跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.54) 您好!臺灣時間:2026/01/12 02:40
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:宋公博
研究生(外文):Song, Gong-Bo
論文名稱:機器視覺導引與控制系統於四輪獨立轉向與驅動之農用電動載具設計與開發
論文名稱(外文):Study of vision-based path guidance and control system for four-wheeled steering/drive agricultural electric vehicles
指導教授:張仲良
指導教授(外文):Chang, Chung-Liang
口試委員:連長華余致賢張仲良
口試委員(外文):Lien, Chang-HuaYu, Chih-HsienChang, Chung-Liang
口試日期:2017-06-21
學位類別:碩士
校院名稱:國立屏東科技大學
系所名稱:生物機電工程系所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:126
中文關鍵詞:農耕電動載具四輪獨立轉向/獨立驅動機器人作業系統機器視覺模糊邏輯PID
外文關鍵詞:Agricultural vehicle4WIS-4WIDROSMachine visionFuzzy logicPID
相關次數:
  • 被引用被引用:3
  • 點閱點閱:342
  • 評分評分:
  • 下載下載:24
  • 收藏至我的研究室書目清單書目收藏:1
台灣耕地面積不大,如何善用既有耕作面積,採以智慧化、自動化的省工方式造就高作物產量是我們需要思考的。本論文旨在設計與製作一台以四輪獨立驅動、四輪獨立轉向的一人座式農耕移動載具,並透過視覺導引技術、模糊邏輯及PID運動控制法來導引載具自主行進於田間場域,核心系統設計方面採以分散式機器人系統框架的作法整合上述功能並嵌入至作業系統上,性能測試場域為室內場域及田間場域,實驗過程中採以多天線式中高定位精度之衛星導航接收器記錄行徑路線與載具姿態,最後探討載具導引性能以及載具控制方面可改善之處。
In this study, a four-wheeled independent driving and steering (4WIS-4WID) agricultural vehicle is proposed to develop an autonomous vision-based guidance and control method which in implemented in embedded Robot Operating System (ROS). The center of gravity (COG) image processing, fuzzy logic inference, and proportion-integration-differentiation (PID) motion control method is integrated to perform straight-line travelling, headland turning, and zero-radius turning for agricultural vehicle. The experiments are conducted indoor and outdoor field environment. Meanwhile, a multi- antenna array-based global navigation satellite system (GNSS) receiver is utilized to record the navigation route and attitude of vehicle. Finally, the performance analysis is evaluated in the thesis.
目錄
摘要 I
Abstract II
謝誌 III
目錄 IV
表目錄 VII
圖目錄 VIII
第一章 緒論 1
1.1前言 1
1.2研究目的與動機 6
1.3 文獻回顧 7
1.3.1 導航與感測技術 7
1.3.2 影像導引與識別 8
1.3.3 機器人操作系統 13
1.4 論文貢獻 16
1.5 論文組織 17
第二章 視覺導引與控制技術 18
2.1 影像導引演算法 19
2.1.1 世界座標與像素座標轉換 19
2.1.2 相機率定 23
2.1.3 影像處理 25
2.1.4 姿態補償 28
2.1.5 重心提取法 30
2.1.6 測試結果 31
2.2 運動控制 35
2.2.1 載具運動模型 36
2.2.2 PID轉速控制 41
2.2.3 FUZZY+PID轉角控制 45
2.2.4 測試結果 65
2.3 機器人作業系統 72
第三章 農耕載具規劃與設計 79
3.1 機構設計與組立 79
3.2 導引與控制裝置 84
3.2.1 控制器 87
3.2.2 感測與定位 89
3.2.3 影像視覺 92
3.2.4 運動控制 93
3.2.5 其他 95
第四章 實驗結果與討論 96
4.1 實驗前準備 96
4.2 靜態測試 97
4.2.1 ROS節點連線測試 97
4.2.2 GPS姿態誤差量 99
4.2.3影像像素偏移量 101
4.3 動態測試 104
4.3.1 室內場域 104
4.3.2 田間場域 106
4.3.3 GPS定位路線記錄 109
第五章 結論與未來工作 111
參考文獻 114
作者簡介 125
參考文獻

[1] Wilson, J.N., 2000. Guidance of agricultural vehicles – a historical
perspective. Computers and Electronics in Agriculture, vol. 26, no. 1-2, pp. 3-9.
[2] Hollingum, J., 1999. Robots in agriculture. Industrial Robot: an
International Journal, vol. 26, no. 6, pp. 438-446.
[3] Blackmore, B.S., Fountas, S., Tang L., & Have, H., 2004. Design
specifications for a small autonomous tractor with behavioural
control. J Int Comm Agric Eng (CIGR), no. 2004.
[4] Have, H., 2004. Effects of automation on sizes and costs of tractor
and machinery. European Society of Agricultural Engineers, pp. 285.
[5] Menendez-aponte, P., Garcia, C., Freese, D., Defterli, S., & Yunjun
Xu, 2016. Software and hardware architectures in cooperative aerial
and ground robots for agricultural disease detection. International
Conference on Collaboration Technologies and Systems, pp. 54-358.
[6] Zhang, Y., Gao, F., & Tian, L., 2008. INS/GPS integrated navigation
for wheeled agricultural robot based on sigma-point Kalman filter.
Asia Simulation Conference 7th International Conference on System,
Simulation and Scientific Computing, pp. 1425-1431.
[7] Liu, M., Xu, F., & Jia, K., 2016. A stable walking strategy of
quadruped robot based on foot trajectory planning. IEEE 3rd
International Conference on Information Science and Control
Engineering, pp. 799-803.
[8] Yee, F., Salih, M.H., Ng, Z., Kho, T., Woo, Y.S., & Min, J.J., 2016.
Design and implement active embedded robot tracking system using
FPGA for better performance. IEEE 3rd International Conference on
Electronic Design, pp. 269-274.
[9] Knoll, F.J., Holtorf, T., & Hussmann, S., 2016. Investigation of
different sensor systems to classify plant and weed in organic
farming applications. SAI Computing Conference, pp. 343-348.
[10] McCool, C., Perez, T., & Upcroft, B., 2017. Mixtures of light weight
deep convolutional neural networks: applied to agricultural robotics.
IEEE Robots and Automation Letters, vol. 2, no. 3, pp. 1344-1351.
[11] Bakker, T., Bontsema, J., Muller, J., Asselt, C.J. van, & Straten, G.
van, 2009. Simple tunable control for automatic guidance of
four-wheel steered vehicles. Joint International Agricultural
Conference.
[12] Grimstad, L., Pham, C.D., Phan, C.D., & From, P.J., 2015. On the
design of a low-cost, light-weight, and highly versatile agricultural
robot. IEEE International Workshop on-Advanced Robotics and its
Social Impacts, pp.1-6.
[13] Corpe, S.J.O., Tang, L., Abplanalp, P., 2013. GPS-guided modular
design mobile robot platform for agricultural applications. IEEE 7th
International Conference on Sensing Technology, pp. 806-810.
[14] Kadmiry, B., & Wong, C.K., 2015. Perception scheme for fruits
detection in trees for autonomous agricultural robot applications.
Image and Vision Computing New Zealand, pp. 1-6.
[15] Durmus, H., Gunes, E.O., Kırcı, M., & Ustundag, B.B., 2015. The
design of general purpose autonomous agricultural mobile-robot:
“AGROBOT”. IEEE 4th Agro-Geoinformatics, pp. 49-53.
[16] Jothimurugan, P., Muthu Saravanan, J., Sushanth, R., Suresh, V.,
Siva Subramaniam, H., Vasantharaj., S., & Yogeswaran, S., 2013.
Solar E-Bot for agriculture. Texas Instruments-India Educators'
Conference, pp. 125-130.
[17] Madsen, T.E., & Jakobsen, H.L., 2001. Mobile robot for weeding
department of control and engineering design. Denmark: Technical
University of Denmark, pp. 159.
[18] Blender, T., Buchner, T., Fernandez, B., Pichlmaier, B., & Schlegel
C., 2016. Managing a mobile agricultural robot swarm for a
seeding task. IEEE 42nd Annual Conference Industrial Electronic
Society, pp. 6879-6886.
[19] Conesa-munoz, J., Ribeiro, A., Andujar, D., Fernandez-Quintanilla,
C., & Dorado, J., 2012. Multi-path planning based on a NSGA-II for a fleet of robots to work on agricultural tasks. IEEE Congress
on Evolutionary Computation, pp.1-8.
[20] Gomez-gil, J., Alonso-garcia, S., Gomez-gil, F.J., & Stombaugh, T.,
2011. A simple method to improve autonomous GPS positioning for
tractors, MDPI Sensors, pp.5630-5644.
[21] Takai, R., Barawid, Jr.O., & Noguchi, N., 2011. Autonomous
navigation system of crawler-type robot tractor. Preprints of the 18th
International Federation of Automatic Control, pp. 14165-14169.
[22] Li, J., Liu, W., Wang, J.Z., & Qiao, J.N., 2016. A self-correcting
localization approach for automobile robots based on the two
dimensional ladar. IEEE 35th Chinese Control Conference,
pp.6261-6265.
[23] Bengochea-guevara, J.M., Conesa-munoz, J., Andujar D., & Ribeiro, A., 2016. Merge fuzzy visual servoing and GPS-based planning to
obtain a proper navigation behavior for a small crop-inspection robot.
MDPI Sensors.
[24] Gulalkari, A.V., Sheng, D., Pratamal, P.S., Kim, H.K., Byun, G.S.,
& Kim, S.B., 2015. Kinect camera sensor-based object tracking and
following of four wheel independent steering automatic guided
vehicle using Kalman filter. IEEE 15th International Conference on
Control Automation and Systems, pp. 1650-1655.
[25] Vishal, K., Jawahar, C.V., & Chari, V., 2015. Accurate localization
by fusing images and GPS signals. IEEE Conference on Computer
Vision and Pattern Recognition Workshops, pp. 17-24.
[26] Pajares, G., Garcia-santillan , I., Campos, Y., Montalvo, M.,
Guerrero, J.M., Emmi, L., Romeo, J., Guijarro, M., &
Gonzalez-de-santos, P., 2016. Machine-vision systems selection for
agricultural vehicles: a guide. MDPI Imaging.
[27] Dworak, V., Huebner, M., & Selbeck, J., 2015. Precise navigation of small agricultural robots in sensitive areas with a smart plant camera. MDPI Imaging.
[28] Bengochea-guevara, J.M., Conesa-munoz, J., Andujar D., &Ribeiro,
A., 2016. Merge fuzzy visual servoing and GPS-based planning to
obtain a proper navigation behavior for a small crop-inspection robot.
MDPI Sensors.
[29] Gulalkari, A.V., Sheng, D., Pratamal, P.S., Kim, H.K., Byun, G.S.,
& Kim, S.B., 2015. Kinect camera sensor-based object tracking and
following of four wheel independent steering automatic guided
vehicle using Kalman filter. IEEE 15th International Conference on
Control Automation and Systems, pp.1650-1655.
[30] Li, T.H.S., Lee, M.H., Lin, C.W., Liou, G.H., & Chen, W.C., 2016.
Design of autonomous and manual driving system for 4WISWID
vehicle. IEEE Access, vol. 4, pp. 2256 -2271.
[31] Cordova-esparza, D.M., Terven, J.R., Jimenez-hernandez, H.,
Vazquez-cervantes, A., Herrera-navarro, A.M., & Ramirez-pedraza,
A., 2016. Multiple Kinect V2 calibration. ATKAFF, vol. 57, no. 3,
pp. 810-821.
[32] Steward, J., Lichti, D., Chow, J., Ferber, R., & Osis, S., 2015.
Performance assessment and calibration of the kinect 2.0
time-of-flight range camera for use in motion capture applications.
FIG Working Week.
[33] MicroSoft. Kinect for windows sdk offline docs. website: https//devel
loper.microsoft.com/zh-tw/windows/kinect/develop
[34] Lange, R., & Seitz, P., 2001. Solid-state time-of-flight range camera.
IEEE Journal of Quantum Electronics, vol. 37, no. 3, pp. 390-397.
[35] Kim, Y.M., Chan, D., Theobalt, C., & Thrun, S., 2008. Design and
calibration of a multi-view tof sensor fusion system. IEEE
Computer Vision and Pattern Recognition Workshops, pp. 1-7.
[36] Herrera D.C., Kannala, J., & Heikkil, J., 2012. Joint depth and color
camera calibration with distortion correction. IEEE Transactions on
Pattern Analysis and Machine Intelligence, vol. 34, no. 10, pp.
2058-2064.
[37] Zhang, C., & Zhang, Z., 2011. Calibration between depth and color
sensors for commodity depth cameras. IEEE Multimedia and Expo,
pp. 1-6.
[38] Zhang, Z., 1999. Flexible camera calibration by viewing a plane from
unknown orientations. IEEE International Conference on Computer
Vision, vol.1, pp. 666-673.
[39] Lachat, E., Macher, H., Landes, T., & Grussenmeyer, P., 2015.
Assessment and calibration of a rgb-d camera (kinect v2 sensor)
towards a potential use for close-range 3D modeling. MDPI Remote
Sensing.
[40] Heikkila, J., 2000. Geometric camera calibration using circular
control points. IEEE Transcations on Pattern Analysis and Machine
Intelligence, vol. 22, no. 10, pp. 1066-1077.
[41] Rotaru, C., Graf , T., & Zhang, J.W., 2004. Extracting road features
from color images using a cognitive approach. IEEE Intelligent
Vehicles Symposium, pp. 298-303.
[42] Sun, T.Y., Tsai S.J., & Chan, V., 2006. HSI color model based
lane-marking detection. IEEE Intelligent Transportation Systems
Conference, pp. 1168-1172.
[43] Ying, Z.Q., Li, G., & Tan, G., 2015. An illumination-robust approach
for feature-based road detection. IEEE Multimedia, pp. 278-281.
[44] Li, Y., Chen, L.G., Huang, H.B., Li, X.P., Xu, W.K., Zheng, L., &
Huang, J.Q., 2016. Nighttime lane markings recognition based on
canny detection and hough transform. IEEE Real-time Computing
and Robotics, pp. 411-415.
[45] Teng, Z., Kim, J.H., & Kang, D.J., 2010. Real-time lane detection by
using multiple cues. IEEE Control Automation and Systems, pp.
2334-2337.
[46] Yeh, C.H., & Chen, Y.H., 2006. Development of vision-based lane
and vehicle detecting systems via the implementation with a
dual-core dsp. IEEE Intelligent Transportation Systems Conference,
pp. 1179-1184.
[47] Borkar, A., Hayes, M., & Smith, M.T., 2010. Detecting lane markers
in complex urban environments. IEEE Mobile Adhoc and Sensor
Systems, pp. 727-732.
[48] Zhang, W.L., Li, H.B., Yan, X., Liu, Z.X., 2016. A method of
recognizing curve direction based on hough transform. IEEE
Computational Intelligence and Design, vol. 2, pp. 3-6.
[49] Segerblad, E., Delight, B., 2011. Machine vision in agricultural
robotics – a short overview. IDT Miniconference on interesting
results in computer science and engineering.
[50] English, a., Ross, p., Ball, d., & Corke, p., 2014. Vision based
guidance for robot navigation in agriculture. IEEE Robotics and
Automation, pp. 1693-1698.
[51] Karnopp, D., 2004. Vehicle Stability. New York: Marcel Dekker.
[52] Oshima, H., Tani, M., Kobayashi, N., Ishii, A., & Imai, K., 2004.
Control for four-wheel individual steering and four-wheel driven
electronic vehicle. Denki Gakkai Ronbunshi, pp. 599-606.
[53] Lauria, M., Nadeau, I., Lepage, P., Morin, Y., Giguere, P., Gagnon,
F., Letourneau, D., & Michaud, F.,2006. Design and control of a four
steered wheeled mobile robot. IEEE Industrial Electronics, pp.
4020-4025.
[54] Li, Y. H., Yang, L. M., & Yang, G. L., 2007. Network-based
coordinated motion control of large-scale transportation vehicles.
IEEE/ASME Transactions on Mechatronics, pp. 208-215.
[55] Ye, Y.X., He, L., & Zhang, Q., 2016. Steering control strategies for a
four-wheel-independent-steering bin managing robot. International
Federation of Automatic Control, pp. 39-44.
[56] Qian, H.H., Xu, G.Q., Yan, J.Y., & Xu, Y.S., 2011. Vehicle structure
and omni-directionality for higher space efficiency. IEEE Intelligent
Control and Automation, pp. 638-644.
[57] Qian, H.H., Lam, T.L., Li, W.M., Xia, C.G., & Xu, Y.S., 2009.
System and design of an omni-directional vehicle. IEEE Robotics
and Biomimetics, pp. 389-394.
[58] Ye, D.W., Chen, X.B., Liu T.J., & Gong J., 2011. Design and
optimization of the chassis for “4wis and steer-by-wire electric car.
IEEE Electric Information and Control Engineering.
[59] Tabile, R.A., Godoy, E.P., Pereira, R.R. D., Tangerino, G.T., Porto,
A.J.V., & Inamasu, R.Y., 2011. Design and development of the
architecture of an agricultural mobile robot. ENGENHARIA
AGRICOLA, vol. 31, no. 1, pp. 130-142.
[60] Furukawa, Y., Yuhara, N., Sano, S., Takeda, H., & Matsushita, Y.,
1989. A review of four-wheel steering studies from the viewpoint of
vehicle dynamics and control. Vehicle System Dynamics:
International Journal of Vehicle Mechanics and Mobility, pp.
151-186.
[61] Rasul, M.H., Zamzuri, H,. Mustafa, A.M.A., Ariff, M.H.M., 2015.
Development of 4wis sbw in-wheel drive compact electric vehicle
platform. IEEE Control Conference, pp. 1-6.
[62] Li, C.S., Song, P., Chen, G.Y., Zong, C.F., & Liu, W.C., 2015.
Driving and steering coordination control for 4wis/4wid electric
vehicle. SAE.
[63] Chen, G.Y., & Zhang , D., 2014. Research on integrated chassis
control strategy for four-wheel independent control electric vehicle.
SAE.
[64] Lam, T.L., Xu, Y.S., Xu, G.Q., 2009. Traction force distribution on
omni-directional four wheel independent drive electric vehicle. IEEE
Robotics and Automation, pp. 3724-3729.
[65] Li, B.Y., Du, H.P., Li, W.H., 2015. Trajectory control for
autonomous electric vehicles with in-wheel motors based on a
dynamics model approach. IET Intelligent Transport Systems, pp.
318-330.
[66] Quigley, M., Gerkey, B., Conley, K., Faust, J., Foote, T., Leibs, J.,
Berger, E., Wheeler, R., & Ng, A., 2009. Ros: an open-source robot
operating system. IEEE Open-Source Software workshop of the
International Conference on Robotics and Automation, pp. 644-649.
[67] Li, m.l., Yi, X.D., Wang, Y.Z., Cai, Z.G., & Zhang, Y.G., 2016.
Subsumption model implemented on ros for mobile robots.
IEEE Systems Conference, pp. 1-6.
[68] Araujo, A., Portugal, D., Couceiro, M.S., & Rocha, R.P., 2015.
Integrating arduino-based educational mobile robots in ros. IEEE
autonomous robot systems, pp. 1-6.
[69] Codd-downey, R., & Jenkin, M., 2015. Rcon: dynamic mobile
interfaces for command and control of ros-enabled robots. IEEE
Informatics in Control Automation and Robotics, vol. 2, pp. 66-73.
[70] Barros, T.T. T., Lages, W.F., 2014. A backstepping non-Linear
controller for a mobile robot Implemented in ros. IEEE Industrial
Informatics, pp. 304-309.
[71] Belzunce, A., Li, M., & Handroos, H., 2016. Control system design
of a teleoperated omnidirectional mobile robot using ros. IEEE
Industrial Electronics and Applications, pp. 1283-1287.
[72] Abdelrasoul, Y., Saman, A.B.S.HM., Sebastian, P., 2016.
Quantitative study of tuning ros gmapping parameters and their effect
on performing indoor 2d slam. IEEE Robotics and Manufacturing
Automation, pp. 1-6.
[73] Ruiz, E., Acuna, R., Certad, N., Terrones, A., Cabrera, M.E., 2013.
Development of a control platform for the mobile robot roomba using
ros and a kinect sensor. IEEE Robotics Symposium and Competition,
pp. 55-60.
[74] Mortimer, M., Horan, B., Joordens, M., 2016. Kinect with ros,
interact with oculus: towards dynamic user interfaces for robotic
teleoperation. IEEE System of Systems Engineering Conference, pp.
1-6.
[75] Jin, K., Liu, P.L., Sun, R.D., Wei, Z.Q., Zhou, Z.Q., 2016. Real-time
plane segmentation in a ROS-based Navigation system for the visually impaired. IEEE Ubiquitous Positioning, Indoor Navigation
and Location Based Services, pp. 170-175.
[76] Li, R.J., Oskoei, M.S., Hu, H.H., 2013. Towards ROS based
[77] multi-robot architecture for ambient assisted living. IEEE Systems
Man and Cybernetics, pp. 3458-3463.
[78] Zhang, Z., 2000. A flexible new technique for camera calibration,
IEEE Computer Society, pp. 1330-1334.
[79] Microsoft. Kinect coordinate mapping. website: https://msdn.microso
ft.com/en-us/library/dn785530.aspx
[80] Xsens MTi-G user manual and technical documentation. website:
https://www.xsens.com/wp-content/uploads/2013/11/MTi-G_User_Manual_and_Technical_Documentation.pdf
[81] Shahrokhi, M., & Zomorrodi , A., 2015. Comparison of PID controller tuning methods. website: http://ie.itcr.ac.cr/einteriano/ control/clase/Zomorrodi_Shahrokhi_PID_Tunning_Comparison.pdf
[82] Bayar, V., Akar, B., Yayan, U., Yavuz, H.S. 2014. Fuzzy logic based
design of classical behaviors for mobile robots in ros middleware.
IEEE Innovations in Intelligent Systems and Applications, pp.
162-169.
[83] Wang, G.W., Zhao, J., Zhang, X.G., & Zhao, R.C., 2014.
Multi-model fuzzy controller for vehicle lane tracking. IEEE
Intelligent Transportation Systems, pp.1341-1346.
[84] Ping, E.P., & Swee, S.K., 2012. Simulation and experiment of
automatic steering control for lane keeping manoeuvre.
IEEE Intelligent and Advanced Systems, vol. 1, pp. 105-110.
[85] Wang, S.F., & Zhang, J.Y., 2010. The research and application of
fuzzy control in four-wheel-steering vehicle. IEEE Fuzzy Systems
and Knowledge Discovery, vol. 3, pp. 1397-1401.
[86] Vans, E., Vachkov, G., Sharma, A., 2014. Vision based autonomous
path tracking of a mobile robot using fuzzy logic. IEEE Computer
Science and Engineering, pp. 1-8.
[87] Li, Q., Shi, G.B., Lin, Y., Wei, J., 2010. Yaw rate control of active
front steering based on fuzzy-logic controller. IEEE Education
Technology and Computer Science, vol. 1, pp. 125-128.
[88] Wang, Y., Zhu, X.X., 2014. A robust design of hybrid fuzzy
controller with fuzzy decision tree for autonomous intelligent parking
system. IEEE American Control Conference, pp. 5282-5287.
[89] Vivas-lopez, C.A., Morales-Menendez, R., Ramirez-mendoza, R.,
2016. Control based on fuzzy logic. IEEE Fuzzy Systems, pp.
673-677.
[90] Takimoto, H., & Hoshino, Y., 2009. Development of fuzzy controller
for the steering angle and the motor power control application to the
line trace car. IEEE Fuzzy Systems, pp. 2072-2076.
[91] Borrero, H.G., Becker, M., Archila, J.F., & Bonito, F., 2012. Fuzzy
control strategy for the adjustment of the front steering angle of a
4wsd agricultural mobile robot. IEEE Computing Congress, pp. 1-6.
[92] Aye, Y.Y., Watanabe, K., Maeyama S., & Nagai, I., 2016.
Image-based fuzzy control of a car-like mobile robot for parking
problems. IEEE Mechatronics and Automation, pp. 502-507.
[93] Wang, X.Y., Fu, Y.M., Yang, Y., Ma, H.B., 2013. Lateral control of
autonomous vehicles based on fuzzy logic. IEEE Control and
Decision Conference, pp. 237-242.
[94] Yang, Z.G., Wang, Z.J., Su, W.T., Zhang, J., 2010. Multi-mode
control method based on fuzzy selector in the four wheel steering
control system. IEEE Control and Automation, pp. 1221-1226.
[95] Hiremath, S., Evert, F.V., Heijden, G.V.D., Braak, C.T., Stein, A.,
2012. Image-based particle filtering for robot navigation in a maize
field. IEEE/RSJ International Conference on Intelligent Robots and
Systems, vol. 1, pp. 43-48.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊