跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.152) 您好!臺灣時間:2025/11/04 22:41
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:羅丹儒
研究生(外文):GuillermoRiley
論文名稱:酒精性脂肪肝治療新進展:海藻糖與ω-3多元不飽和脂肪酸療法
論文名稱(外文):Trehalose and Omega-3 Polyunsaturated Fatty Acids Therapy: A Promising New Approach for Non-Alcoholic Fatty Liver Disease
指導教授:林錫璋林錫璋引用關係
指導教授(外文):Xi-Zhang, Lin
學位類別:碩士
校院名稱:國立成功大學
系所名稱:臨床醫學研究所
學門:醫藥衛生學門
學類:醫學學類
論文種類:學術論文
論文出版年:2018
畢業學年度:106
語文別:英文
論文頁數:33
外文關鍵詞:Non-alcoholic fatty liver diseasetrehaloseomega-3
相關次數:
  • 被引用被引用:0
  • 點閱點閱:143
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
Background: Non-alcoholic fatty liver disease (NAFLD) is considered as one of the most common causes of chronic liver disease worldwide. Therefore, the development of new treatment strategies is imperative. The use of omega-3 polyunsaturated fatty acids (omega-3 PUFAs) have demonstrated, in animal models and human clinical trials, to improve liver steatosis, liver function tests, cholesterol and serum triglycerides levels. Recently, an alpha-linked disaccharide named trehalose, showed to prevent NALFD development in an animal model. Trehalose inhibits a specific type of glucose transporter in the hepatocyte cell membrane, decreasing fructose uptake and subsequently leading to a starvation like environment triggering a cellular autophagy response.
Purpose: To evaluate, individually and in a combined way, the use of omega-3 PUFAs and trehalose in the prevention and treatment of NAFLD in a high fructose diet-induced animal model.
Experimental design: Male Wistar rats (37) were exposed to a high fructose diet (HFrD) 60% for 24 weeks. All rats were divided into six experimental groups: normal chow, NAFLD model, prophylaxis, trehalose, omega-3 PUFAs and trehalose + omega-3. Normal chow group was exposed to a regular rat diet. NAFLD model group was exposed only to HFrD. Prophylaxis group, was exposed to simultaneous treatment of trehalose and omega-3 PUFAs trehalose since the beginning of the HFrD for sixteen weeks. After 16 weeks of HFrD exposure, rats were expose to an eight-week treatment with trehalose at a dose of 3 mg/kg/day (trehalose), omega-3 PUFAs at a dose of 2.4 mg/kg/day (omega-3 PUFAs), and combined dosage of trehalose and omega-3 PUFAs (Trehalose + omega-3 PUFAs).
Results: The combine use of trehalose and omega-3 PUFAs prevents and reverse NAFLD histological and metabolic features (hyperglycemia, insulin resistance, hypertriglyceridemia, hypercholesterolemia), by a de novo lipogenesis downregulation and a beta oxidation upregulation mediated by the expression of the peroxisome proliferator activated receptor alpha (PPAR-α) and sterol regulatory element binding protein 1c (SREBP-1c), respectively.
Conclusions: The concomitant use of trehalose and omega-3 PUFAs prevent and reverse histological and metabolic features of NAFLD, through a de novo lipogenesis down regulation and a beta oxidation upregulation in a diet-induced animal model.
TABLE OF CONTENTS

ABSTRACT i
ACKNOWLEDGMENT iii
LIST OF TABLES AND FIGURES vii
ABREVIATIONS viii
INTRODUCTION 1
Definition 1
Natural history 1
Pathophysiology: The role of beta oxidation and de novo lipogenesis. 2
Omega-3 polyunsaturated fatty acids and trehalose as potential therapies for NAFLD 3
SPECIFIC AIMS 8
MATERIALS AND METHODS 9
Experimental Animals 9
Experimental Design 9
Determination of Fasting Glucose, Lipid profile and Liver Function Tests 10
Homeostasis Model of Insulin Resistance (HOMA -IR) 11
Histopathological Analysis 11
Immunohistochemical Staining 12
Statistical Analysis 12
RESULTS 13
Serum Fasting Glucose, Serum Fasting Insulin and Homeostatic Model Assessment for Insulin Resistance 13
Liver Function Tests 14
Lipid Profile 15
Macroscopic and Histological Evaluation 15
PPAR alpha and SREBP-1c expression 16
DISCUSSION 18
REFERENCES 29
REFERENCES

1.Chalasani N, Younossi Z, Lavine JE, Charlton M, Cusi K, Rinella M, Harrison SA, Brunt EM, Sanyal AJ, The diagnosis and management of nonalcoholic fatty liver disease: Practice guidance from the American Association for the Study of Liver Diseases., Hepatology, . 2017, vol. ;67 (pg. :328--357.)

2.Younossi ZM, Koenig AB, Abdelatif D, Fazel Y, Henry L, Wymer M, Global epidemiology of nonalcoholic fatty liver disease-Meta-analytic assessment of prevalence, incidence, and outcomes., Hepatology., 2016, vol. ;64 (pg. :73--84.)

3.Ekstedt M, Nasr P, Kechagias S, Natural history of NAFLD/NASH., Curr Hepatology Rep., 2017, vol. ;16 (pg. : 391--397.)


4.Stanhope KL, Schwarz JM, Keim NL, Griffen SC, Bremer AA, Graham JL, Hatcher B, Cox CL, Dyachenko A, Zhang W, McGahan JP, Seibert A, Krauss RM, Chiu S, Schaefer EJ, Ai M, Otokozawa S, Nakajima K, Nakano T, Beysen C, Hellerstein MK, Berglund L, Havel PJ, Consuming fructose-sweetened, not glucose-sweetened, beverages increases visceral adiposity and lipids and decreases insulin sensitivity in overweight/obese humans., J Clin Invest., 2009, vol. ;5 (pg. :1322–1334.)

5.Zang M, The Molecular Basis of Hepatic De Novo Lipogenesis in Insulin Resistance., Transcriptional regulation of de novo lipogenesis in liver,. 2016, (pg. :1--31.)


6.Dif N, Euthine V, Gonnet E, Laville M, Vidal H, Lefai E, Insulin activates human sterol-regulatory-element-binding protein-1c (SREBP-1c) promoter through SRE motifs., Biochemical Journal,. 2006, vol. ;15 (pg. :179--188.)

7.Souza-Mello V, Peroxisome proliferator-activated receptors as targets to treat non-alcoholic fatty liver disease., World J Hepatol,. 2015, vol. ;7(pg. :1012--1019.)

8.Schultz A, Neil D, Aguila MB, Mandarim-de-Lacerda CA, Hepatic Adverse Effects of Fructose Consumption Independent of Overweight/Obesity., Int J Mol Sci,. 2013, vol. ;14 (pg. :21873--21886.)

9.Lindqvist A, Baelemans A, Erlanson-Albertsson C, Effects of sucrose, glucose and fructose on peripheral and central appetite signals., Regul Pept,. 2008, vol. ;150 (pg. :26--32.)




10.Alwahsh SM, Gebhardt R, Dietary fructose as a risk factor for non-alcoholic fatty liver disease (NAFLD)., Arch Toxicol,. 2017, vol. ;91 (pg. :1545--1563.)

11.Pachikian BD, Essaghir A, Demoulin JB, Neyrinck AM,Catry E, De Backer FC, Dejeans N, Dewulf EM, Sohet FM, Portois L, Deldicque L, Molendi-Coste O, Leclercq IA, Francaux M, Carpentier YA, Foufelle F, Muccioli GG, Cani PD, Delzenne NM, Hepatic n-3 polyunsaturated fatty acid depletion promotes steatosis and insulin resistance in mice: genomic analysis of cellular targets., PLoS One,. 2011, vol. ;6 (e23365.)

12.Alwayn IP, Gura K, Nosé V, Zausche B, Javid P, Garza J, Verbesey J, Voss S, Ollero M, Andersson C, Bistrian B, Folkman J, Puder M, Omega-3 fatty acid supplementation prevents hepatic steatosis in a murine model of nonalcoholic fatty liver disease., Pediatr Res,. 2005, vol. ;57 (pg. : 445--452.)

13.Alwayn IP, Andersson C, Zauscher B, Gura K, Nosé V, Puder M, Omega-3 fatty acids improve hepatic steatosis in a murine model: potential implications for the marginal steatotic liver donor., Transplantation,. 2005, vol. ;79 (pg. :606--608.)

14.Helen M. Parker, Nathan A. Johnson, Catriona A. Burdon, Jeffrey S. Cohn, Helen T. O’Connor, Jacob George, Omega-3 supplementation and non-alcoholic fatty liver disease: A systematic review and meta-analysis., Journal of Hepatology,. 2012, vol. ;56 (pg. : 944--954.)

15.Ueno T, Komatsu M, Autophagy in the liver: functions in health and disease., Nat Rev Gastroenterol Hepatol,. 2017, vol. ;14 (pg. :170--184.)


16.Fukuo Y, Yamashina S, Sonoue H, Arakawa A, Nakadera E, Aoyama T, Uchiyama A, Kon K, Ikejima K, Watanabe S, Abnormality of autophagic function and cathepsin expression in the liver from patients with non-alcoholic fatty liver disease., Hepatol Res,. vol. ;44 (pg. :1026--1036.)

17.Augustin, R, The protein family of glucose transport facilitators: It's not only about glucose after all., IUBMB Life,. 2010, vol. ;62 (pg. : 315--333.)

18.Karim S, Adams DH, Lalor PF, Hepatic expression and cellular distribution of the glucose transporter family., World J Hepatol,. 2012, vol. ;18 (pg. :6771--6781.)

19.DeBosch BJ, Chen Z, Finck BN, Chi M, Moley KH, Glucose Transporter-8 (GLUT8) Mediates Glucose Intolerance and Dyslipidemia in High-Fructose Diet-Fed Male Mice., Molecular Endocrinology,. 2013, vol. ;27 (pg. :1887--1896.)


20.DeBosch BJ, Chi M, Moley KH, Glucose transporter 8 (GLUT8) regulates enterocyte fructose transport and global mammalian fructose utilization., Endocrinology,. 2012, vol. ;153 (pg. :4181--4191.)

21.Tanaka M, et al. Trehalose alleviates polyglutamine-mediated pathology in a mouse model of Huntington disease., Nat. Med,. 2004, vol. ;10 (pg. :148--154.)

22.Castillo K, et al. Trehalose delays the progression of amyotrophic lateral sclerosis by enhancing autophagy in motoneurons., Autophagy,. 2013, vol. ;9 (pg. :1308--1320.)

23.Allyson L. Mayer AL, Higgins CB, Heitmeier MR, Kraft TE, Qian X, Crowley JR, Hyrc KL, Beatty WL, Yarasheski KE, Hruz PW, DeBosch BJ, SLC2A8 (GLUT8) is a mammalian trehalose transporter required for trehalose-induced autophagy., Scientific Reports,. 2016, vol. ;6 (Article number: 38586.) doi:10.1038/srep38586.

24.DeBosch BJ, Heitmeier MR, Mayer AL, et al. Trehalose inhibits solute carrier 2A (SLC2A) proteins to induce autophagy and prevent hepatic steatosis., Science signaling,. 2016, vol. ;9 doi:10.1126/scisignal.aac5472.

25.Wu SY, Lan SH, Cheng DE, Chen WK, Shen CH, Lee YR, et al. Ras-related tumorigenesis is suppressed by BNIP3-mediated autophagy through inhibition of cell proliferation., Neoplasia,. 2011, vol. ;13 (pg. :1171--1182.)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top