跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.62) 您好!臺灣時間:2025/11/16 18:46
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:楊棋茵
研究生(外文):Yang, Chi-Yin
論文名稱:矽奈米天線陣列設計與製作之窄頻高吸收元件
論文名稱(外文):Silicon Nanoantenna Arrays as Selective Narrowband Absorbers
指導教授:陳國平陳國平引用關係
指導教授(外文):Chen, Kuo-Ping
口試委員:林建中許進恭
口試委員(外文):Lin, Chien-ChungSheu, Jinn-Kong
口試日期:2017-07-07
學位類別:碩士
校院名稱:國立交通大學
系所名稱:影像與生醫光電研究所
學門:工程學門
學類:生醫工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:52
中文關鍵詞:矽奈米天線高吸收元件電磁偶極耦合散射抑制
外文關鍵詞:silicon nanoantennashigh absorption deviceelectric and magnetic dipole couplingscattering cancellation
相關次數:
  • 被引用被引用:0
  • 點閱點閱:409
  • 評分評分:
  • 下載下載:13
  • 收藏至我的研究室書目清單書目收藏:0
高折射率材料所製作的奈米結構,由於可以利用入射電磁波產生電偶極(ED)與磁偶極(MD),而可以提供一個控制散射訊號,並達到窄頻高吸收峰的機會。本論文提出,利用非晶矽奈米天線陣列可以實現近紅外光高吸收的元件,這個高吸收元件是利用調整陣列的週期來激發晶格共振,控制電偶極與磁偶極使兩者重合,來抑制背向與前向散射。此外,利用非晶矽奈米天線陣列所產生的吸收比起非晶矽薄膜高了三倍,在光學頻譜上可達到接近90%的吸收,且這個高吸收的特性並非只是由於材料本身的損耗,而是主要產生自電偶極與磁偶極的交互共振所造成的侷域電場以及吸收增強。
High-refractive-index nanostructures support optically induced electric (ED) and magnetic (MD) dipole modes which offer opportunities to control the scattering and achieve the narrowband absorption. In this work, the high absorptance device is proposed and realized by using amorphous silicon nanoantenna arrays (a-Si NA arrays) which suppress backward and forward scattering with engineered structures and particular periods. The overlaps of ED and MD resonances by designing an array with a specific period and exciting lattice resonances is experimentally demonstrated. The absorptance of a-Si NAs which is 3-fold increase in comparison to unpatterned silicon films. The nonradiating a-Si NA arrays can achieve ~ 90% in absorptance, and the high absorptance resonance is observed not only due to the intrinsic loss of material but by overlapping the ED and MD resonances.
誌謝 I
中文摘要 II
Abstract III
Contents IV
Graph Index VI
Table Index XV
Chapter 1 Introduction 1
1.1 Motivation 1
1.2 Electric dipole and magnetic dipole 4
1.3 Mie theory: light scattering by nanoparticles 5
1.4 Kerker’s theory: directional light scattering 7
1.5 Optical nanoantennas 8
Chapter 2 Design and simulation 11
2.1 Finite-difference time-domain method (FDTD) 11
2.2 Finite element method (FEM) 12
2.3 Design and simulation results 14
Chapter 3 Fabrication and measurement 20
3.1 Sample fabrication 20
3.2 Measurement setup 22
Chapter 4 Results and discussions 24
4.1 Demonstration of narrowband absorbers 24
4.2 The effect of ED and MD coupling in nanoantenna arrays 27
4.3 The effect of tuning transverse and longitudinal periods 29
4.4 The effect of material loss 32
Chapter 5 Future works 35
5.1 Narrowband absorber by using different materials 35
5.2 Silicon nanoantenna arrays for refractive index sensing 39
5.3 Silicon nanoantenna arrays for hydrogen generation 43
5.4 Backward and forward scattering of silicon nanoantenna arrays 44
Chapter 6 Conclusions 48
Bibliography 50
[1] K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, "Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers," Nature communications, vol. 2, p. 517, 2011.
[2] Q. Feng, M. Pu, C. Hu, and X. Luo, "Engineering the dispersion of metamaterial surface for broadband infrared absorption," Optics letters, vol. 37, pp. 2133-2135, 2012.
[3] T. Jang, H. Youn, Y. J. Shin, and L. J. Guo, "Transparent and flexible polarization-independent microwave broadband absorber," Acs Photonics, vol. 1, pp. 279-284, 2014.
[4] H. Zhang, S. Lu, J. Zheng, J. Du, S. Wen, D. Tang, et al., "Molybdenum disulfide (MoS 2) as a broadband saturable absorber for ultra-fast photonics," Optics express, vol. 22, pp. 7249-7260, 2014.
[5] T. D. Dao, K. Chen, S. Ishii, A. Ohi, T. Nabatame, M. Kitajima, et al., "Infrared perfect absorbers Fabricated by colloidal mask etching of Al–Al2O3–Al trilayers," ACS Photonics, vol. 2, pp. 964-970, 2015.
[6] J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, "High performance optical absorber based on a plasmonic metamaterial," Applied Physics Letters, vol. 96, p. 251104, 2010.
[7] N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, "Infrared perfect absorber and its application as plasmonic sensor," Nano letters, vol. 10, pp. 2342-2348, 2010.
[8] X. Liu, T. Starr, A. F. Starr, and W. J. Padilla, "Infrared spatial and frequency selective metamaterial with near-unity absorbance," Physical review letters, vol. 104, p. 207403, 2010.
[9] H. Tao, N. I. Landy, C. M. Bingham, X. Zhang, R. D. Averitt, and W. J. Padilla, "A metamaterial absorber for the terahertz regime: Design, fabrication and characterization," Optics express, vol. 16, pp. 7181-7188, 2008.
[10] Z.-y. Yang, S. Ishii, T. Yokoyama, T. D. Dao, M.-g. Sun, T. Nagao, et al., "Tamm plasmon selective thermal emitters," Optics Letters, vol. 41, pp. 4453-4456, 2016.
[11] K.-P. Chen, S.-C. Ye, C.-Y. Yang, Z.-H. Yang, W. Lee, and M.-G. Sun, "Electrically tunable transmission of gold binary-grating metasurfaces integrated with liquid crystals," Optics express, vol. 24, pp. 16815-16821, 2016.
[12] Y.-H. Chen, K.-P. Chen, M.-H. Shih, and C.-Y. Chang, "Observation of the high-sensitivity plasmonic dipolar antibonding mode of gold nanoantennas in evanescent waves," Applied Physics Letters, vol. 105, p. 031117, 2014.
[13] C.-W. Su and K.-P. Chen, "Broadband gold nanoantennas arrays with transverse dimension effects," Optics express, vol. 24, pp. 17760-17765, 2016.
[14] J.-H. Yang and K.-P. Chen, "Evanescent Wave-Assisted Symmetry Breaking of Gold Dipolar Nanoantennas," Scientific reports, vol. 6, p. 32194, 2016.
[15] Z.-Y. Yang and K.-P. Chen, "Effective absorption enhancement in dielectric thin-films with embedded paired-strips gold nanoantennas," Optics express, vol. 22, pp. 12737-12749, 2014.
[16] S. Pillai, K. Catchpole, T. Trupke, and M. Green, "Surface plasmon enhanced silicon solar cells," Journal of applied physics, vol. 101, p. 093105, 2007.
[17] J. Zhao, A. Wang, M. A. Green, and F. Ferrazza, "19.8% efficient “honeycomb” textured multicrystalline and 24.4% monocrystalline silicon solar cells," Applied Physics Letters, vol. 73, pp. 1991-1993, 1998.
[18] B. Kuyken, T. Ideguchi, S. Holzner, M. Yan, T. W. Hänsch, J. Van Campenhout, et al., "An octave-spanning mid-infrared frequency comb generated in a silicon nanophotonic wire waveguide," Nature communications, vol. 6, 2015.
[19] B. Shen, P. Wang, R. Polson, and R. Menon, "An integrated-nanophotonics polarization beamsplitter with 2.4× 2.4 μm2 footprint," Nature Photonics, vol. 9, pp. 378-382, 2015.
[20] R. Agnese, Z. Ahmed, A. Anderson, S. Arrenberg, D. Balakishiyeva, R. B. Thakur, et al., "Silicon detector results from the first five-tower run of CDMS II," Physical Review D, vol. 88, p. 031104, 2013.
[21] V. Vashistha, G. Vaidya, R. S. Hegde, A. E. Serebryannikov, N. Bonod, and M. Krawczyk, "All-Dielectric Metasurfaces Based on Cross-Shaped Resonators for Color Pixels with Extended Gamut," ACS Photonics, vol. 4, pp. 1076-1082, 2017.
[22] C. F. Bohren and D. R. Huffman, Absorption and scattering of light by small particles: John Wiley & Sons, 2008.
[23] Y. H. Fu, A. I. Kuznetsov, A. E. Miroshnichenko, Y. F. Yu, and B. Luk’yanchuk, "Directional visible light scattering by silicon nanoparticles," Nature Communications, vol. 4, p. 1527, 02/26/online 2013.
[24] A. I. Kuznetsov, A. E. Miroshnichenko, Y. H. Fu, J. Zhang, and B. Luk’yanchuk, "Magnetic light," Scientific Reports, vol. 2, p. 492, 07/04/online 2012.
[25] B. S. Luk’yanchuk, N. V. Voshchinnikov, R. Paniagua-Domínguez, and A. I. Kuznetsov, "Optimum forward light scattering by spherical and spheroidal dielectric nanoparticles with high refractive index," ACS Photonics, vol. 2, pp. 993-999, 2015.
[26] T. Shibanuma, P. Albella, and S. A. Maier, "Unidirectional light scattering with high efficiency at optical frequencies based on low-loss dielectric nanoantennas," Nanoscale, vol. 8, pp. 14184-14192, 2016.
[27] I. Staude, A. E. Miroshnichenko, M. Decker, N. T. Fofang, S. Liu, E. Gonzales, et al., "Tailoring directional scattering through magnetic and electric resonances in subwavelength silicon nanodisks," ACS nano, vol. 7, pp. 7824-7832, 2013.
[28] A. E. Miroshnichenko, A. B. Evlyukhin, Y. F. Yu, R. M. Bakker, A. Chipouline, A. I. Kuznetsov, et al., "Nonradiating anapole modes in dielectric nanoparticles," Nature communications, vol. 6, 2015.
[29] L. Wei, Z. Xi, N. Bhattacharya, and H. P. Urbach, "Excitation of the radiationless anapole mode," Optica, vol. 3, pp. 799-802, 2016.
[30] B. García-Cámara, F. Moreno, F. Gonzalez, J. J. Saenz, M. Nieto-Vesperinas, and R. Gomez-Medina, On the Optical Response of Nanoparticles: Directionality Effects and Optical Forces: INTECH Open Access Publisher, 2012.
[31] M. Kerker, D.-S. Wang, and C. Giles, "Electromagnetic scattering by magnetic spheres," JOSA, vol. 73, pp. 765-767, 1983.
[32] W. Liu, A. E. Miroshnichenko, D. N. Neshev, and Y. S. Kivshar, "Broadband unidirectional scattering by magneto-electric core–shell nanoparticles," ACS nano, vol. 6, pp. 5489-5497, 2012.
[33] W. Liu, A. E. Miroshnichenko, R. F. Oulton, D. N. Neshev, O. Hess, and Y. S. Kivshar, "Scattering of core-shell nanowires with the interference of electric and magnetic resonances," Optics letters, vol. 38, pp. 2621-2624, 2013.
[34] W. Liu, J. Zhang, B. Lei, H. Ma, W. Xie, and H. Hu, "Ultra-directional forward scattering by individual core-shell nanoparticles," Optics express, vol. 22, pp. 16178-16187, 2014.
[35] X. Liu, K. Fan, I. V. Shadrivov, and W. J. Padilla, "Experimental realization of a terahertz all-dielectric metasurface absorber," Optics Express, vol. 25, pp. 191-201, 2017.
[36] N. Odebo Länk, R. Verre, P. Johansson, and M. Käll, "Large-scale silicon nanophotonic metasurfaces with polarization independent near-perfect absorption," Nano Letters, vol. 17, pp. 3054-3060, 2017.
[37] C.-S. Park, V. R. Shrestha, W. Yue, S. Gao, S.-S. Lee, E.-S. Kim, et al., "Structural Color Filters Enabled by a Dielectric Metasurface Incorporating Hydrogenated Amorphous Silicon Nanodisks," Scientific Reports, vol. 7, 2017.
[38] B. Auguié and W. L. Barnes, "Collective resonances in gold nanoparticle arrays," Physical review letters, vol. 101, p. 143902, 2008.
[39] A. B. Evlyukhin, C. Reinhardt, A. Seidel, B. S. Luk’yanchuk, and B. N. Chichkov, "Optical response features of Si-nanoparticle arrays," Physical Review B, vol. 82, p. 045404, 2010.
[40] S. V. Zhukovsky, V. E. Babicheva, A. V. Uskov, I. E. Protsenko, and A. V. Lavrinenko, "Enhanced electron photoemission by collective lattice resonances in plasmonic nanoparticle-array photodetectors and solar cells," Plasmonics, vol. 9, pp. 283-289, 2014.
[41] A. B. Evlyukhin and V. E. Babicheva, "Resonant lattice Kerker effect in metasurfaces with electric and magnetic optical responses," ARXiv preprint arXiv:1705.05533, 2017.
[42] N. A. Hatab, C.-H. Hsueh, A. L. Gaddis, S. T. Retterer, J.-H. Li, G. Eres, et al., "Free-standing optical gold bowtie nanoantenna with variable gap size for enhanced Raman spectroscopy," Nano letters, vol. 10, pp. 4952-4955, 2010.
[43] A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Müllen, and W. Moerner, "Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna," Nature Photonics, vol. 3, pp. 654-657, 2009.
[44] M. W. Knight, H. Sobhani, P. Nordlander, and N. J. Halas, "Photodetection with active optical antennas," Science, vol. 332, pp. 702-704, 2011.
[45] D. Schurig, J. Mock, B. Justice, S. A. Cummer, J. B. Pendry, A. Starr, et al., "Metamaterial electromagnetic cloak at microwave frequencies," Science, vol. 314, pp. 977-980, 2006.
[46] A. I. Kuznetsov, A. E. Miroshnichenko, M. L. Brongersma, Y. S. Kivshar, and B. Luk’yanchuk, "Optically resonant dielectric nanostructures," Science, vol. 354, p. aag2472, 2016.
[47] M. A. Green and M. J. Keevers, "Optical properties of intrinsic silicon at 300 K," Progress in Photovoltaics: Research and Applications, vol. 3, pp. 189-192, 1995.
[48] E. D. Palik, Handbook of optical constants of solids vol. 3: Academic press, 1998.
[49] D. Pierce and W. E. Spicer, "Electronic structure of amorphous Si from photoemission and optical studies," Physical Review B, vol. 5, p. 3017, 1972.
[50] S. Ishii, K. Chen, H. Okuyama, and T. Nagao, "Resonant Optical Absorption and Photothermal Process in High Refractive Index Germanium Nanoparticles," Advanced Optical Materials, vol. 5, 2017.
[51] D. E. Aspnes and A. Studna, "Dielectric functions and optical parameters of si, ge, gap, gaas, gasb, inp, inas, and insb from 1.5 to 6.0 ev," Physical review B, vol. 27, p. 985, 1983.
[52] M. Khorasaninejad, N. Abedzadeh, J. Walia, S. Patchett, and S. Saini, "Color matrix refractive index sensors using coupled vertical silicon nanowire arrays," Nano letters, vol. 12, pp. 4228-4234, 2012.
[53] W.-C. Lai, S. Chakravarty, Y. Zou, and R. T. Chen, "Silicon nano-membrane based photonic crystal microcavities for high sensitivity bio-sensing," Optics letters, vol. 37, pp. 1208-1210, 2012.
[54] S.-C. Yang, J.-L. Hou, A. Finn, A. Kumar, Y. Ge, and W.-J. Fischer, "Synthesis of multifunctional plasmonic nanopillar array using soft thermal nanoimprint lithography for highly sensitive refractive index sensing," Nanoscale, vol. 7, pp. 5760-5766, 2015.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top