參考文獻
Agar, T. T. A., “Aerodynamic flutter analysis of suspension bridges by a modal technique,” Eng. Struct, 11, 75-82 (1989).
Arslan, A., Ince, R., “Neural network-based
design of edge-supported reinforced concrete slabs,” Structural
Engineering Review, 8(4), 329-335 (1996).
Barai, S. V., Pandey, P. C., ”Time-delay neural networks in damage detection of railway bridges,” Advances in
Engineering Software, 28, 1-10 (1997).
Boonyapinyo, V., Miyata, T., and Yamada, H., “Adanced aerodynamic analysis of suspension bridges by state-space approach,” J. Struct. Eng, ASCE, 125(12), 1357-1366 (1999).
Cao, X., Sugiyama, Y., and Mitsui, Y., “Application of artificial neural networks to load identification,”
Computers and Structures, 69, 63-78 (1998).
Chen, A., He, X., and Xiang, H., “Identification of 18 flutter derivatives of bridge decks,” Journal of Wind
Engineering and Industrial Aerodynamics, 90, 2007-2002 (2002).
Chen, C. H., “Determination of flutter derivatives via a neural
network approach,” Journal of Sound Vibration, 263, 797-813 (2003).
Chen, Z. Q., “The three dimensional analysis and behaviors investigation on the critical flutter state of bridges,” Proceedings of the Symposium on cable-stayed bridges, Shanghai,
China, (1994).
Dash, P. K., Liew, A. C., and Rahman, S. “Peak load forecasting using a fuzzy neural
network,” Electric Power System Rearch, 32, 19-23 (1995).
Ding, Q., Chen, A., and Xiang, H., “Coupled flutter analysis of long-span bridges by multimode and full-order approaches,” Journal of Wind
Engineering and Industrial Aerodynamics, 90, 1981-1993 (2002).
Dung, N. N., Miyata, T., and Yamada, H., “Flutter responses in long span bridges with wind induced displacement by the mode tracing method,” J. Wind. Eng. Ind. Aerodyn, 78&79, 367-379 (1998).
Ge, Y. J., Tanaka, H., “Aerodynamic flutter analysis of cable-supported bridges by multi-mode and full-mode approaches,” J. Wind. Eng. Ind. Aerodyn, 86, 123-153 (2000).
Gu, M., Zhang, R., and Xiang, H., “Identification of flutter derivatives of bridge decks,” Journal of Wind
Engineering and Industrial Aerodynamics, 84, 151-162 (2000).
Gu, M., Zhang, R., and Xiang, H., “Parametric study on flutter derivatives of bridge decks,”
Engineering Structures, 23, 1607-1613 (2001).
Hadi, M. N. S., “Neural networks applications in concrete structures,”
Computers and Structures, 81, 373-381 (2003).
Hong, N. K., Chang, S. P., and Lee, S. C., “Development of ANN-based preliminary structural
design systems for cable-stayed bridges,” Advances in
Engineering Software, 33, 85-96 (2002).
Huang, C. S., “A study on techniques for analyzing ambient vibration measurement (II)?time series methods,” Report No. NCREE-99-018, National Center for Research on Earthquake
Engineering, ROC (1999).
Huang, C. S., “Structural identification from ambient vibration measurement using the multivariate AR model,” Journal of Sound Vibration, 241(3), 337-359 (2001).
Iwamoto, M., Fujino, Y., “Identification of flutter derivatives of bridge deck from
free vibration data,” Journal of Wind
Engineering and Industrial Aerodynamics, 54/55, 55-63 (1995).
Jakobsen, J. B., Hansen, E., “Determination of the aerodynamic derivatives by a system identification method,” J. Wind. Eng. Indust. Aerodyn, 57, 295-305 (1995).
Jain, A., Jones, N. P., and Scanlan, R. H., “Coupled flutter and buffeting analysis of long-span bridges,” J. Struct. Eng, ASCE, 122(7), 716-725 (1996).
Jones, N. P., Sigh, L., Scanlan, R. H., and Lorendeaux, O., “A force balance for measurement of 3-D aeroelastic parameters,” Proc. Structures. Congress, ASCE, (1995).
Karlik, B., Ozkaya, E., Aydin, S., and Pakdemirli, M., “Vibrations of a beam-mass systems using artificial neural networks,”
Computers and Structures 69, 339-347 (1998).
Li, Y., Liao, H., and Qiang, S., “Weighting ensemble least-square method for flutter derivatives of bridge decks,” Journal of Wind
Engineering and Industrial Aerodynamics, 91, 713-721 (2003).
Matsumoto, M., Kobayashi, Y., and Shirato, H., “The influence of aerodynamic derivatives on flutter,” Journal of Wind
Engineering and Industrial Aerodynamics, 60, 277-239 (1996).
Matsumoto, M., Taniwaki, Y., and Shijo, R., “Frequency characteristics in various flutter instabilities of bridge girders,” Journal of Wind
Engineering and Industrial Aerodynamics, 90, 1973-1980 (2002).
Miyata, T., Yamada, H., “On a application of the direct flutter FEM analysis for long-span bridges,” Proceedings of the Ninth International Conference on Wind
Engineering, New Delhi, India, 1033-1041 (1995).
Namini, A., Albrecht, P., “Finite element-based flutter analysis of cable-suspended bridges,” J. Struct. Eng, ASCE, 118(6), 1509-1526 (1992).
Poulsen, H. K., Damsgaard, A., and Reinhold, T. A., “Determination of flutter derivatives for the Great Belt Bridge,” J. Wind. Eng. Endust. Aerodyn, 41-44, 153-164 (1992).
Rafiq, M. Y., Bugmann, G., and Easterbrook, D. J., “Neural
network design for
engineering applications,”
Computers and Structures 79, 1541-1552 (2001).
Sarkar, P. P., Scanlan, R. H., ”Identification of aeroelastic parameters of flexible bridges,” J. Eng. Mech, ASCE, 120(8), 1718-1741 (1994).
Sato, H., Kusuhara, S., Ogi, K., and Matsufuji, H., “Aerodynamic characteristics of super long-span bridges with slotted box girder,” Journal of Wind
Engineering and Industrial Aerodynamics, 88, 297-306 (2000).
Scanlan, R. H., Lin, W. H., “Turbulence on bridge flutter derivatives,” J. Eng. Mech, ASCE, 104(4), 719-33 (1978).
Scanlan, R. H., Tomko, J. J., ”Airfoil and bridge deck flutter derivatives,” J. Eng. Mech. Div, ASCE, 97(6), 1717-1737 (1971).
Scanlan, R. H., “Motion of suspended bridge spans under gusty wind,” J. Structural. Div, ASCE, 103(9), 1867-1883 (1977).
Scanlan, R. H., Jones, N. P., “Aeroelastic analysis of cable-stayed bridges,” J. Str. Eng, ASCE, 116, 279 (1990).
Scanlan, R. H., “Problematic in formulation of wind-force model for bridge decks,” J. Struct. Eng, ASCE, 119(7), 1143-1446 (1993).
Shinozuka, M., “Identification of linear structure dynamic system,” J. Eng. Mech, ASCE, 108(6), 1370-1390 (1982).
Singh, L., Jones, N. P., Scanlan, R. H., and Lorendeaux, O., “Identification of lateral flutter derivatives of bridge decks,” Journal of Wind
Engineering and industrial Aerodynamics, 60, 81-89 (1996).
Xie, J., Xiang, H., “State-space method for 3-D flutter analysis of bridge structures,” Proceedings of the Asia Pacific Symposium on Wind
Engineering, India, 269-276(1985).
Yamada, H., Ichikawa, H., “Measurement of aerodynamic parameters by extended Kalman Filter algorithm,” J. Wind. Eng. Indust. Aerodyn, 42, 1255-63 (1992).
Yang, Y., Xu, X., and Zhang, W., “Design neural networks based fuzzy logic,” Fuzzy Sets and Systems, 114, 325-328 (2000).
Zasso, A., Cigada, A., and Negri, S., “Flutter derivatives identification through full bridge aerodynamic model transfer function analysis,” J. Wind. Eng. Indust. Aerodyn, 60, 17-33 (1996).
沈政、林庶之,腦模擬與神經計算機,初版,五南圖書出版有限公司,台北市,中華民國八十五年五月。
呂顏龍,「大跨度橋樑受風載重之非線性分析-時間序列模擬」,淡江大學土木工程研究所碩士論文,鄭啟明教授、林堉溢教授指導(1999)。林堉溢、陳振華,「不同平板斷面模型氣彈參數研究」,中華民國第二十七屆全國力學會議,台南(2003)。
周鵬程,類神經網路入門,初版,全華科技圖書股份有限公司,台北市,中華民國九十一年九月。
胡玉城,暢談類神經網路,初版,倚天資訊股份有限公司,台北縣泰山鄉,中華民國八十一年一月。
梁惠婷,「橋梁風力之壓力量測」,淡江大學土木工程研究所碩士論文,林堉溢教授指導(2002)。傅心家,神經網路導論,初版,定碁科技股份有限公司,台北市,1991年6月。
斯華齡,電腦人腦化 神經網路-第六代計算機,初版,松崗電腦圖書資料股份有限公司,台北市,1993年8月。
黃靖祺,「平板斷面橋樑受風之壓力量測」,淡江大學土木工程研究所碩士論文,林堉溢教授指導(2003)。葉怡成,類神經網路模式應用與實作,八版,儒林圖書有限公司,台北市,2003年3月。
葉怡成,應用類神經網路,三版,儒林圖書有限公司,台北市,2002年6月。
張哲維,「類神經網路於有限元素模式修正之應用」,中原大學土木工程研究所碩士論文,陳振華教授指導(2001)。張維哲,人工神經網路,初版,全欣資訊圖書股份有限公司,台北市,中華民國八十一年十月。
蔡瑞煌,類神經網路概論,初版,三民書局股份有限公司,台北市,中華民國八十四年一月。
盧炳勳、曹登發,類神經網路理論與實用,初版,全華科技圖書股份有限公司,台北市,中華民國八十一年三月。
鍾維泰,「不同平板斷面對長跨徑橋梁氣動力行為探討」,淡江大學土木工程研究所碩士論文,林堉溢教授指導(2003)。藍倉連,「斷面寬深比對長跨徑橋梁顫振與抖振之影響」,淡江大學土木工程研究所碩士論文,林堉溢教授指導(2001)。蘇信華,「類神經網路於模態識別之應用」,中原大學土木工程研究所碩士論文,陳振華教授指導(2001)。