跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.167) 您好!臺灣時間:2025/11/01 00:26
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林奕妏
研究生(外文):Yi Wen Lin
論文名稱:聚偏二氟乙烯/聚己二酸丁二醇酯-共-對苯二甲酸酯摻合體為基材之奈米複合材料製備與性質探討
論文名稱(外文):Preparation and Characterization of PVDF/PBAT Blend-based Nanocomposites
指導教授:邱方遒
指導教授(外文):F. C. Chiu
學位類別:碩士
校院名稱:長庚大學
系所名稱:化工與材料工程學系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:94
中文關鍵詞:聚偏二氟乙烯丁二醇酯-共-對苯二甲酸酯奈米碳管奈米黏土奈米複合材料
外文關鍵詞:Poly(vinylidene fluoride)Poly(butylene adipate-co-terephthalate)carbon nanotubenanoclaynanocomposites
相關次數:
  • 被引用被引用:0
  • 點閱點閱:213
  • 評分評分:
  • 下載下載:22
  • 收藏至我的研究室書目清單書目收藏:0
本論文研究使用熔融混煉法製備樣品,以不相容聚偏二氟乙烯(PVDF)及聚己二酸丁二醇酯-共-對苯二甲酸酯(PBAT)摻合體為基材,添加入奈米碳管(CNTs)、奈米黏土(15A)、聚丁二酸丁二醇酯(PBS)、丁二酸丁二酯-共-己二酸丁二酯共聚物(PBSA)作為補強材或相容化劑。主體PBAT為生物可降解型高分子,有很好的延展性,亦具有抗菌性、抗氧化性,但其熱性質及剛性較低,因此藉由添加PVDF補強其熱性質及機械性質,並於摻合體中添加奈米材料,期望相容性能提升,進而提升摻合體性質。
由SEM與TEM相形態分析可發現,CNTs、15A選擇性分佈於PBAT相;TGA分析結果顯示,CNTs和15A均能消除樣品兩階段熱裂解情形,提升熱穩定性。DSC結果顯示CNTs與15A皆具有異質成核效應,使PVDF與PBAT結晶溫度往高溫偏移。此外,添加CNTs後,摻合體機械性質有提升的趨勢,添加15A則無明顯提升。流變性質測試結果顯示,添加CNTs能提升摻合體複黏度、儲存模數與損失模數,添加15A能增加PVDF含量較多之摻合體的流變性質。導電性質則因為CNTs導電通路未能連接,所以無提升效應。添加PBS及PBSA只能增加摻合體機械性質的斷裂延伸率,對其他性質則無太大的補強作用。


In this study, poly(vinylidene fluoride) (PVDF)/ poly(butylene adipate-co-terephthalate) blend-based nanocomposites were prepared via a melt mixing process. PVDF/PBAT/CNTs, PVDF/PBAT/15A, PVDF/PBAT/PBS, and PVDF/PBAT/PBSA composites systems were prepared for the purpose of enhancing the composites’ properties. PBAT is a biodegradable polymer with high ultimate elongation, provided with antibacterial and anti-oxidative effects. However, the poor thermal property and low modulus of PBAT needed to be improved. Therefore, we seek to reinforce the PBAT’s thermal properties and mechanical properties through adding PVDF. Furthermore, the addition of nanoscale materials to PVDF/PBAT blends may enhance their desired properties and increase the compatibility of PVDF/PBAT blends.
SEM and TEM images showed that both CNTs and 15A were selectively located in PBAT phase. TGA data showed enhanced thermal stability for the nanocomposites and eliminate the two-phase degradation. DSC data indicated that both CNTs and 15A increased the crystallization temperature of PBAT and exhibited a heterogeneous nucleation effect. Furthermore, XRD results confirmed that the formation of β-form PVDF crystals with the addition of 15A.
Young’s modulus of the composites with CNTs showed an improvement as compared to PVDF/PBAT blends. Rheological properties analysis indicated that the incorporation of CNTs increased the complex viscosity, storage modulus, and loss modulus. 15A also increased rheological properties of larger proportions of PVDF sample. The electrical property didn’t change significantly after adding CNTs. Moreover, the incorporation of PBS and PBSA didn’t improve PVDF/PBAT blends’ properties effectively.

指導教授推薦書…………………………………………………………
口試委員審定書…………………………………………………………
誌謝 iii
摘要 iv
Abstract v
目錄 vi
圖目錄 ix
表目錄 xii
第一章 緒論 1
第二章 文獻回顧 3
2.1 聚偏二氟乙烯(PVDF) 3
2.2 聚己二酸丁二醇酯-共-對苯二甲酸酯(PBAT) 4
2.3 奈米填充材(Nano filler ) 6
2.3.1 奈米複合材料 6
2.3.2 奈米碳管(CNT) 6
2.3.3 天然黏土(Clay) 7
2.4不相容高分子為摻合體之基材之奈米複合材料 9
2.5 PVDF與其不相容之摻合體為基材之奈米複合材料 11
2.6 PBAT與其不相容之摻合體為基材之奈米複合材料 13
第三章 實驗 18
3.1 材料 18
3.2 儀器設備 20
3.3 樣品製備 22
3.4 實驗流程 24
3.5 性質分析 25
3.5.1熱壓試片 25
3.5.2微差掃描熱卡計 (DSC) 25
3.5.3熱重分析儀 (TGA) 26
3.5.4掃描式電子顯微鏡 (SEM) 26
3.5.5 流變儀 (Rheometer) 27
3.5.6 廣角X光繞射儀(XRD) 27
3.5.7 力學性質測試 27
3.5.8穿透式電子顯微鏡 (TEM) 28
3.5.9 導電性質測試 28
第四章 結果與討論 29
4.1 複合材料相形態 29
4.1-1 樣品斷裂面形態分析(SEM analysis) 29
4.1-2 樣品表面微區分析(EDS-mapping) 38
4.1-3 穿透式電子顯微鏡分析(TEM analysis) 42
4.2 熱穩定性 45
4.3 結晶行為 49
4.4 熔融行為 54
4.5 晶體結構 58
4.6 機械性質 65
4.7 流變性質 69
4.8 導電性 74
第五章 結論 76
參考文獻 78

圖目錄
Fig. 2-1 Chemical structure of PVDF 14
Fig. 2-2 Schematic representation of the chain conformation for the α,β and γ phases of PVDF 14
Fig. 2-3 Chemical structure of Polybutylene adipate-co-terephthalate 14
Fig. 2-4 Schematic diagram showing how a hexagonal sheet of graphene is “rolled” to form a carbon nanotube. The rolling shown in the diagram will form a (3, 2) nanotube. 15
Fig. 2-5 Molecular models of SWCNTs.(a) armchair (b) zigzag (c) chiral conformation 15
Fig. 2-6 2:1 layered silicate structure (T, tetrahedral sheet; O, octahedral sheet; C, intercalated cations; d, interlayer distance). 16
Fig. 2-7 Schematic representation of CB induced co-continuity of PEEK/TPI blend.[10] 16
Fig. 4-1-1 SEM images (1000 x) of (a) PBAT/PBS (b) PBAT/PBSA 31
Fig. 4-1-2 SEM images (2000 x) of (a) FC1 (b) TC1 31
Fig. 4-1-3 SEM images (500 x) of F1T1 31
Fig. 4-1-4 SEM images of PVDF/PBAT composites (1000x) 32
(a) F3T1 (b)(c) F1T1 (d) F1T3 32
Fig. 4-1-5 SEM images of PVDF/PBAT composites with 1 wt% CNTs (1000x) (a) F3T1C1 (b) F1T1C1 (c) F1T3C1 32
Fig. 4-1-6 SEM images of PVDF/PBAT composites with 1 wt% 15A (1000x) (a) F3T1Y1 (b) F1T1Y1 (c) F1T3Y1 33
Fig. 4-1-7 SEM images of PVDF/PBAT composites with PBS. 34
(a)(b) F1T1S5(500x) (c)(d) F1T1S5 (1000x) (e) F1T1S10 (500x) (f) F1T1S10 (1000x) 34
Fig. 4-1-8 SEM images of PVDF/PBAT composites with PBSA. 35
(a) F1T1SA5 (500x) (b) F1T1SA5 (1000x) (c) F1T1SA10 (500x) 35
(d) F1T1SA10 (1000x) 35
Fig. 4-1-9 SEM images of PVDF/PBAT composites (3500x) 35
(a) F3T1 (b) F1T1 (c) F1T3 35
Fig. 4-1-10 SEM images of PVDF/PBAT composites with 1 wt% CNTs (3500x) (a) F3T1C1 (b) F1T1C1 (c) F1T3C1 36
Fig. 4-1-11 SEM images of PVDF/PBAT composites with 1 wt% 15A (3500x) (a) F3T1Y1 (b) F1T1Y1 (c) F1T3Y1 36
Fig. 4-1-12 SEM images of PVDF/PBAT composites with PBS (3500x) 37
(a) F1T1S5 (b) F1T1S10 37
Fig. 4-1-13 SEM images of PVDF/PBAT composites with PBSA (3500x) (a) F1T1SA5 (b) F1T1SA10 37
Fig. 4-1-14 EDX mapping images of F3T1 (1000x) 39
Fig. 4-1-15 EDX mapping images of F1T1 (1000x) 39
Fig. 4-1-16 EDX mapping images of F1T3 (1000x) 40
Fig. 4-1-17 EDX mapping images of F3T1C1 (4500x) 40
Fig. 4-1-18 EDX mapping images of F1T1C1 (3000x) 41
Fig. 4-1-19 EDX mapping images of F1T1C1 (1500x) 41
Fig. 4-1-20 TEM micrographs of FT/15A nanocomposites (30000x) 43
(a) F3T1Y1 (b) F1T1Y1(c) F1T3Y1 43
Fig. 4-1-21 TEM micrographs of FT/15A nanocomposites (50000x) 43
(a) F3T1Y1 (b) F1T1Y1(c) F1T3Y1 43
Fig. 4-1-22 TEM micrographs of FT/15A nanocomposites (100000x) 44
(a) F3T1Y1 (b) F1T1Y1(c) F1T3Y1 44
Fig. 4-2-1 TGA analysis of FT composites in N2 47
Fig. 4-2-2 TGA analysis of FT composites with 1 wt% CNTs in N2 47
Fig. 4-2-3 TGA analysis of FT composites with 1 wt% 15A in N2 48
Fig. 4-2-4 TGA analysis of F1T1 nanocomposites in N2 48
Fig. 4-3-1 DSC non-isothermal crystallized curves of PVDF/PBAT nanocomposites at 10° C/min cooled rate (a) PBAT crystallization (b) PVDF crystallization. 52
Fig. 4-3-2 DSC non-isothermal crystallized curves of F1T1 nanocomposites at 10° C/min cooled rate (a) PBAT crystallization (b) PVDF crystallization. 53
Fig. 4-4-1 DSC non-isothermal heated curves of PVDF/PBAT nanocomposites after 10° C/min cooled rate (a) PBAT melted (b) PVDF melted. 56
Fig. 4-4-2 DSC non-isothermal heated curves of F1T1 nanocomposites after 10° C/min cooled rate (a) PBAT melted (b) PVDF melted. 57
Fig. 4-5-1 XRD patterns of PVDF , PBAT and CNTs after10°C/min cooled 59
Fig. 4-5-2 XRD patterns of PVDF/PBAT blends after 10°C/min cooled 60
Fig. 4-5-3 XRD patterns of CNT nanocomposites after 10°C/min cooled 61
Fig. 4-5-4 XRD patterns of CNT nanocomposites after 10°C/min cooled 62
Fig. 4-5-5 XRD patterns of 15A nanocomposites after 10°C/min cooled 63
Fig. 4-5-6 XRD patterns of F1T1nanocomposites after 10°C/min cooled 64
Fig. 4-6-1 Young’s modulus of PVDF/PBAT nanocomposites 68
Fig. 4-6-2 Elongation of PVDF/PBAT nanocomposites 68
Fig. 4-7-1 Complex viscosity versus Angular frequency of (a) FT blends (b) FT/CNTs (c) FT/15A (d) F1T1 nanocomposites. 71
Fig. 4-7-2 Storage modulus versus Angular frequency of (a) FT blends (b) FT/CNTs (c) FT/15A (d) F1T1 nanocomposites. 72
Fig. 4-7-3 Lose modulus versus Angular frequency of (a) FT blends (b) FT/CNTs (c) FT/15A (d) F1T1 nanocomposites. 73


表目錄
Table 3-1 Sample Codes 23
Table 4-1 TGA data of PVDF/PBAT nanocomposites in N2 46
Table 4-2 DSC data of non-isothermal crystallized nanocomposites 51
Table 4-3 DSC data of non-isothermal heated nanocomposites 55
Table 4-4 Tensile test data of PVDF/PBAT nanocomposites 67
Table 4-5 Electrical resistivity data of CNTs nanocomposites 75


[1] P. Martins, A. C. Lopes, S. L. Mendez, “Electroactive phases of poly (vinylidene fluoride): Determination, processing and applications,” Progress in Polymer Science, 39, p.683-706 (2014)
[2] K. Fukushima, M. H. Wu, S. Bocchini, A. Rasyida, M. C. Yang, “PBAT based nanocomposites for medical and industrial applications,” Materials Science and Engineering C, 32, p.1331-1351 (2012)
[3] F. Li, X. Xu, J. Yu, A. Cao, “The morphological effects upon enzymatic degradation of poly(butylene succinate-co-butylene terephthalate)s (PBST),” Polymer Degradation and Stability, 92, p.1053-1060 ( 2007)
[4] W. C. Jao, C. H. Lin, J. Y. Hsieh, Y. H. Yeh, C. Y. Liu, M. C. Yang , “Effect of immobilization of polysaccharides on the biocompatibility of poly (butyleneadipate-co-terephthalate) films,” Polymers for Advanced Technologies, 21, p.533-608 (2010)
[5] M. Moniruzzaman and K. I. Winey, “Polymer nanocomposites containing carbon nanotubes,” Macromolecules, 39, p.5194-5205 (2006)
[6] Z. Spitalsky, D. Tasi, K. Papagelis, C. Galiotis, “Carbon nanotube–polymer composites: Chemistry, processing, mechanical and electrical properties,” Progress in Polymer Science, 35, p.357-401 (2010)
[7] P. Bordes, E. Pollet, L. Avérous, “Nano-biocomposites: Biodegradable polyester/nanoclay systems,” Progress in Polymer Science, 34, p.125-155 (2009)
[8] P. Pötschke, B. Kretzschmar, A. Janke, “Use of carbon nanotube filled polycarbonate in blends with montmorillonite filled polypropylene,” Composites Science and Technology, 67, p.855-860 (2007)
[9] P. Pötschke, A. Bhattacharyy, A. Janke, “Carbon nanotube-filled polycarbonate composites produced by melt mixing and their use in blends with polyethylene,” Carbon, 42, p.965-969 (2004)


[10] C. Gao, S. Zhang, Y. Lin, F. Li, S. Guan, Z. Jiang, “ High-performance conductive materials based on the selective location of carbon black in poly(ether ether ketone)/polyimide matrix,” Composites Part B-Engineering, 79, p.124-131, (2015)
[11] C. Mao, Y. Zhu and W. Jiang, “Design of Electrical Conductive Composites: Tuning the Morphology to Improve the Electrical Properties of Graphene Filled Immiscible Polymer Blends,” Acs Applied Materials & Interfaces, 4,
p. 5281-5286 (2012)
[12] G. Chen, J. Lu, D. Wu, “The electrical properties of graphite nanosheet filled immiscible polymer blends,” Materials Chemistry and Physics, 104,
p. 240-243 (2007)
[13] S. Maiti, N. K. Shrivastava, B.B. Khatua, “Reduction of Percolation Threshold Through Double Percolation in Melt-Blended Polycarbonate/Acrylonitrile Butadiene Styrene/Multiwall Carbon Nanotubes Elastomer Nanocomposites,” Polymer Composites, 34, p.570-579 (2013)
[14] C. Su, L. Xu, C. Zhang, J. Zhu, “Selective location and conductive network formation of multiwalled carbon nanotubes in polycarbonate/poly(vinylidene fluoride) blends,” Composites Science and Technology, 71, p.1016-1021 (2011)
[15] A. Fina, Z. Hana, G. Saracco, U.Gross and M. Maini, “Morphology and conduction properties of graphite-filled immiscible PVDF/PPgMA blends,” Polymers for advanced technologies, 23, p.1572-1579 (2012)
[16] P. Pan, G. Shan and Y. Bao, “Enhanced Nucleation and Crystallization of Poly(L lactic acid) by Immiscible Blending with Poly(vinylidene fluoride),”
Industrial & Engineering Chemistry Research, 53, p.3148-3156 (2014)
[17] L. Li, W.H. Ruan, M. Q. Zhang, M. Z. Rong, “Studies on the selective localization of multi-walled carbon nanotubes in blends of poly(vinylidene fluoride) and polycaprolactone,” Express Polymer Letters, 9, p.77-83 (2015)



[18] S. W. Ko, R. K. Gupta, S. N. Bhattacharya, H. J. Choi, “Rheology and Physical Characteristics of Synthetic Biodegradable Aliphatic Polymer Blends Dispersed with MWNTs,” Macromolecular Materials and Engineering, 295, p.320-328 (2010)
[19] T. Mukherjee, M. Czaka, N. Kao, R. K. Gupta, H. J. Choi , S. Bhattacharya, “Dispersion study of nanofibrillated cellulose based poly(butylene adipate-co-terephthalate) composites,” Carbohydrate Polymers, 102 , p.537-542 (2014)
[20] S. Mohanty, S. K. Nayak, “Biodegradable Nanocomposites of Poly (butylene adipate-co-terephthalate) (PBAT) and Organically
Modified Layered Silicates,” Journal of Polymers and the Environment, 20, p.195-207 (2012)
[21] L. Jiang, B. Liu and J. Zhang, “Properties of Poly(lactic acid)/Poly (butylene adipate-co-terephthalate)/ Nanoparticle Ternary Composites,” Industrial & Engineering Chemistry Research, 48, p. 7594–7602 (2009)
[22] S. W. Ko, M. K. Hong, B. J. Park, R. K. Gupta, H. J. Choi, S. N. Bhattacharya, “Morphological and rheological characterization
of multi-walled carbon nanotube/PLA/PBAT blend nanocomposites ,” Polymer Bulletin, 63, p.125-134 (2009)
[23] F. C. Chiu, “Comparisons of phase morphology and physical properties of PVDF nanocomposites filled with organoclay and multi-walled carbon nanotubes,” Materials Chemistry and Physics, 143, p.681-692 (2014)
[24] M. Shahlari, S. Lee, “Mechanical and Morphological Properties of Poly (butylene adipate-co-terephthalate) and Poly(lactic acid) Blended With Organically Modified Silicate Layers,” Polymer Engineering & Science, 52, (2012)
[25] Y. Li and H. Shimizu, “Compatibilization by Homopolymer: Significant Improvements in the Modulus and Tensile Strength of PPC/PMMA Blends by the Addition of a Small Amount of PVAc,” Acs Applied Materials & Interfaces, 1, p. 1650-1655 (2009)

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊