|
1.Ovaere P, Lippens S, Vandenabeele P, Declercq W. (2009)The emerging roles of serine protease cascades in the epidermis". Trends in Biochemical Sciences., 34 (9): 453–463. 2. http://en.wikipedia.org/wiki/Epidermis 3. James, William; Berger, Timothy; Elston, Dirk (2005). Andrews'' Diseases of the Skin: Clinical Dermatology (10th ed.). Saunders. Pages 1, 11–12. ISBN 0-7216-2921-0. 4.Breitkreutz, D; Mirancea, N; Nischt, R. Basement membranes in skin: Unique matrix structures with diverse functions?. Histochemistry and cell biology. 2009, 132 (1): 1–10. PMID 19333614. doi:10.1007/s00418-009-0586-0 5.Smith MM, Melrose J. Proteoglycans in normal and healing skin. Advances in Wound Care. 2015, 4 (3): 152–73. 6.Madison KC. (2003). Barrier function of the skin: "la raison d''être" of the epidermis. Journal of Investigative Dermatology. 121(2):231-41. 7.The ozone layer protects humans from this.Lyman, T. Victor Schumann. Astrophysical Journal. 1914, 38: 1–4. 8. Shaw, P. S., Gupta R Fau - Lykke, K. R., and Lykke, K. R. Characterization of an ultraviolet and a vacuum-ultraviolet irradiance meter with synchrotron radiation. Applied Optics. Vol. 41, Issue 34, pp. 7173-7178 (2002) 9. Davies H., Bignell G.R., Cox C., Stephens P., Edkins S., Clegg S., Teague J., Woffendin H., Garnett M.J., and Bottomley W. (2002) Mutations of the BRAF gene in human cancer. Nature417, 949-954 10.Beissert S., and Schwarz T. (2009) Ultraviolet-induced immunosuppression: implications for photocarcinogenesis. in Skin Cancer after Organ Transplantation, Springer. pp 109-121 11.Kato Y., Igarashi H., Kanno H., Tanaka K., and Yoshida A. (2009) Metabolic changes during cataract formation by ultraviolet radiation in the incubated rabbit lens. [Hokkaido igaku zasshi] The Hokkaido journal of medical science84, 423-430 12.Varma S. D., Kovtun S., and Hegde K. R. (2011) Role of UV irradiation and oxidative stress in cataract formation. Medical prevention by nutritional antioxidants and metabolic agonists. Eye & contact lens37, 233 13.Wang J., Löfgren S., Dong X., Galichanin K., and Söderberg P.G. (2011) Dose-response relationship for α-tocopherol prevention of ultraviolet radiation induced cataract in rat. Experimental eye research93, 91-97 14. Cheeseman KH, Slater TF. An introduction to free radical biochemistry. British Medical Bulletin. 1993;49:481–93. 15. Lobo V, Patil A, Phatak A, Chandra N. Free radicals, antioxidants and functional foods: Impact on human health. Pharmacognosy Reviews. 2010;4(8):118-26. 16. Bagchi K, Puri S. Free radicals and antioxidants in health and disease. East Mediterranean Health Journal. 1998;4:350–60. 17. Liu T, Stern A, Roberts LJ. The isoprostanes: Novel prostanglandin-like products of the free radical catalyzed peroxidation of arachidonic acid. Journal of Biomedical Science. 1999;6:226–35. 18. Ebadi M. Antioxidants and free radicals in health and disease: An introduction to reactive oxygen species, oxidative injury, neuronal cell death and therapy in neurodegenerative diseases. Arizona: Prominent Press; 2001. 19. A. Aroun, J.L. Zhong, R.M. Tyrrell, C. Pourzand. Iron, oxidative stress and the example of solar ultraviolet a radiation. Photochemical & Photobiological Sciences., 11 (2012), 118-134. 20. C. Kielbassa, L. Roza, B. Epe. Wavelength dependence of oxidative DNA damage induced by UV and visible light. Carcinogenesis., 18 (1997), 811-816. 21. A. Stary, C. Robert, A. Sarasin. Deleterious effects of ultraviolet A radiation in human cells. Mutation Research., 383 (1997), 1-8. 22. Ghaderi-Shekhi Abadi P, Shirazi FH, Joshaghani M, Moghimi HR. Influence of formulation of ZnO nanoblokes containing metallic ions dopants on their cytotoxicity and protective factors: An in vitro study on human skin cells exposed to UVA radiation. Toxicology Reports., 2018 Mar 6;5:468-479. 23. Kamenisch Y, Ivanova I, Drexler K, Berneburg M. UVA, metabolism and melanoma: UVA makes melanoma hungry for metastasis. Experimental Dermatology. 2018 Apr 15;1–9. 24. Yong Hun Chi, Seol Ki Paeng, Min Ji Kim, Gwang Yong Hwang, Sarah Mae B. Melencion, Hun Taek Oh, Sang Yeol Lee. Redox-dependent functional switching of plant proteins accompanying with their structural changes. Frontiers in Plant Science. 2013; 4: 277. 25. Hiramoto K, Yamate Y. Gp91phox-derived reactive oxygen species/urocortin 2/corticotropin-releasing hormone receptor type 2 play an important role in long-term ultraviolet a eye irradiation-induced photoaging. Journal of Photochemistry and Photobiology, 2016, 92(1): 180–186. 26. Ko GA, Cho SK. Phytol suppresses melanogenesis through proteasomal degradation of MITF via the ROS-ERK signaling pathway. Chemico-Biological Interactions. 2018 Apr 25;286:132-140. 27. G.S. Liu, H. Peshavariya, M. Higuchi, A.C. Brewer, C.W. Chang, E.C. Chan, G.J. Dusting. Microphthalmia-associated transcription factor modulates expression of NADPH oxidase type 4: a negative regulator of melanogenesis. Free Radical Biology and Medicine., 52 (2012), 1835-1843. 28. C. Jiménez-Cervantes, M. Martínez-Esparza, C P C, N. Daum, F. Solano, J.C. García-Borrón. Inhibition of melanogenesis in response to oxidative stress. transient downregulation of melanocyte differentiation markers and possivle involvement of microphtalmia transcription factor. Journal of Cell Science., 114 (2001), 2335-2344. 29. E.S. Kim, S.J. Park, M.J. Goh, Y.J. Na, D.S. Jo, Y.K. Jo, J.H. Shin, E.S. Choi, H.K. Lee, J.Y. Kim, H.B. Jeon, J.C. Kim, D.H. Cho. Mitochondrial dynamics regulate melanogenesis through proteasomal degradation of MITF via ROS-ERK activation. Pigment Cell & Melanoma Research., 27 (2014), 1051-1062. 30. F. Liu, Y. Fu, F.L. Meyskens Jr. MITF regulates cellular response to reactive oxygen species through transcriptional regulation of APE-1/Ref-1. Journal of Investigative Dermatology., 129 (2009), 422-431. 31. Sana Ben Othman and Tomio Yabe. Use of hydrogen peroxide and peroxyl radicals to induce oxidative stress in neuronal cells. Agricultural Science, 2015, 3:40-45. 32. Kovacic P, Pozos RS, Somanathan R, Shangari N, O''Brien PJ. Mechanism of mitochondrial uncouplers, inhibitors, and toxins: focus on electron transfer, free radicals, and structure-activity relationships. Current Medicinal Chemistry. 2005: 12: 2601-23. 33. Pastor N, Weinstein H, Jamison E, Brenowitz M. A detailed interpretation of OH radical footprints in a TBP-DNA complex reveals the role of dynamics in the mechanism of sequencespecific binding. Journal of Molecular Biology. 2000: 304: 55-68. 34. Valko M, Izakovic M, Mazur M, Rhodes CJ, Telser J. Role of oxygen radicals in DNA damage and cancer incidence. Molecular and Cellular Biochemistry. 2004: 266: 37-56. 35. Gu Q, Yang X, Lin L, et al. Genetic ablation of solute carrier family 7a3a leads to hepatic steatosis in zebrafish during fasting. Hepatology, 2014, 60(6): 1929-1941. 36. Carr AC, McCall MR, Frei B. Oxidation of LDL by myeloperoxidase and reactive nitrogen species: reaction pathways and antioxidant protection. Arteriosclerosis, Thrombosis, and Vascular Biology. 2000: 20: 1716-23. 37. Keum YS, Choi BY: Molecular and chemical regulation of the Keap1-Nrf2 signaling pathway. Molecules. 2014; 19: 10074-10089. 38. Nasiri HR, Linge S, Ullmann D. Thermodynamic profiling of inhibitors of Nrf2:Keap1 interactions. Bioorganic & Medicinal Chemistry Letters 2016 Jan 15;26(2):526-529. 39. Carmona-Aparicio L, Pérez-Cruz C, Zavala-Tecuapetla C, Granados-Rojas L, Rivera-Espinosa L, Montesinos-Correa H, Hernández-Damián J, Pedraza-Chaverri J, Sampieri A, Coballase-Urrutia E, Cárdenas-Rodríguez N. Overview of Nrf2 as Therapeutic Target in Epilepsy. International Journal of Molecular Sciences. 2015 Aug 7;16(8):18348-67. 40. Lo S C, Li X, Henzl M T, et al. Structure of the Keap1 Nrf2 interface provides mechanistic insight into Nrf2 signaling. The EMBO Journal. 2006, 25(15):3605-17. 41. Kumar H, Kim IS, More SV, Kim BW, Choi DK. Natural product-derived pharmacological modulators of Nrf2/ARE pathway for chronic diseases. Natural Product Reports., 2014 Jan;31(1):109-39. 42. 姜敏,高振,李風森 綜述。Keap1-Nrf2-ARE通路與慢性阻塞性肺疾病氧化/抗氧化失衡關係。國際病理科學與臨床雜誌,2013, 33(2), 165-169 43. 黎孝韻、曾國慶。自由基及抗氧化物功能的探討。The Journal of Pharmacy臨床藥學;第24卷第2期;95-103。 44. 衛生福利部食品藥物管理署 45. http://www.healthofall.com/a2017316148244/ 46. Meng-Ling Wu, Yen-Chun Ho, and Shaw-Fang Yet. A Central Role of Heme Oxygenase-1 in Cardiovascular Protection. Antioxidants & Redox Signaling. 2011 Oct 1;15(7):1835-46. 47. 郭靜娟。人體奇蹟自身細胞的Nrf2轉錄因子,能夠抗氧化抗發炎和癌症腫瘤預防。健康紅綠燈。2014,10。 48. Valko M, Leibfritz D, Moncol J, et al. Free radicals and antioxidants in normal physiological functions and human disease. International Journal Of Biochemistry & Cell Biology. 2007: 39: 44-84. 49. Chelikani P, Fita I, Loewen PC. Diversity of structures and properties among catalases. Cellular and Molecular Life Sciences. 2004;61:192–208. 50. Gaetani G, Ferraris A, Rolfo M, Mangerini R, Arena S, Kirkman H. Predominant role of catalase in the disposal of hydrogen peroxide within human erythrocytes. Blood. 1996;87:1595–9. 51. Brigelius-Flohe R. Tissue-specific functions of individual glutathione peroxidases. Free Radical Biology & Medicine. 1999;27:951–65. 52. Hayes J, Flanagan J, Jowsey I. Glutathione transferases. Annual Review of Pharmacology and Toxicology. 2005;45:51–88. 53. Pastore A, Federici G, Bertini E, Piemonte F. Analysis of glutathione: implication in redox and detoxification. Clinica Chimica Acta. 2003: 333: 19-39. 54. Padayatty S, Katz A, Wang Y, Eck P, Kwon O, Lee J, et al. Vitamin C as an antioxidant: Evaluation of its role in disease prevention. Journal of the American College of Nutrition. 2003;22:18–35. 55. Carr A, Frei B. Does vitamin C act as a pro-oxidant under physiological conditions? FASEB Journal. 1999: 13: 1007-24. 56. Herrera E, Barbas C. Vitamin E: Action, metabolism and perspectives. Journal of Physiology and Biochemistry. 2001;57:43–56. 57. Brigelius-Flohe R, Traber M. Vitamin E: Function and metabolism. FASEB Journal. 1999;13:1145–55. 58. Traber MG, Atkinson J. Vitamin E, antioxidant and nothing more. Free radical biology and medicine. 2007;43:4–15. 59. Wang X, Quinn P. Vitamin E and its function in membranes. Progress in Lipid Research. 1999;38:309–36. 60. Di Martino A, Trusova ME, Postnikov PS, Sedlarik V. Enhancement of the antioxidant activity and stability of β-carotene using amphiphilic chitosan/nucleic acid polyplexes. International Journal of Biological Macromolecules. 2018 Jun 3;117:773-780. 61. Valko M, Leibfritz D, Moncol J, et al. Free radicals and antioxidants in normal physiological functions and human disease. International Journal Of Biochemistry & Cell Biology. 2007: 39: 44-84. 62. William M. Johnson, Amy L. Wilson-Delfosse and John. J. Mieyal. Dysregulation of Glutathione Homeostasis in Neurodegenerative Diseases. Nutrients 2012, 4(10), 1399-1440. 63. 趙強:自由基(Free Radicals)。 美 食天下 1997;第64期, 1997.3 P116。 64. Nassar E, Mulligan C, Taylor L, Kerksick C, Galbreath M, Greenwood M, et al. Effects of a single dose of N-Acetyl-5-methoxytryptamine (Melatonin) and resistance exercise on the growth hormone/IGF-1 axis in young males and females. Journal of the International Society of Sports Nutrition. 2007;4:14. 65. Caniato R, Filippini R, Piovan A, Puricelli L, Borsarini A, Cappelletti E. Melatonin in plants. Advances in Experimental Medicine and Biology. 2003;527:593–7. 66. Tan DX, Manchester LC, Reiter RJ, Qi WB, Karbownik M, Calvo JR. Significance of melatonin in antioxidative defense system: Reactions and products. Biological Signals and Receptors. 2000;9:137–59. 67. Jaeschke H, Gores GJ, Cederbaum AI, Hinson JA, Pessayre D, Lemasters JJ. Mechanisms of hepatotoxicity. Toxicological Sciences. 2002;65:166–76. 68. Ito S & Wakamatsu K. Quantitative analysis of eumelanin and pheomelanin in humans, mice, and other animals: a comparative review. Pigment Cell Research. 2003; 16:523-31. 69. SAN D''Mello, GJ Finlay, BC Baguley and Marjan E. (2016) Signaling Pathways in Melanogenesis. International Journal of Molecular Sciences. 2016, 17(7), 1144 70. Vivek T Natarajan, Parul Ganju, Amrita Ramkumar, Ritika Grover & Rajesh S Gokhale. (2014) Multifaceted pathways protect human skin from UV radiation. Nature Chemical Biology. volume 10, pages 542–551. 71. Millington GW. The role of proopiomelanocortin (POMC) neurones in feeding behaviour. Nutrition & Metabolism. September 2007, 4: 18. 72. Busca, R.; Ballotti, R. Cyclic AMP a key messenger in the regulation of skin pigmentation. Pigment Cell Research. 2000, 13, 60–69 73. Imokawa G., Kobayashi T., Miyagishi M., Higashi K., Yada Y. The role of endothelin-1 in epidermal hyperpigmentation and signaling mechanisms of mitogenesis and melanogenesis. Pigment Cell Research. 1997;10:218–228. 74. Te-Sheng Chang. Natural Melanogenesis Inhibitors Acting Through the Down-Regulation of Tyrosinase Activity. Materials. 2012 Sep; 5(9): 1661–1685. 75. Salducci, M.; Andre, N.; Guere, C.; Martin, M.; Fitoussi, R.; Vie, K.; Cario-Andre, M. Factors secreted by irradiated aged fibroblasts induce solar lentigo in pigmented reconstructed epidermis. Pigment Cell Melanoma Research. 2014, 27, 502–504. 76. Dahlin, J.S.; Ekoff, M.; Grootens, J.; Löf, L.; Amini, R.M.; Hagberg, H.; Ungerstedt, J.S.; Olsson-Strömberg, U.; Nilsson, G. KIT signaling is dispensable for human mast cell progenitor development. Blood 2017, 130, 1785–1794. 77. Kim, D.S.; Park, S.H.; Kwon, S.B.; Park, E.S.; Huh, C.H.; Youn, S.W.; Park, K.C. Sphingosylphosphorylcholine-induced ERK activation inhibits melanin synthesis in human melanocytes. Pigment Cell Reserch. 2006, 19, 146–153. 78. Pin-Hui Li, Li-Heng Liu, Cheng-Chung Chang, Rong Gao, Chung-Hang Leung, Dik-Lung Ma and Hui-Min David Wang. Silencing Stem Cell Factor Gene in Fibroblasts to Regulate Paracrine Factor Productions and Enhance c-Kit Expression in Melanocytes on Melanogenesis. International Journal of Molecular Sciences. 2018, 19, 1475 79. Wu, Z.; Li, Y.; MacNeil, A.J.; Junkins, R.D.; Berman, J.N.; Lin, T.J. Calcineurin–Rcan1 Interaction Contributes to Stem Cell Factor–Mediated Mast Cell Activation. The Journal of Immunology. 2013, 191, 5885–5894. 80. Feng, Z.C.; Riopel, M.; Popell, A.; Wang, R. A survival Kit for pancreatic beta cells: Stem cell factor and c-Kit receptor tyrosine kinase. Diabetologia. 2015, 58, 654–665. 81. Kim, D.S.; Park, S.H.; Kwon, S.B.; Park, E.S.; Huh, C.H.; Youn, S.W.; Park, K.C. Sphingosylphosphorylcholine-induced ERK activation inhibits melanin synthesis in human melanocytes. Pigment Cell Research. 2006, 19, 146–153. 82. Pin-Hui Li, Li-Heng Liu, Cheng-Chung Chang, Rong Gao, Chung-Hang Leung, Dik-Lung Ma and Hui-Min David Wang. Silencing Stem Cell Factor Gene in Fibroblasts to Regulate Paracrine Factor Productions and Enhance c-Kit Expression in Melanocytes on Melanogenesis. International Journal of Molecular Sciences. 2018, 19, 1475 83. Kim, D.S.; Hwang, E.S.; Lee, J.E.; Kim, S.Y.; Kwon, S.B.; Park, K.C. Sphingosine-1-phosphate decreases melanin synthesis via sustained ERK activation and subsequent MITF degradation. Journal of Cell Science. 2003, 116, 1699–1706. 84. Levy, C.; Khaled, M.; Fisher, D.E. MITF: Master regulator of melanocyte development and melanoma oncogene. Trends in Molecular Medicine. 2006, 12, 406–414. 85. Kim, Y.J.; Uyama, H. Tyrosinase inhibitors from natural and synthetic sources: Structure, inhibition mechanism and perspective for the future. Cellular and Molecular Life Sciences. 2005, 62, 1707–1723. 86. Froese, Rainer, Daniel Pauly, eds. (2007). Danio rerio in FishBase. 2007年March月版本 87.Zebra Danio. http://thefishdoctor.co.uk/breeding-zebrafish-zebra-danios/ 88. Goldshmit, Yona; Sztal, Tamar E.; Jusuf, Patricia R.; Hall, Thomas E.; Nguyen-Chi, Mai; Currie, Peter D. Fgf-Dependent Glial Cell Bridges Facilitate Spinal Cord Regeneration in Zebrafish. The Journal of Neuroscience. 2012, 32 (22): 7477–92.34. 89. Spence, Rowena; Gerlach, Gabriele; Lawrence, Christian; Smith, Carl. The behaviour and ecology of the zebrafish, Danio rerio. Biological reviews of the Cambridge Philosophical Society. 2007, 83 (1): 13–34. 90. Gerhard, G. S.; Kauffman, E. J.; Wang, X; Stewart, R; Moore, J. L.; Kasales, C. J.; Demidenko, E; Cheng, K. C. Life spans and senescent phenotypes in two strains of Zebrafish (Danio rerio). Experimental Gerontology. 2002, 37 (8–9): 1055–68. 91. Spence, Rowena; Gerlach, Gabriele; Lawrence, Christian; Smith, Carl. The behaviour and ecology of the zebrafish, Danio rerio. Biological reviews of the Cambridge Philosophical Society. 2007, 83 (1): 13–34.38. 92. K. Kenneth Hisaoka; Helen I. Battle. The normal developmental stages of the zebrafish, brachydanio rerio (hamilton-buchanan). Journal of Morphology. 6 Feb 2005, 102 (2): 311 – 327 93. In Memory of George Streisinger, "Founding Father" of Zebrafish Developmental and Genetic Research. University of Oregon. September 23, 2015. 94. Brustein et al. 2003 95. Drummond, I. A. Kidney development and disease in the zebrafish. Journal of the American Society of Nephrology. 2005, 16 (2): 299–304 96. Bernardos, Rebecca L.; Barthel, Linda K.; Meyers, Jason R.; Raymond, Pamela A. Late-Stage Neuronal Progenitors in the Retina Are Radial Muller Glia That Function as Retinal Stem Cells. Journal of Neuroscience. 2007, 27 (26): 7028–40. 97. Meeker, Nathan D.; Trede Nikolaus, S. Immunology and zebrafish: spawning new models of human disease. Developmental & Comparative Immunology. 2008, 32 (7): 745–757. 98. Renshaw, S.A.; Trede, N.S. A model 450 million years in the making: zebrafish and vertebrate immunity. Disease Models & Mechanisms. 2012, 5 (1): 38–47. 99. Meijer, A.H.; Spaink, H.P. Host–pathogen interactions made transparent with the zebrafish model. Current Drug Targets. 2011, 12 (7): 1000–1017 100. Van der Vaart, M; Spaink, HP; Meijer, AH. Pathogen recognition and activation of the innate immune response in zebra fish. Advances in Hematology. 2012, 2012: 159807. 101. Bugel, S.M.; Tanguay, R.L.; Planchart, A. Zebrafish: A marvel of high-throughput biology for 21(st) century toxicology. Current Environmental Health Reports. 2015, 1 (4): 341–352. 102. Meijer, AH. Protection and pathology in TB: learning from the zebrafish model. Semin Immunopathol. 2015, 38 (2): 261–73. 103. White, Richard Mark; Cech, Jennifer; Ratanasirintrawoot, Sutheera; Lin, Charles Y.; Rahl, Peter B.; Burke, Christopher J.; Langdon, Erin; Tomlinson, Matthew L. DHODH modulates transcriptional elongation in the neural crest and melanoma. Nature. 2011, 471 (7339): 518–22. 104. McCollum et al. 2011 105. 《分子與基因醫學研究所喻秋華副研究員,國家衛生研究院電子報第602期》取自: http://enews.nhri.org.tw/enews_list_new2_more.php?volume_indx=602&showx=showarticle&article_indx=10513 106. 北京大學生命科學學院.遺傳學與發育生物學研究中心.斑馬魚功能基因組研究室.斑馬魚實驗手冊(第一版)(2008)。 107. 豐年蝦. Wikipedia 108. 國立中山大學海洋生物研究所 豐年蝦應用 http://www.mbi.nsysu.edu.tw/vekin/novel/aquaculture/Artemia/artemia.htm 109. 劉逸軒.魚房運作守則 http://homepage.ntu.edu.tw/~ihliu/index.html 110. 國家斑馬魚資源中心.斑馬魚養殖系統的搭建及養殖技術.http://www.zfish.cn/inforscan/251.html 111.Agar N.S., Halliday G.M., Barnetson R.S., Ananthaswamy H.N., Wheeler M., and Jones A.M. (2004) The basal layer in human squamous tumors harbors more UVA than UVB fingerprint mutations: a role for UVA in human skin carcinogenesis. Proceedings of the National Academy of Sciences of the United States of America101, 4954-4959 112.Del Bino S., Sok J., Bessac E., and Bernerd F. (2006) Relationship between skin response to ultraviolet exposure and skin color type. Pigment cell research19, 606-614 113. GENDANIO BIOTECH INC. 斑馬魚實驗動物模式推廣- 水生動物實驗 http://www.gendanio-biotech.com/zh/zebrafish-services/388- zebrafish-care.html 114. Singh, G.; Kapoor, I.; Singh, P.; de Heluani, C.S.; de Lampasona, M.P.; Catalan, C.A. Chemistry, antioxidant and antimicrobial investigations on essential oil and oleoresins of Zingiber officinale. Food and chemical toxicology. 2008,46, 3295–3302. 115. Nielsen, P.V.; Rios, R. Inhibition of fungal growth on bread by volatile components from spices and herbs, and the possible application in active packaging, with special emphasis on mustard essential oil. International Journal of Food Microbiology. 2000, 60, 219–229. 116. Suhaj, M. Spice antioxidants isolation and their antiradical activity: A review. Journal of Food Composition and Analysis. 2006, 19, 531–537. 117. Chuanmao, W. Extraction study on natural plant ingredients as preservative. Journal of Food Science. 2000, 9, 006. 118. Compton, M.E.; Koch, J.M. Influence of plant preservative mixture (ppm) tm on adventitious organogenesis in melon, petunia, and tobacco. In Vitro Cellular & Developmental Biology – Plant. 2001, 37, 259–261. 119. Haraguchi H. Antioxidative Plant Constituents. Taylor & Francis Journals. 2001; pp. 337–378. 120. Nostro, A.; Germano, M.; D’angelo, V.; Marino, A.; Cannatelli, M. Extraction methods and bioautography for evaluation of medicinal plant antimicrobial activity. Letters in Applied Microbiology. 2000, 30, 379–384. 121. González-Lamothe, R.; Mitchell, G.; Gattuso, M.; Diarra, M.S.; Malouin, F.; Bouarab, K. Plant antimicrobial agents and their effects on plant and human pathogens. International Journal of Molecular Sciences. 2009, 10, 3400–3419. 122. Larsen, K.; Ibrahim, H.; Khaw, S.; Saw, L. Gingers of Peninsular Malaysia and Singapore; Natural History Publications (Borneo): Kota Kinabalu, Malaysia, 1999. 123. Rahman, H.S.; Rasedee, A.; Yeap, S.K.; Othman, H.H.; Chartrand, M.S.; Namvar, F.; Abdul, A.B.; How, C.W. Biomedical properties of a natural dietary plant metabolite, zerumbone, in cancer therapy and chemoprevention trials. BioMed Research International. 2014, 2014. 124. Yob, N.J.; Jofrry, S.M.; Affandi, M.; Teh, L.; Salleh, M.; Zakaria, Z. Zingiber zerumbet (L.) Smith: A review of its ethnomedicinal, chemical, and pharmacological uses. Evidence-Based Complementary and Alternative Medicine. 2011, 2011. 125. Grant, K.L.; Lutz, R.B. Alternative Therapies: Ginger. American Journal of Health-System Pharmacy. 2000, 57, 945–947. 126. Langner, E.; Greifenberg, S.; Gruenwald, J. Ginger: History and use. Advances in Therapy. 1997, 15, 25–44. 127. ordia, A.; Verma, S.; Srivastava, K. Effect of ginger (Zingiber officinale Rosc.) and fenugreek (Trigonella foenumgraecum L.) on blood lipids, blood sugar and platelet aggregation in patients with coronary artery disease. Prostaglandins, Leukotrienes & Essential Fatty Acids. 1997, 56, 379–384. 128. N. J. Yob, S. M. Jofrry, M. M. R. Affandi, L. K. Teh, M. Z. Salleh, and Z. A. Zakaria. Zingiber zerumbet (L.) Smith: a review of its ethnomedicinal, chemical, and pharmacological uses. Evidence-based Complementary and Alternative Medicine. vol. 2011, Article ID 543216, 12 pages, 2011. 129. N.X. Dung, T.D. Chinh, D.D. Rang, P.A. Leclercq, The constituents of the rhizome oil of Zingiber zerumbet (L.) sm. from Vietnam. Journal of Essential Oil Research. 5 (1993) 553–555. 130. Bhuiyan, M.N.I.; Chowdhury, J.U.; Begum, J. Chemical investigation of the leaf and rhizome essential oils of Zingiber zerumbet (L.) Smith from bangladesh. Bangladesh Journal of Pharmacology. 2008, 4, 9–12. 131. Yob NJ, Jofrry SM, Affandi MM, Teh LK, Salleh MZ, Zakaria ZA. Zingiber zerumbet (L.) Smith: A Review of Its Ethnomedicinal, Chemical, and Pharmacological Uses. Evidence-Based Complementary and Alternative Medicine. 2011;2011:543216. 132. S. Baby, M. Dan, A. R. M. Thaha et al.. High content of zerumbone in volatile oils of Zingiber zerumbet from southern India and Malaysia. Flavour and Fragrance Journal. vol. 24, no. 6, pp. 301–308, 2009. 133. D. S. Jang, A.-R. Han, G. Park, G.-J. Jhon, and E.-K. Seo. Flavonoids and aromatic compounds from the rhizomes of Zingiber zerumbet. Archives of Pharmacal Research. vol. 27, no. 4, pp. 386–389, 2004. 134. R. O. Prakash, R. K. Kumar, A. Rabinarayan, and M. S. Kumar. Pharmacognostical and phytochemical studies of Zingiber zerumbet (L.) Smith rhizome. International Journal of Research in Ayurveda and Pharmacy. vol. 2, no. 3, pp. 698–703, 2011. 135. D. S. Jang and E.-K. Seo. Potentially bioactive two new natural sesquiterpenoids from the rhizomes of Zingiber zerumbet. Archives of Pharmacal Research. vol. 28, no. 3, pp. 294–296, 2005. 136. Rahman HS, Rasedee A, Yeap SK, Othman HH, Chartrand MS, Namvar F, Abdul AB, How CW. Biomedical properties of a natural dietary plant metabolite, zerumbone, in cancer therapy and chemoprevention trials. BioMed Research International. 2014;2014:920742. 137. Kapoor S. The rapidly emerging role of zerumbone in attenuating tumor growth in systemic malignancies. Molecular Nutrition & Food Research. 2012 Oct;56(10):1487. 138. Sadhu SK, Khatun A, Ohtsuki T, Ishibashi M. First isolation of sesquiterpenes and flavonoids from Zingiber spectabile and identification of zerumbone as the major cell growth inhibitory component. Natural Product Research. 2007 Dec;21(14):1242-7. 139. Rahman HS, Rasedee A, How CW, Abdul AB, Zeenathul NA, Othman HH, Saeed MI, Yeap SK. Zerumbone-loaded nanostructured lipid carriers: preparation, characterization, and antileukemic effect. International Journal of Nanomedicine. 2013;8:2769-81. 140. Prasannan R, Kalesh KA, Shanmugam MK, Nachiyappan A, Ramachandran L, Nguyen AH, Kumar AP, Lakshmanan M, Ahn KS, Sethi G. Key cell signaling pathways modulated by zerumbone: role in the prevention and treatment of cancer. Biochemistry and Pharmacology 2012 Nov 15;84(10):1268-76. 142. Hoffman A, Spetner LM, and Burk e M. Redox-regulated mechanism may account for zerumbone''s ability to suppress cancer-cell proliferation (multiple letters). Carcinogenesis. vol. 23, no. 11, pp. 1961–1962, 2002. 143. Zakaria ZA, Mohamad AS, Chear CT, Wong YY, Israf DA, Sulaiman MR. Antiinflammatory and antinociceptive activities of Zingiber zerumbet methanol extract in experimental model systems. Medical Principles and Practice. 2010;19(4):287-94. 144. M. N. Somchit, J. H. Mak, A. Ahmad Bustamam et al.. Zerumbone isolated from Zingiber zerumbet inhibits inflammation and pain in rats. Journal of Medicinal Plant Research. vol. 6, pp. 177–180, 2012. 145. Murakami A, Takahashi D, Kinoshita T, Koshimizu K, Kim HW, Yoshihiro A, Nakamura Y, Jiwajinda S, Terao J, Ohigashi H. Zerumbone, a Southeast Asian ginger sesquiterpene, markedly suppresses free radical generation, proinflammatory protein production, and cancer cell proliferation accompanied by apoptosis: the alpha,beta-unsaturated carbonyl group is a prerequisite. Carcinogenesis. 2002 May;23(5):795-802. 146. Murakami A, Hayashi R, Tanaka T, Kwon KH, Ohigashi H, Safitri R. Suppression of dextran sodium sulfate-induced colitis in mice by zerumbone, a subtropical ginger sesquiterpene, and nimesulide: separately and in combination. Biochemical Pharmacology. 2003 Oct 1;66(7):1253-61. 147. Murakami A, Ohigashi H. Cancer-preventive anti-oxidants that attenuate free radical generation by inflammatory cells. Biological Chemistry. 2006 Apr;387(4):387-92. 148. Nakamura Y, Yoshida C, Murakami A, Ohigashi H, Osawa T, Uchida K. Zerumbone, a tropical ginger sesquiterpene, activates phase II drug metabolizing enzymes. FEBS Letters. 2004 Aug 13;572(1-3):245-50. 149. Yang HL, Lee CL, Korivi M, Liao JW, Rajendran P, Wu JJ, Hseu YC. Zerumbone protects human skin keratinocytes against UVA-irradiated damages through Nrf2 induction. Biochemical Pharmacology. 2018 Feb;148:130-146. 150. Keong YS, Alitheen NB, Mustafa S, Abdul Aziz S, Abdul Rahman M, Ali AM. Immunomodulatory effects of zerumbone isolated from roots of Zingiber zerumbet. Pakistan Journal of Pharmaceutical Sciences. 2010 Jan;23(1):75-82. 151. Kusters JG, van Vliet AH, Kuipers EJ. Pathogenesis of Helicobacter pylori infection. Clinical Microbiology Reviews. 2006 Jul;19(3):449-90. 152. Tzeng TF, Liou SS, Chang CJ, Liu IM. Zerumbone, a Natural Cyclic Sesquiterpene of Zingiber zerumbet Smith, Attenuates Nonalcoholic Fatty Liver Disease in Hamsters Fed on High-Fat Diet. Evidence-Based Complementary and Alternative Medicine. 2013;2013:303061. 153. Santosh Kumar SC, Srinivas P, Negi PS, Bettadaiah BK. Antibacterial and antimutagenic activities of novel zerumbone analogues. Food Chemistry. 2013 Nov 15;141(2):1097-103. 154. I. Sharma, D. Gusain, and V. P. Dixit. Hypolipidemic and antiatherosclerotic effect of Zingiber officinale in cholesterol fed rabbits. Phytotherapy Research. vol. 10, pp. 517–518, 1996. 155. Rahman HS, Rasedee A, Yeap SK, Othman HH, Chartrand MS, Namvar F, Abdul AB, How CW. Biomedical properties of a natural dietary plant metabolite, zerumbone, in cancer therapy and chemoprevention trials. BioMed Research International. 2014;2014:920742. 156. Abdelwahab SI, Abdul AB, Zain ZN, Hadi AH. Zerumbone inhibits interleukin-6 and induces apoptosis and cell cycle arrest in ovarian and cervical cancer cells. International Immunopharmacology. 2012 Apr;12(4):594-602. 157. Eguchi A, Kaneko Y, Murakami A, Ohigashi H. Zerumbone suppresses phorbol ester-induced expression of multiple scavenger receptor genes in THP-1 human monocytic cells. Bioscience, Biotechnology and Biochemistry. 2007 Apr;71(4):935-45. 158. http://www.unsun.com.tw/knowledge_p02.html 159. Palomba, L., Silvestri, C., Imperatore, R., Morello, G., Piscitelli, F., Martella, A., Cristino, L., and Di Marzo, V. (2015) JBC Papers in Press. Published on April 13, 2015 as Manuscript M115. 646885. 160. Bertolesi, G. E., Hehr, C. L., and McFarlane, S. (2015) Melanopsin photoreception in the eye regulates light‐induced skin colour changes through the production of α‐MSH in the pituitary gland. Pigment cell & melanoma research 161.Jin, K.-S., Lee, J. Y., Hyun, S. K., Kim, B. W., and Kwon, H. J. (2015) Juniperus chinensis and the functional compounds, cedrol and widdrol, ameliorate α-melanocyte stimulating hormone-induced melanin formation in B16F10 cells. Food Science and Biotechnology24, 611-618 162. Hamada H, Watanabe M, Lau HE, Nishida T, Hasegawa T, Parichy DM, Kondo S. Involvement of Delta/Notch signaling in zebrafish adult pigment stripe patterning. Development. 2014 Jan;141(2):318-24.
|