Neuronal Progenitors in the Retina Are Radial Muller Glia That Function as Retinal Stem Cells. Journal of Neuroscience. 2007, 27 (26): 7028–40.
97. Meeker, Nathan D.; Trede Nikolaus, S. Immunology and zebrafish: spawning new models of human disease. Developmental & Comparative Immunology. 2008, 32 (7): 745–757.
98. Renshaw, S.A.; Trede, N.S. A model 450 million years in the making: zebrafish and vertebrate immunity. Disease Models & Mechanisms. 2012, 5 (1): 38–47.
99. Meijer, A.H.; Spaink, H.P. Host–pathogen interactions made transparent with the zebrafish model. Current Drug Targets. 2011, 12 (7): 1000–1017
100. Van der Vaart, M; Spaink, HP; Meijer, AH. Pathogen recognition and activation of the innate immune response in zebra fish. Advances in Hematology. 2012, 2012: 159807.
101. Bugel, S.M.; Tanguay, R.L.; Planchart, A. Zebrafish: A marvel of high-throughput biology for 21(st) century toxicology. Current Environmental Health Reports. 2015, 1 (4): 341–352.
102. Meijer, AH. Protection and pathology in TB: learning from the zebrafish model. Semin Immunopathol. 2015, 38 (2): 261–73.
103. White, Richard Mark; Cech, Jennifer; Ratanasirintrawoot, Sutheera; Lin, Charles Y.; Rahl, Peter B.; Burke, Christopher J.; Langdon, Erin; Tomlinson, Matthew L. DHODH modulates transcriptional elongation in the neural crest and melanoma. Nature. 2011, 471 (7339): 518–22.
104. McCollum et al. 2011
105. 《分子與基因醫學研究所喻秋華副研究員,國家衛生研究院電子報第602期》取自: http://enews.nhri.org.tw/enews_list_new2_more.php?volume_indx=602&showx=showarticle&article_indx=10513
106. 北京大學生命科學學院.遺傳學與發育生物學研究中心.斑馬魚功能基因組研究室.斑馬魚實驗手冊(第一版)(2008)。
107. 豐年蝦. Wikipedia
108. 國立中山大學海洋生物研究所 豐年蝦應用
http://www.mbi.nsysu.edu.tw/vekin/novel/aquaculture/Artemia/artemia.htm
109. 劉逸軒.魚房運作守則
http://homepage.ntu.edu.tw/~ihliu/index.html
110. 國家斑馬魚資源中心.斑馬魚養殖系統的搭建及養殖技術.http://www.zfish.cn/inforscan/251.html
111.Agar N.S., Halliday G.M., Barnetson R.S., Ananthaswamy H.N., Wheeler M., and Jones A.M. (2004) The basal layer in human squamous tumors harbors more UVA than UVB fingerprint mutations: a role for UVA in human skin carcinogenesis. Proceedings of the National Academy of Sciences of the United States of America101, 4954-4959
112.Del Bino S., Sok J., Bessac E., and Bernerd F. (2006) Relationship between skin response to ultraviolet exposure and skin color type. Pigment cell research19, 606-614
113. GENDANIO BIOTECH INC.
斑馬魚實驗動物模式推廣- 水生動物實驗
http://www.gendanio-biotech.com/zh/zebrafish-services/388- zebrafish-care.html
114. Singh, G.; Kapoor, I.; Singh, P.; de Heluani, C.S.; de Lampasona, M.P.; Catalan, C.A. Chemistry, antioxidant and antimicrobial investigations on essential oil and oleoresins of Zingiber officinale. Food and chemical toxicology. 2008,46, 3295–3302.
115. Nielsen, P.V.; Rios, R. Inhibition of fungal growth on bread by volatile components from spices and herbs, and the possible application in active packaging, with special emphasis on mustard essential oil. International Journal of Food Microbiology. 2000, 60, 219–229.
116. Suhaj, M. Spice antioxidants isolation and their antiradical activity: A review. Journal of Food Composition and Analysis. 2006, 19, 531–537.
117. Chuanmao, W. Extraction study on natural plant ingredients as preservative. Journal of Food Science. 2000, 9, 006.
118. Compton, M.E.; Koch, J.M. Influence of plant preservative mixture (ppm) tm on adventitious organogenesis in melon, petunia, and tobacco. In Vitro Cellular & Developmental Biology – Plant. 2001, 37, 259–261.
119. Haraguchi H. Antioxidative Plant Constituents. Taylor & Francis Journals. 2001; pp. 337–378.
120. Nostro, A.; Germano, M.; D’angelo, V.; Marino, A.; Cannatelli, M. Extraction methods and bioautography for evaluation of medicinal plant antimicrobial activity. Letters in Applied Microbiology. 2000, 30, 379–384.
121. González-Lamothe, R.; Mitchell, G.; Gattuso, M.; Diarra, M.S.; Malouin, F.; Bouarab, K. Plant antimicrobial agents and their effects on plant and human pathogens. International Journal of Molecular Sciences. 2009, 10, 3400–3419.
122. Larsen, K.; Ibrahim, H.; Khaw, S.; Saw, L. Gingers of Peninsular Malaysia and Singapore; Natural History Publications (Borneo): Kota Kinabalu, Malaysia, 1999.
123. Rahman, H.S.; Rasedee, A.; Yeap, S.K.; Othman, H.H.; Chartrand, M.S.; Namvar, F.; Abdul, A.B.; How, C.W. Biomedical properties of a natural dietary plant metabolite, zerumbone, in cancer therapy and chemoprevention trials. BioMed Research International. 2014, 2014.
124. Yob, N.J.; Jofrry, S.M.; Affandi, M.; Teh, L.; Salleh, M.; Zakaria, Z. Zingiber zerumbet (L.) Smith: A review of its ethnomedicinal, chemical, and pharmacological uses. Evidence-Based Complementary and Alternative Medicine. 2011, 2011.
125. Grant, K.L.; Lutz, R.B. Alternative Therapies: Ginger. American Journal of Health-System Pharmacy. 2000, 57, 945–947.
126. Langner, E.; Greifenberg, S.; Gruenwald, J. Ginger: History and use. Advances in Therapy. 1997, 15, 25–44.
127. ordia, A.; Verma, S.; Srivastava, K. Effect of ginger (Zingiber officinale Rosc.) and fenugreek (Trigonella foenumgraecum L.) on blood lipids, blood sugar and platelet aggregation in patients with coronary artery disease. Prostaglandins, Leukotrienes & Essential Fatty Acids. 1997, 56, 379–384.
128. N. J. Yob, S. M. Jofrry, M. M. R. Affandi, L. K. Teh, M. Z. Salleh, and Z. A. Zakaria. Zingiber zerumbet (L.) Smith: a review of its ethnomedicinal, chemical, and pharmacological uses. Evidence-based Complementary and Alternative Medicine. vol. 2011, Article ID 543216, 12 pages, 2011.
129. N.X. Dung, T.D. Chinh, D.D. Rang, P.A. Leclercq, The constituents of the rhizome oil of Zingiber zerumbet (L.) sm. from Vietnam. Journal of Essential Oil Research. 5 (1993) 553–555.
130. Bhuiyan, M.N.I.; Chowdhury, J.U.; Begum, J. Chemical investigation of the leaf and rhizome essential oils of Zingiber zerumbet (L.) Smith from bangladesh. Bangladesh Journal of Pharmacology. 2008, 4, 9–12.
131. Yob NJ, Jofrry SM, Affandi MM, Teh LK, Salleh MZ, Zakaria ZA. Zingiber zerumbet (L.) Smith: A Review of Its Ethnomedicinal, Chemical, and Pharmacological Uses. Evidence-Based Complementary and Alternative Medicine. 2011;2011:543216.
132. S. Baby, M. Dan, A. R. M. Thaha et al.. High content of zerumbone in volatile oils of Zingiber zerumbet from southern India and Malaysia. Flavour and Fragrance Journal. vol. 24, no. 6, pp. 301–308, 2009.
133. D. S. Jang, A.-R. Han, G. Park, G.-J. Jhon, and E.-K. Seo. Flavonoids and aromatic compounds from the rhizomes of Zingiber zerumbet. Archives of Pharmacal Research. vol. 27, no. 4, pp. 386–389, 2004.
134. R. O. Prakash, R. K. Kumar, A. Rabinarayan, and M. S. Kumar. Pharmacognostical and phytochemical studies of Zingiber zerumbet (L.) Smith rhizome. International Journal of Research in Ayurveda and Pharmacy. vol. 2, no. 3, pp. 698–703, 2011.
135. D. S. Jang and E.-K. Seo. Potentially bioactive two new natural sesquiterpenoids from the rhizomes of Zingiber zerumbet. Archives of Pharmacal Research. vol. 28, no. 3, pp. 294–296, 2005.
136. Rahman HS, Rasedee A, Yeap SK, Othman HH, Chartrand MS, Namvar F, Abdul AB, How CW. Biomedical properties of a natural dietary plant metabolite, zerumbone, in cancer therapy and chemoprevention trials. BioMed Research International. 2014;2014:920742.
137. Kapoor S. The rapidly emerging role of zerumbone in attenuating tumor growth in systemic malignancies. Molecular Nutrition & Food Research. 2012 Oct;56(10):1487.
138. Sadhu SK, Khatun A, Ohtsuki T, Ishibashi M. First isolation of sesquiterpenes and flavonoids from Zingiber spectabile and identification of zerumbone as the major cell growth inhibitory component. Natural Product Research. 2007 Dec;21(14):1242-7.
139. Rahman HS, Rasedee A, How CW, Abdul AB, Zeenathul NA, Othman HH, Saeed MI, Yeap SK. Zerumbone-loaded nanostructured lipid carriers: preparation, characterization, and antileukemic effect. International Journal of Nanomedicine. 2013;8:2769-81.
140. Prasannan R, Kalesh KA, Shanmugam MK, Nachiyappan A, Ramachandran L, Nguyen AH, Kumar AP, Lakshmanan M, Ahn KS, Sethi G. Key cell signaling pathways modulated by zerumbone: role in the prevention and treatment of cancer. Biochemistry and Pharmacology 2012 Nov 15;84(10):1268-76.
142. Hoffman A, Spetner LM, and Burk e M. Redox-regulated mechanism may account for zerumbone''s ability to suppress cancer-cell proliferation (multiple letters). Carcinogenesis. vol. 23, no. 11, pp. 1961–1962, 2002.
143. Zakaria ZA, Mohamad AS, Chear CT, Wong YY, Israf DA, Sulaiman MR. Antiinflammatory and antinociceptive activities of Zingiber zerumbet methanol extract in experimental model systems. Medical Principles and Practice. 2010;19(4):287-94.
144. M. N. Somchit, J. H. Mak, A. Ahmad Bustamam et al.. Zerumbone isolated from Zingiber zerumbet inhibits inflammation and pain in rats. Journal of Medicinal Plant Research. vol. 6, pp. 177–180, 2012.
145. Murakami A, Takahashi D, Kinoshita T, Koshimizu K, Kim HW, Yoshihiro A, Nakamura Y, Jiwajinda S, Terao J, Ohigashi H. Zerumbone, a Southeast Asian ginger sesquiterpene, markedly suppresses free radical generation, proinflammatory protein production, and cancer cell proliferation accompanied by apoptosis: the alpha,beta-unsaturated carbonyl group is a prerequisite. Carcinogenesis. 2002 May;23(5):795-802.
146. Murakami A, Hayashi R, Tanaka T, Kwon KH, Ohigashi H, Safitri R. Suppression of dextran sodium sulfate-induced colitis in mice by zerumbone, a subtropical ginger sesquiterpene, and nimesulide: separately and in combination. Biochemical Pharmacology. 2003 Oct 1;66(7):1253-61.
147. Murakami A, Ohigashi H. Cancer-preventive anti-oxidants that attenuate free radical generation by inflammatory cells. Biological Chemistry. 2006 Apr;387(4):387-92.
148. Nakamura Y, Yoshida C, Murakami A, Ohigashi H, Osawa T, Uchida K. Zerumbone, a tropical ginger sesquiterpene, activates phase II drug metabolizing enzymes. FEBS Letters. 2004 Aug 13;572(1-3):245-50.
149. Yang HL, Lee CL, Korivi M, Liao JW, Rajendran P, Wu JJ, Hseu YC. Zerumbone protects human skin keratinocytes against UVA-irradiated damages through Nrf2 induction. Biochemical Pharmacology. 2018 Feb;148:130-146.
150. Keong YS, Alitheen NB, Mustafa S, Abdul Aziz S, Abdul Rahman M, Ali AM. Immunomodulatory effects of zerumbone isolated from roots of Zingiber zerumbet. Pakistan Journal of Pharmaceutical Sciences. 2010 Jan;23(1):75-82.
151. Kusters JG, van Vliet AH, Kuipers EJ. Pathogenesis of Helicobacter pylori infection. Clinical Microbiology Reviews. 2006 Jul;19(3):449-90.
152. Tzeng TF, Liou SS, Chang CJ, Liu IM. Zerumbone, a Natural Cyclic Sesquiterpene of Zingiber zerumbet Smith, Attenuates Nonalcoholic Fatty Liver Disease in Hamsters Fed on High-Fat Diet. Evidence-Based Complementary and Alternative Medicine. 2013;2013:303061.
153. Santosh Kumar SC, Srinivas P, Negi PS, Bettadaiah BK. Antibacterial and antimutagenic activities of novel zerumbone analogues. Food Chemistry. 2013 Nov 15;141(2):1097-103.
154. I. Sharma, D. Gusain, and V. P. Dixit. Hypolipidemic and antiatherosclerotic effect of Zingiber officinale in cholesterol fed rabbits. Phytotherapy Research. vol. 10, pp. 517–518, 1996.
155. Rahman HS, Rasedee A, Yeap SK, Othman HH, Chartrand MS, Namvar F, Abdul AB, How CW. Biomedical properties of a natural dietary plant metabolite, zerumbone, in cancer therapy and chemoprevention trials. BioMed Research International. 2014;2014:920742.
156. Abdelwahab SI, Abdul AB, Zain ZN, Hadi AH. Zerumbone inhibits interleukin-6 and induces apoptosis and cell cycle arrest in ovarian and cervical cancer cells. International Immunopharmacology. 2012 Apr;12(4):594-602.
157. Eguchi A, Kaneko Y, Murakami A, Ohigashi H. Zerumbone suppresses phorbol ester-induced expression of multiple scavenger receptor genes in THP-1 human monocytic cells. Bioscience, Biotechnology and Biochemistry. 2007 Apr;71(4):935-45.
158. http://www.unsun.com.tw/knowledge_p02.html
159. Palomba, L., Silvestri, C., Imperatore, R., Morello, G., Piscitelli, F., Martella, A., Cristino, L., and Di Marzo, V. (2015) JBC Papers in Press. Published on April 13, 2015 as Manuscript M115. 646885.
160. Bertolesi, G. E., Hehr, C. L., and McFarlane, S. (2015) Melanopsin photoreception in the eye regulates light‐induced skin colour changes through the production of α‐MSH in the pituitary gland. Pigment cell & melanoma research
161.Jin, K.-S., Lee, J. Y., Hyun, S. K., Kim, B. W., and Kwon, H. J. (2015) Juniperus chinensis and the functional compounds, cedrol and widdrol, ameliorate α-melanocyte stimulating hormone-induced melanin formation in B16F10 cells. Food Science and Biotechnology24, 611-618
162. Hamada H, Watanabe M, Lau HE, Nishida T, Hasegawa T, Parichy DM, Kondo S. Involvement of Delta/Notch signaling in zebrafish adult pigment stripe patterning. Development. 2014 Jan;141(2):318-24.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊