|
參考文獻
[1] Wilson, J.N., 2000. Guidance of agricultural vehicles – a historical perspective. Computers and Electronics in Agriculture, vol. 26, no. 1-2, pp. 3-9. [2] Hollingum, J., 1999. Robots in agriculture. Industrial Robot: an International Journal, vol. 26, no. 6, pp. 438-446. [3] Blackmore, B.S., Fountas, S., Tang L., & Have, H., 2004. Design specifications for a small autonomous tractor with behavioural control. J Int Comm Agric Eng (CIGR), no. 2004. [4] Have, H., 2004. Effects of automation on sizes and costs of tractor and machinery. European Society of Agricultural Engineers, pp. 285. [5] Menendez-aponte, P., Garcia, C., Freese, D., Defterli, S., & Yunjun Xu, 2016. Software and hardware architectures in cooperative aerial and ground robots for agricultural disease detection. International Conference on Collaboration Technologies and Systems, pp. 54-358. [6] Zhang, Y., Gao, F., & Tian, L., 2008. INS/GPS integrated navigation for wheeled agricultural robot based on sigma-point Kalman filter. Asia Simulation Conference 7th International Conference on System, Simulation and Scientific Computing, pp. 1425-1431. [7] Liu, M., Xu, F., & Jia, K., 2016. A stable walking strategy of quadruped robot based on foot trajectory planning. IEEE 3rd International Conference on Information Science and Control Engineering, pp. 799-803. [8] Yee, F., Salih, M.H., Ng, Z., Kho, T., Woo, Y.S., & Min, J.J., 2016. Design and implement active embedded robot tracking system using FPGA for better performance. IEEE 3rd International Conference on Electronic Design, pp. 269-274. [9] Knoll, F.J., Holtorf, T., & Hussmann, S., 2016. Investigation of different sensor systems to classify plant and weed in organic farming applications. SAI Computing Conference, pp. 343-348. [10] McCool, C., Perez, T., & Upcroft, B., 2017. Mixtures of light weight deep convolutional neural networks: applied to agricultural robotics. IEEE Robots and Automation Letters, vol. 2, no. 3, pp. 1344-1351. [11] Bakker, T., Bontsema, J., Muller, J., Asselt, C.J. van, & Straten, G. van, 2009. Simple tunable control for automatic guidance of four-wheel steered vehicles. Joint International Agricultural Conference. [12] Grimstad, L., Pham, C.D., Phan, C.D., & From, P.J., 2015. On the design of a low-cost, light-weight, and highly versatile agricultural robot. IEEE International Workshop on-Advanced Robotics and its Social Impacts, pp.1-6. [13] Corpe, S.J.O., Tang, L., Abplanalp, P., 2013. GPS-guided modular design mobile robot platform for agricultural applications. IEEE 7th International Conference on Sensing Technology, pp. 806-810. [14] Kadmiry, B., & Wong, C.K., 2015. Perception scheme for fruits detection in trees for autonomous agricultural robot applications. Image and Vision Computing New Zealand, pp. 1-6. [15] Durmus, H., Gunes, E.O., Kırcı, M., & Ustundag, B.B., 2015. The design of general purpose autonomous agricultural mobile-robot: “AGROBOT”. IEEE 4th Agro-Geoinformatics, pp. 49-53. [16] Jothimurugan, P., Muthu Saravanan, J., Sushanth, R., Suresh, V., Siva Subramaniam, H., Vasantharaj., S., & Yogeswaran, S., 2013. Solar E-Bot for agriculture. Texas Instruments-India Educators' Conference, pp. 125-130. [17] Madsen, T.E., & Jakobsen, H.L., 2001. Mobile robot for weeding department of control and engineering design. Denmark: Technical University of Denmark, pp. 159. [18] Blender, T., Buchner, T., Fernandez, B., Pichlmaier, B., & Schlegel C., 2016. Managing a mobile agricultural robot swarm for a seeding task. IEEE 42nd Annual Conference Industrial Electronic Society, pp. 6879-6886. [19] Conesa-munoz, J., Ribeiro, A., Andujar, D., Fernandez-Quintanilla, C., & Dorado, J., 2012. Multi-path planning based on a NSGA-II for a fleet of robots to work on agricultural tasks. IEEE Congress on Evolutionary Computation, pp.1-8. [20] Gomez-gil, J., Alonso-garcia, S., Gomez-gil, F.J., & Stombaugh, T., 2011. A simple method to improve autonomous GPS positioning for tractors, MDPI Sensors, pp.5630-5644. [21] Takai, R., Barawid, Jr.O., & Noguchi, N., 2011. Autonomous navigation system of crawler-type robot tractor. Preprints of the 18th International Federation of Automatic Control, pp. 14165-14169. [22] Li, J., Liu, W., Wang, J.Z., & Qiao, J.N., 2016. A self-correcting localization approach for automobile robots based on the two dimensional ladar. IEEE 35th Chinese Control Conference, pp.6261-6265. [23] Bengochea-guevara, J.M., Conesa-munoz, J., Andujar D., & Ribeiro, A., 2016. Merge fuzzy visual servoing and GPS-based planning to obtain a proper navigation behavior for a small crop-inspection robot. MDPI Sensors. [24] Gulalkari, A.V., Sheng, D., Pratamal, P.S., Kim, H.K., Byun, G.S., & Kim, S.B., 2015. Kinect camera sensor-based object tracking and following of four wheel independent steering automatic guided vehicle using Kalman filter. IEEE 15th International Conference on Control Automation and Systems, pp. 1650-1655. [25] Vishal, K., Jawahar, C.V., & Chari, V., 2015. Accurate localization by fusing images and GPS signals. IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 17-24. [26] Pajares, G., Garcia-santillan , I., Campos, Y., Montalvo, M., Guerrero, J.M., Emmi, L., Romeo, J., Guijarro, M., & Gonzalez-de-santos, P., 2016. Machine-vision systems selection for agricultural vehicles: a guide. MDPI Imaging. [27] Dworak, V., Huebner, M., & Selbeck, J., 2015. Precise navigation of small agricultural robots in sensitive areas with a smart plant camera. MDPI Imaging. [28] Bengochea-guevara, J.M., Conesa-munoz, J., Andujar D., &Ribeiro, A., 2016. Merge fuzzy visual servoing and GPS-based planning to obtain a proper navigation behavior for a small crop-inspection robot. MDPI Sensors. [29] Gulalkari, A.V., Sheng, D., Pratamal, P.S., Kim, H.K., Byun, G.S., & Kim, S.B., 2015. Kinect camera sensor-based object tracking and following of four wheel independent steering automatic guided vehicle using Kalman filter. IEEE 15th International Conference on Control Automation and Systems, pp.1650-1655. [30] Li, T.H.S., Lee, M.H., Lin, C.W., Liou, G.H., & Chen, W.C., 2016. Design of autonomous and manual driving system for 4WISWID vehicle. IEEE Access, vol. 4, pp. 2256 -2271. [31] Cordova-esparza, D.M., Terven, J.R., Jimenez-hernandez, H., Vazquez-cervantes, A., Herrera-navarro, A.M., & Ramirez-pedraza, A., 2016. Multiple Kinect V2 calibration. ATKAFF, vol. 57, no. 3, pp. 810-821. [32] Steward, J., Lichti, D., Chow, J., Ferber, R., & Osis, S., 2015. Performance assessment and calibration of the kinect 2.0 time-of-flight range camera for use in motion capture applications. FIG Working Week. [33] MicroSoft. Kinect for windows sdk offline docs. website: https//devel loper.microsoft.com/zh-tw/windows/kinect/develop [34] Lange, R., & Seitz, P., 2001. Solid-state time-of-flight range camera. IEEE Journal of Quantum Electronics, vol. 37, no. 3, pp. 390-397. [35] Kim, Y.M., Chan, D., Theobalt, C., & Thrun, S., 2008. Design and calibration of a multi-view tof sensor fusion system. IEEE Computer Vision and Pattern Recognition Workshops, pp. 1-7. [36] Herrera D.C., Kannala, J., & Heikkil, J., 2012. Joint depth and color camera calibration with distortion correction. IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 34, no. 10, pp. 2058-2064. [37] Zhang, C., & Zhang, Z., 2011. Calibration between depth and color sensors for commodity depth cameras. IEEE Multimedia and Expo, pp. 1-6. [38] Zhang, Z., 1999. Flexible camera calibration by viewing a plane from unknown orientations. IEEE International Conference on Computer Vision, vol.1, pp. 666-673. [39] Lachat, E., Macher, H., Landes, T., & Grussenmeyer, P., 2015. Assessment and calibration of a rgb-d camera (kinect v2 sensor) towards a potential use for close-range 3D modeling. MDPI Remote Sensing. [40] Heikkila, J., 2000. Geometric camera calibration using circular control points. IEEE Transcations on Pattern Analysis and Machine Intelligence, vol. 22, no. 10, pp. 1066-1077. [41] Rotaru, C., Graf , T., & Zhang, J.W., 2004. Extracting road features from color images using a cognitive approach. IEEE Intelligent Vehicles Symposium, pp. 298-303. [42] Sun, T.Y., Tsai S.J., & Chan, V., 2006. HSI color model based lane-marking detection. IEEE Intelligent Transportation Systems Conference, pp. 1168-1172. [43] Ying, Z.Q., Li, G., & Tan, G., 2015. An illumination-robust approach for feature-based road detection. IEEE Multimedia, pp. 278-281. [44] Li, Y., Chen, L.G., Huang, H.B., Li, X.P., Xu, W.K., Zheng, L., & Huang, J.Q., 2016. Nighttime lane markings recognition based on canny detection and hough transform. IEEE Real-time Computing and Robotics, pp. 411-415. [45] Teng, Z., Kim, J.H., & Kang, D.J., 2010. Real-time lane detection by using multiple cues. IEEE Control Automation and Systems, pp. 2334-2337. [46] Yeh, C.H., & Chen, Y.H., 2006. Development of vision-based lane and vehicle detecting systems via the implementation with a dual-core dsp. IEEE Intelligent Transportation Systems Conference, pp. 1179-1184. [47] Borkar, A., Hayes, M., & Smith, M.T., 2010. Detecting lane markers in complex urban environments. IEEE Mobile Adhoc and Sensor Systems, pp. 727-732. [48] Zhang, W.L., Li, H.B., Yan, X., Liu, Z.X., 2016. A method of recognizing curve direction based on hough transform. IEEE Computational Intelligence and Design, vol. 2, pp. 3-6. [49] Segerblad, E., Delight, B., 2011. Machine vision in agricultural robotics – a short overview. IDT Miniconference on interesting results in computer science and engineering. [50] English, a., Ross, p., Ball, d., & Corke, p., 2014. Vision based guidance for robot navigation in agriculture. IEEE Robotics and Automation, pp. 1693-1698. [51] Karnopp, D., 2004. Vehicle Stability. New York: Marcel Dekker. [52] Oshima, H., Tani, M., Kobayashi, N., Ishii, A., & Imai, K., 2004. Control for four-wheel individual steering and four-wheel driven electronic vehicle. Denki Gakkai Ronbunshi, pp. 599-606. [53] Lauria, M., Nadeau, I., Lepage, P., Morin, Y., Giguere, P., Gagnon, F., Letourneau, D., & Michaud, F.,2006. Design and control of a four steered wheeled mobile robot. IEEE Industrial Electronics, pp. 4020-4025. [54] Li, Y. H., Yang, L. M., & Yang, G. L., 2007. Network-based coordinated motion control of large-scale transportation vehicles. IEEE/ASME Transactions on Mechatronics, pp. 208-215. [55] Ye, Y.X., He, L., & Zhang, Q., 2016. Steering control strategies for a four-wheel-independent-steering bin managing robot. International Federation of Automatic Control, pp. 39-44. [56] Qian, H.H., Xu, G.Q., Yan, J.Y., & Xu, Y.S., 2011. Vehicle structure and omni-directionality for higher space efficiency. IEEE Intelligent Control and Automation, pp. 638-644. [57] Qian, H.H., Lam, T.L., Li, W.M., Xia, C.G., & Xu, Y.S., 2009. System and design of an omni-directional vehicle. IEEE Robotics and Biomimetics, pp. 389-394. [58] Ye, D.W., Chen, X.B., Liu T.J., & Gong J., 2011. Design and optimization of the chassis for “4wis and steer-by-wire electric car. IEEE Electric Information and Control Engineering. [59] Tabile, R.A., Godoy, E.P., Pereira, R.R. D., Tangerino, G.T., Porto, A.J.V., & Inamasu, R.Y., 2011. Design and development of the architecture of an agricultural mobile robot. ENGENHARIA AGRICOLA, vol. 31, no. 1, pp. 130-142. [60] Furukawa, Y., Yuhara, N., Sano, S., Takeda, H., & Matsushita, Y., 1989. A review of four-wheel steering studies from the viewpoint of vehicle dynamics and control. Vehicle System Dynamics: International Journal of Vehicle Mechanics and Mobility, pp. 151-186. [61] Rasul, M.H., Zamzuri, H,. Mustafa, A.M.A., Ariff, M.H.M., 2015. Development of 4wis sbw in-wheel drive compact electric vehicle platform. IEEE Control Conference, pp. 1-6. [62] Li, C.S., Song, P., Chen, G.Y., Zong, C.F., & Liu, W.C., 2015. Driving and steering coordination control for 4wis/4wid electric vehicle. SAE. [63] Chen, G.Y., & Zhang , D., 2014. Research on integrated chassis control strategy for four-wheel independent control electric vehicle. SAE. [64] Lam, T.L., Xu, Y.S., Xu, G.Q., 2009. Traction force distribution on omni-directional four wheel independent drive electric vehicle. IEEE Robotics and Automation, pp. 3724-3729. [65] Li, B.Y., Du, H.P., Li, W.H., 2015. Trajectory control for autonomous electric vehicles with in-wheel motors based on a dynamics model approach. IET Intelligent Transport Systems, pp. 318-330. [66] Quigley, M., Gerkey, B., Conley, K., Faust, J., Foote, T., Leibs, J., Berger, E., Wheeler, R., & Ng, A., 2009. Ros: an open-source robot operating system. IEEE Open-Source Software workshop of the International Conference on Robotics and Automation, pp. 644-649. [67] Li, m.l., Yi, X.D., Wang, Y.Z., Cai, Z.G., & Zhang, Y.G., 2016. Subsumption model implemented on ros for mobile robots. IEEE Systems Conference, pp. 1-6. [68] Araujo, A., Portugal, D., Couceiro, M.S., & Rocha, R.P., 2015. Integrating arduino-based educational mobile robots in ros. IEEE autonomous robot systems, pp. 1-6. [69] Codd-downey, R., & Jenkin, M., 2015. Rcon: dynamic mobile interfaces for command and control of ros-enabled robots. IEEE Informatics in Control Automation and Robotics, vol. 2, pp. 66-73. [70] Barros, T.T. T., Lages, W.F., 2014. A backstepping non-Linear controller for a mobile robot Implemented in ros. IEEE Industrial Informatics, pp. 304-309. [71] Belzunce, A., Li, M., & Handroos, H., 2016. Control system design of a teleoperated omnidirectional mobile robot using ros. IEEE Industrial Electronics and Applications, pp. 1283-1287. [72] Abdelrasoul, Y., Saman, A.B.S.HM., Sebastian, P., 2016. Quantitative study of tuning ros gmapping parameters and their effect on performing indoor 2d slam. IEEE Robotics and Manufacturing Automation, pp. 1-6. [73] Ruiz, E., Acuna, R., Certad, N., Terrones, A., Cabrera, M.E., 2013. Development of a control platform for the mobile robot roomba using ros and a kinect sensor. IEEE Robotics Symposium and Competition, pp. 55-60. [74] Mortimer, M., Horan, B., Joordens, M., 2016. Kinect with ros, interact with oculus: towards dynamic user interfaces for robotic teleoperation. IEEE System of Systems Engineering Conference, pp. 1-6. [75] Jin, K., Liu, P.L., Sun, R.D., Wei, Z.Q., Zhou, Z.Q., 2016. Real-time plane segmentation in a ROS-based Navigation system for the visually impaired. IEEE Ubiquitous Positioning, Indoor Navigation and Location Based Services, pp. 170-175. [76] Li, R.J., Oskoei, M.S., Hu, H.H., 2013. Towards ROS based [77] multi-robot architecture for ambient assisted living. IEEE Systems Man and Cybernetics, pp. 3458-3463. [78] Zhang, Z., 2000. A flexible new technique for camera calibration, IEEE Computer Society, pp. 1330-1334. [79] Microsoft. Kinect coordinate mapping. website: https://msdn.microso ft.com/en-us/library/dn785530.aspx [80] Xsens MTi-G user manual and technical documentation. website: https://www.xsens.com/wp-content/uploads/2013/11/MTi-G_User_Manual_and_Technical_Documentation.pdf [81] Shahrokhi, M., & Zomorrodi , A., 2015. Comparison of PID controller tuning methods. website: http://ie.itcr.ac.cr/einteriano/ control/clase/Zomorrodi_Shahrokhi_PID_Tunning_Comparison.pdf [82] Bayar, V., Akar, B., Yayan, U., Yavuz, H.S. 2014. Fuzzy logic based design of classical behaviors for mobile robots in ros middleware. IEEE Innovations in Intelligent Systems and Applications, pp. 162-169. [83] Wang, G.W., Zhao, J., Zhang, X.G., & Zhao, R.C., 2014. Multi-model fuzzy controller for vehicle lane tracking. IEEE Intelligent Transportation Systems, pp.1341-1346. [84] Ping, E.P., & Swee, S.K., 2012. Simulation and experiment of automatic steering control for lane keeping manoeuvre. IEEE Intelligent and Advanced Systems, vol. 1, pp. 105-110. [85] Wang, S.F., & Zhang, J.Y., 2010. The research and application of fuzzy control in four-wheel-steering vehicle. IEEE Fuzzy Systems and Knowledge Discovery, vol. 3, pp. 1397-1401. [86] Vans, E., Vachkov, G., Sharma, A., 2014. Vision based autonomous path tracking of a mobile robot using fuzzy logic. IEEE Computer Science and Engineering, pp. 1-8. [87] Li, Q., Shi, G.B., Lin, Y., Wei, J., 2010. Yaw rate control of active front steering based on fuzzy-logic controller. IEEE Education Technology and Computer Science, vol. 1, pp. 125-128. [88] Wang, Y., Zhu, X.X., 2014. A robust design of hybrid fuzzy controller with fuzzy decision tree for autonomous intelligent parking system. IEEE American Control Conference, pp. 5282-5287. [89] Vivas-lopez, C.A., Morales-Menendez, R., Ramirez-mendoza, R., 2016. Control based on fuzzy logic. IEEE Fuzzy Systems, pp. 673-677. [90] Takimoto, H., & Hoshino, Y., 2009. Development of fuzzy controller for the steering angle and the motor power control application to the line trace car. IEEE Fuzzy Systems, pp. 2072-2076. [91] Borrero, H.G., Becker, M., Archila, J.F., & Bonito, F., 2012. Fuzzy control strategy for the adjustment of the front steering angle of a 4wsd agricultural mobile robot. IEEE Computing Congress, pp. 1-6. [92] Aye, Y.Y., Watanabe, K., Maeyama S., & Nagai, I., 2016. Image-based fuzzy control of a car-like mobile robot for parking problems. IEEE Mechatronics and Automation, pp. 502-507. [93] Wang, X.Y., Fu, Y.M., Yang, Y., Ma, H.B., 2013. Lateral control of autonomous vehicles based on fuzzy logic. IEEE Control and Decision Conference, pp. 237-242. [94] Yang, Z.G., Wang, Z.J., Su, W.T., Zhang, J., 2010. Multi-mode control method based on fuzzy selector in the four wheel steering control system. IEEE Control and Automation, pp. 1221-1226. [95] Hiremath, S., Evert, F.V., Heijden, G.V.D., Braak, C.T., Stein, A., 2012. Image-based particle filtering for robot navigation in a maize field. IEEE/RSJ International Conference on Intelligent Robots and Systems, vol. 1, pp. 43-48.
|