|
[1] K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, "Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers," Nature communications, vol. 2, p. 517, 2011. [2] Q. Feng, M. Pu, C. Hu, and X. Luo, "Engineering the dispersion of metamaterial surface for broadband infrared absorption," Optics letters, vol. 37, pp. 2133-2135, 2012. [3] T. Jang, H. Youn, Y. J. Shin, and L. J. Guo, "Transparent and flexible polarization-independent microwave broadband absorber," Acs Photonics, vol. 1, pp. 279-284, 2014. [4] H. Zhang, S. Lu, J. Zheng, J. Du, S. Wen, D. Tang, et al., "Molybdenum disulfide (MoS 2) as a broadband saturable absorber for ultra-fast photonics," Optics express, vol. 22, pp. 7249-7260, 2014. [5] T. D. Dao, K. Chen, S. Ishii, A. Ohi, T. Nabatame, M. Kitajima, et al., "Infrared perfect absorbers Fabricated by colloidal mask etching of Al–Al2O3–Al trilayers," ACS Photonics, vol. 2, pp. 964-970, 2015. [6] J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, "High performance optical absorber based on a plasmonic metamaterial," Applied Physics Letters, vol. 96, p. 251104, 2010. [7] N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, "Infrared perfect absorber and its application as plasmonic sensor," Nano letters, vol. 10, pp. 2342-2348, 2010. [8] X. Liu, T. Starr, A. F. Starr, and W. J. Padilla, "Infrared spatial and frequency selective metamaterial with near-unity absorbance," Physical review letters, vol. 104, p. 207403, 2010. [9] H. Tao, N. I. Landy, C. M. Bingham, X. Zhang, R. D. Averitt, and W. J. Padilla, "A metamaterial absorber for the terahertz regime: Design, fabrication and characterization," Optics express, vol. 16, pp. 7181-7188, 2008. [10] Z.-y. Yang, S. Ishii, T. Yokoyama, T. D. Dao, M.-g. Sun, T. Nagao, et al., "Tamm plasmon selective thermal emitters," Optics Letters, vol. 41, pp. 4453-4456, 2016. [11] K.-P. Chen, S.-C. Ye, C.-Y. Yang, Z.-H. Yang, W. Lee, and M.-G. Sun, "Electrically tunable transmission of gold binary-grating metasurfaces integrated with liquid crystals," Optics express, vol. 24, pp. 16815-16821, 2016. [12] Y.-H. Chen, K.-P. Chen, M.-H. Shih, and C.-Y. Chang, "Observation of the high-sensitivity plasmonic dipolar antibonding mode of gold nanoantennas in evanescent waves," Applied Physics Letters, vol. 105, p. 031117, 2014. [13] C.-W. Su and K.-P. Chen, "Broadband gold nanoantennas arrays with transverse dimension effects," Optics express, vol. 24, pp. 17760-17765, 2016. [14] J.-H. Yang and K.-P. Chen, "Evanescent Wave-Assisted Symmetry Breaking of Gold Dipolar Nanoantennas," Scientific reports, vol. 6, p. 32194, 2016. [15] Z.-Y. Yang and K.-P. Chen, "Effective absorption enhancement in dielectric thin-films with embedded paired-strips gold nanoantennas," Optics express, vol. 22, pp. 12737-12749, 2014. [16] S. Pillai, K. Catchpole, T. Trupke, and M. Green, "Surface plasmon enhanced silicon solar cells," Journal of applied physics, vol. 101, p. 093105, 2007. [17] J. Zhao, A. Wang, M. A. Green, and F. Ferrazza, "19.8% efficient “honeycomb” textured multicrystalline and 24.4% monocrystalline silicon solar cells," Applied Physics Letters, vol. 73, pp. 1991-1993, 1998. [18] B. Kuyken, T. Ideguchi, S. Holzner, M. Yan, T. W. Hänsch, J. Van Campenhout, et al., "An octave-spanning mid-infrared frequency comb generated in a silicon nanophotonic wire waveguide," Nature communications, vol. 6, 2015. [19] B. Shen, P. Wang, R. Polson, and R. Menon, "An integrated-nanophotonics polarization beamsplitter with 2.4× 2.4 μm2 footprint," Nature Photonics, vol. 9, pp. 378-382, 2015. [20] R. Agnese, Z. Ahmed, A. Anderson, S. Arrenberg, D. Balakishiyeva, R. B. Thakur, et al., "Silicon detector results from the first five-tower run of CDMS II," Physical Review D, vol. 88, p. 031104, 2013. [21] V. Vashistha, G. Vaidya, R. S. Hegde, A. E. Serebryannikov, N. Bonod, and M. Krawczyk, "All-Dielectric Metasurfaces Based on Cross-Shaped Resonators for Color Pixels with Extended Gamut," ACS Photonics, vol. 4, pp. 1076-1082, 2017. [22] C. F. Bohren and D. R. Huffman, Absorption and scattering of light by small particles: John Wiley & Sons, 2008. [23] Y. H. Fu, A. I. Kuznetsov, A. E. Miroshnichenko, Y. F. Yu, and B. Luk’yanchuk, "Directional visible light scattering by silicon nanoparticles," Nature Communications, vol. 4, p. 1527, 02/26/online 2013. [24] A. I. Kuznetsov, A. E. Miroshnichenko, Y. H. Fu, J. Zhang, and B. Luk’yanchuk, "Magnetic light," Scientific Reports, vol. 2, p. 492, 07/04/online 2012. [25] B. S. Luk’yanchuk, N. V. Voshchinnikov, R. Paniagua-Domínguez, and A. I. Kuznetsov, "Optimum forward light scattering by spherical and spheroidal dielectric nanoparticles with high refractive index," ACS Photonics, vol. 2, pp. 993-999, 2015. [26] T. Shibanuma, P. Albella, and S. A. Maier, "Unidirectional light scattering with high efficiency at optical frequencies based on low-loss dielectric nanoantennas," Nanoscale, vol. 8, pp. 14184-14192, 2016. [27] I. Staude, A. E. Miroshnichenko, M. Decker, N. T. Fofang, S. Liu, E. Gonzales, et al., "Tailoring directional scattering through magnetic and electric resonances in subwavelength silicon nanodisks," ACS nano, vol. 7, pp. 7824-7832, 2013. [28] A. E. Miroshnichenko, A. B. Evlyukhin, Y. F. Yu, R. M. Bakker, A. Chipouline, A. I. Kuznetsov, et al., "Nonradiating anapole modes in dielectric nanoparticles," Nature communications, vol. 6, 2015. [29] L. Wei, Z. Xi, N. Bhattacharya, and H. P. Urbach, "Excitation of the radiationless anapole mode," Optica, vol. 3, pp. 799-802, 2016. [30] B. García-Cámara, F. Moreno, F. Gonzalez, J. J. Saenz, M. Nieto-Vesperinas, and R. Gomez-Medina, On the Optical Response of Nanoparticles: Directionality Effects and Optical Forces: INTECH Open Access Publisher, 2012. [31] M. Kerker, D.-S. Wang, and C. Giles, "Electromagnetic scattering by magnetic spheres," JOSA, vol. 73, pp. 765-767, 1983. [32] W. Liu, A. E. Miroshnichenko, D. N. Neshev, and Y. S. Kivshar, "Broadband unidirectional scattering by magneto-electric core–shell nanoparticles," ACS nano, vol. 6, pp. 5489-5497, 2012. [33] W. Liu, A. E. Miroshnichenko, R. F. Oulton, D. N. Neshev, O. Hess, and Y. S. Kivshar, "Scattering of core-shell nanowires with the interference of electric and magnetic resonances," Optics letters, vol. 38, pp. 2621-2624, 2013. [34] W. Liu, J. Zhang, B. Lei, H. Ma, W. Xie, and H. Hu, "Ultra-directional forward scattering by individual core-shell nanoparticles," Optics express, vol. 22, pp. 16178-16187, 2014. [35] X. Liu, K. Fan, I. V. Shadrivov, and W. J. Padilla, "Experimental realization of a terahertz all-dielectric metasurface absorber," Optics Express, vol. 25, pp. 191-201, 2017. [36] N. Odebo Länk, R. Verre, P. Johansson, and M. Käll, "Large-scale silicon nanophotonic metasurfaces with polarization independent near-perfect absorption," Nano Letters, vol. 17, pp. 3054-3060, 2017. [37] C.-S. Park, V. R. Shrestha, W. Yue, S. Gao, S.-S. Lee, E.-S. Kim, et al., "Structural Color Filters Enabled by a Dielectric Metasurface Incorporating Hydrogenated Amorphous Silicon Nanodisks," Scientific Reports, vol. 7, 2017. [38] B. Auguié and W. L. Barnes, "Collective resonances in gold nanoparticle arrays," Physical review letters, vol. 101, p. 143902, 2008. [39] A. B. Evlyukhin, C. Reinhardt, A. Seidel, B. S. Luk’yanchuk, and B. N. Chichkov, "Optical response features of Si-nanoparticle arrays," Physical Review B, vol. 82, p. 045404, 2010. [40] S. V. Zhukovsky, V. E. Babicheva, A. V. Uskov, I. E. Protsenko, and A. V. Lavrinenko, "Enhanced electron photoemission by collective lattice resonances in plasmonic nanoparticle-array photodetectors and solar cells," Plasmonics, vol. 9, pp. 283-289, 2014. [41] A. B. Evlyukhin and V. E. Babicheva, "Resonant lattice Kerker effect in metasurfaces with electric and magnetic optical responses," ARXiv preprint arXiv:1705.05533, 2017. [42] N. A. Hatab, C.-H. Hsueh, A. L. Gaddis, S. T. Retterer, J.-H. Li, G. Eres, et al., "Free-standing optical gold bowtie nanoantenna with variable gap size for enhanced Raman spectroscopy," Nano letters, vol. 10, pp. 4952-4955, 2010. [43] A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Müllen, and W. Moerner, "Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna," Nature Photonics, vol. 3, pp. 654-657, 2009. [44] M. W. Knight, H. Sobhani, P. Nordlander, and N. J. Halas, "Photodetection with active optical antennas," Science, vol. 332, pp. 702-704, 2011. [45] D. Schurig, J. Mock, B. Justice, S. A. Cummer, J. B. Pendry, A. Starr, et al., "Metamaterial electromagnetic cloak at microwave frequencies," Science, vol. 314, pp. 977-980, 2006. [46] A. I. Kuznetsov, A. E. Miroshnichenko, M. L. Brongersma, Y. S. Kivshar, and B. Luk’yanchuk, "Optically resonant dielectric nanostructures," Science, vol. 354, p. aag2472, 2016. [47] M. A. Green and M. J. Keevers, "Optical properties of intrinsic silicon at 300 K," Progress in Photovoltaics: Research and Applications, vol. 3, pp. 189-192, 1995. [48] E. D. Palik, Handbook of optical constants of solids vol. 3: Academic press, 1998. [49] D. Pierce and W. E. Spicer, "Electronic structure of amorphous Si from photoemission and optical studies," Physical Review B, vol. 5, p. 3017, 1972. [50] S. Ishii, K. Chen, H. Okuyama, and T. Nagao, "Resonant Optical Absorption and Photothermal Process in High Refractive Index Germanium Nanoparticles," Advanced Optical Materials, vol. 5, 2017. [51] D. E. Aspnes and A. Studna, "Dielectric functions and optical parameters of si, ge, gap, gaas, gasb, inp, inas, and insb from 1.5 to 6.0 ev," Physical review B, vol. 27, p. 985, 1983. [52] M. Khorasaninejad, N. Abedzadeh, J. Walia, S. Patchett, and S. Saini, "Color matrix refractive index sensors using coupled vertical silicon nanowire arrays," Nano letters, vol. 12, pp. 4228-4234, 2012. [53] W.-C. Lai, S. Chakravarty, Y. Zou, and R. T. Chen, "Silicon nano-membrane based photonic crystal microcavities for high sensitivity bio-sensing," Optics letters, vol. 37, pp. 1208-1210, 2012. [54] S.-C. Yang, J.-L. Hou, A. Finn, A. Kumar, Y. Ge, and W.-J. Fischer, "Synthesis of multifunctional plasmonic nanopillar array using soft thermal nanoimprint lithography for highly sensitive refractive index sensing," Nanoscale, vol. 7, pp. 5760-5766, 2015.
|