跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.213) 您好!臺灣時間:2025/11/10 00:48
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:中村雅明
研究生(外文):Masaaki Nakamura
論文名稱:利用離子影像偵測甲酸甲酯之roaming路徑以及使用六極柱的方位化對非頂對稱分子進行動力學行為之研究
論文名稱(外文):Ion Imaging Detection of Roaming Pathway in Methyl Formate and Stereodynamic Behavior in Asymmetric Top Molecules Oriented through a Hexapole State Selector
指導教授:林金全林金全引用關係笠井俊夫
口試日期:2017-07-24
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:化學研究所
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:英文
論文頁數:101
中文關鍵詞:光分解反應roaming分子方位化六極柱立體動態學對掌性
外文關鍵詞:Photodissociationroamingmolecular orientationhexapolestereodynamicschirality
相關次數:
  • 被引用被引用:0
  • 點閱點閱:134
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
此論文主要分為兩部分,一為甲酸甲酯在光分解過程中,碎片的移動路徑;二為光分解方位化之非頂對稱分子之立體動力學。在本研究中,吾人開發了時間切片離子影像結合六極柱能態篩選器的實驗系統,兩部分之實驗皆使用同一套系統。此系統能夠得到方位化分子的光解斷片分布,且是探討多原子分子光解反應複雜的向量關聯性之必要工具。在第一部分之實驗中,我們使用 2+1 共振加強多光子游離光譜的技術,並將游離波長設在 248 奈米,用來游離甲酸甲酯,並獲得 CO (v = 1) 的離子影像,獲得的旋轉分布分為 low-J 可以歸咎於光分解過程走 roaming 的路徑;而旋轉分布為 high-J 的組成,則是因為走 conventional transition state 的路徑,這個結論剛好吻合使用 quasiclassical 軌跡計算出來的結果,更進一步的討論為使用時間解析的 FTIR 放射光譜來進行比較。在第二部分的實驗中,我們另外加裝了六級柱在原本的實驗裝置中,其目的是為了使非頂對稱分子 2-bromobutane 等向排列,在光分解之後,獲得的 Br (或 Br*) 離子影像代表了因為等向排列而展現出的上下不對稱特徵。因此,我們利用立體動力學找出不對稱的參數 anisotropy parameter,同時需要考慮 transition dipole moment 以及光分解碎片飛行方向之間的夾角,以及 permanent dipole moment 以及光分解碎片飛行方向之間的夾角。光分解碎片的分布可以使我們在解析非頂對稱之動力學時獲得更多訊息,同時,我們也發現了可以使用極化之雷射分辨出 enantiomers 的可能性。
The thesis is mainly divided into two parts: roaming pathway following photodissociation of methyl formate and stereodynamics in photodissociation of asymmetric top chiral molecules as oriented. They share the same molecular beam apparatus including a time-of-flight spectrometer coupled with ion imaging. For stereodynamic research, an additional hexapole state selector is installed for molecular orientation. In the first part, the ion imaging of CO (v = 1) was acquired with a (2+1) resonance enhanced multiphoton ionization (REMPI) spectroscopy following photolysis of methyl formate at 248 nm. The obtained low-rotational (J) and high-J components of bimodal rotational distributions are ascribed to roaming and conventional transition state pathways, respectively. The results are consistent with the prediction by quasiclassical trajectory calculations. Further comparison with the results of time-resolved FTIR emission spectroscopy is discussed. In the second part, an additional hexapole state selector is installed to orient an asymmetric top chiral molecule, 2-bromobutane. The obtained photofragment ion images of Br (or Br*) presented an up-down asymmetry, caused by the spatial orientation of 2-bromobutane. As a result, the stereodynamic behavior is looked into to find out asymmetry factor, anisotropy parameter, the angle between transition dipole moment and recoiling velocity and the angle between permanent dipole moment and the recoiling velocity. The photofragment distribution gives the insight into the complex photodissociation dynamics of asymmetric top molecules. The possibility to differentiate enantiomers using a linearly polarized laser is also discussed.
Chapter 1 Introduction 1
References 5
Chapter 2 Theory and Design 7
2.1 Ion imaging 7
2.2 Hexapole state selector 15
2.3 References 25
Chapter 3 Roaming Pathway in Photodissociation of Methyl Formate 26
3.1 Introduction 26
3.2 Experiment 27
3.3 Theory 32
3.4 Results and discussions 36
3.5 Conclusion 41
3.6 References 42
Chapter 4 Stereodynamics in Photodissociation of Oriented 2-Bromobutane 44
4.1 Introduction 44
4.2 Experiment 47
4.2.1 Ion-imaging 47
4.2.2 The hexapole and the time-of-flight measurements 50
4.3 Theory 52
4.3.1 Photofragment distribution of spatially oriented molecules 52
4.3.2 TOF simulation 55
4.3.3 2D ion image simulation 58
4.4 Results and discussions 59
4.4.1 Hexapolar state-selection and molecular orientation 59
4.4.2 Photodissociation dynamics of 2-bromobutane 71
4.5 Conclusion 96
4.6 References 98
Chapter 1.
1 D.W. Chandler and P.L. Houston, J. Chem. Phys. 87, 1445 (1987).
2 A.T.J.B. Eppink and D.H. Parker, Rev. Sci. Instrum. 68, 3477 (1997).
3 S. Manzhos and H.-P. Loock, Comput. Phys. Commun. 154, 76 (2003).
4 C. Bordas, F. Paulig, H. Helm, and D.L. Huestis, Rev. Sci. Instrum. 67, 2257 (1996).
5 M.J.J. Vrakking, Rev. Sci. Instrum. 72, 4084 (2001).
6 V. Dribinski, A. Ossadtchi, V.A. Mandelshtam, and H. Reisler, Rev. Sci. Instrum. 73, 2634 (2002).
7 G.A. Garcia, L. Nahon, and I. Powis, Rev. Sci. Instrum. 75, 4989 (2004).
8 K. Tonokura and T. Suzuki, Chem. Phys. Lett. 224, 1 (1994).
9 C.R. Gebhardt, T.P. Rakitzis, P.C. Samartzis, V. Ladopoulos, and T.N. Kitsopoulos, Rev. Sci. Instrum. 72, 3848 (2001).
10 D. Townsend, M.P. Minitti, and A.G. Suits, Rev. Sci. Instrum. 74, 2530 (2003).
11 J.J. Lin, J. Zhou, W. Shiu, and K. Liu, Rev. Sci. Instrum. 74, 2495 (2003).
12 D. Townsend, S.A. Lahankar, S.K. Lee, S.D. Chambreau, A.G. Suits, X. Zhang, J. Rheinecker, L.B. Harding, and J.M. Bowman, Science 306, 1158 (2004).
13 K.-C. Hung, P.-Y. Tsai, H.-K. Li, and K.-C. Lin, J. Chem. Phys. 140, 64313 (2014).
14 P.-Y. Tsai, K.-C. Hung, H.-K. Li, and K.-C. Lin, J. Phys. Chem. Lett. 5, 190 (2014).
15 M.-H. Chao, P.-Y. Tsai, and K.-C. Lin, Phys. Chem. Chem. Phys. 13, 7154 (2011).
16 M.L. Hause, N. Herath, R. Zhu, M.C. Lin, and A.G. Suits, Nat Chem 3, 932 (2011).
17 P.R. Brooks and E.M. Jones, J. Chem. Phys. 45, 3449 (1966).
18 R.J. Beuhler, R.B. Bernstein, and K.H. Kramer, J. Am. Chem. Soc. 88, 5331 (1966).
19 P.-Y. Tsai, D.-C. Che, M. Nakamura, K.-C. Lin, and T. Kasai, Phys. Chem. Chem. Phys. 12, 2532 (2010).
20 P.-Y. Tsai, D.-C. Che, M. Nakamura, K.-C. Lin, and T. Kasai, Phys. Chem. Chem. Phys. 13, 1419 (2011).
21 H. Ohoyama, Y. Nagamachi, and T. Kasai, Eur. Phys. J. D 38, 231 (2006).
22 D. Watanabe, H. Ohoyama, T. Matsumura, and T. Kasai, Phys. Rev. Lett. 99, 43201 (2007).
23 H. Ohoyama and T. Kasai, Phys. Chem. Chem. Phys. 12, 6949 (2010).
24 T.P. Rakitzis, A.J. van den Brom, and M.H.M. Janssen, Science 303, 1852 (2004).
25 A.J. Van Den Brom, T.P. Rakitzis, and M.H.M. Janssen, J. Chem. Phys. 121, 11645 (2004).
26 T.D. Hain, R.M. Moision, and T.J. Curtiss, J. Chem. Phys. 111, 6797 (1999).
27 D.C. Che, F. Palazzetti, Y. Okuno, V. Aquilanti, and T. Kasai, J. Phys. Chem. A 114, 3280 (2010).
28 D.C. Che, K. Kanda, F. Palazzetti, V. Aquilanti, and T. Kasai, Chem. Phys. 399, 180 (2012).
29 M.L. Lipciuc, A.J. van den Brom, L. Dinu, and M.H.M. Janssen, Rev. Sci. Instrum. 76, 123103 (2005).
30 T.P. Rakitzis, A.J. van den Brom, and M.H.M. Janssen, Chem. Phys. Lett. 372, 187 (2003).
31 F. Palazzetti, P.-Y. Tsai, A. Lombardi, M. Nakamura, D.-C. Che, T. Kasai, K.-C. Lin, and V. Aquilanti, Rend. Lincei 24, 299 (2013).

Chapter 2.
1 G.A. Garcia, L. Nahon, and I. Powis, Rev. Sci. Instrum. 75, 4989 (2004).
2 A.T.J.B. Eppink and D.H. Parker, Rev. Sci. Instrum. 68, 3477 (1997).
3 W.C. Wiley and I.H. McLaren, Rev. Sci. Instrum. 26, 1150 (1955).
4 D.A. Dahl, J.E. Delmore, and A.D. Appelhans, Rev. Sci. Instrum. 61, 607 (1990).
5 T.D. Hain, R.M. Moision, and T.J. Curtiss, J. Chem. Phys. 111, 6797 (1999).
6 D.C. Che, K. Kanda, F. Palazzetti, V. Aquilanti, and T. Kasai, Chem. Phys. 399, 180 (2012).

Chapter 3.
1 M.-H. Chao, P.-Y. Tsai, and K.-C. Lin, Phys. Chem. Chem. Phys. 13, 7154 (2011).
2 P.-Y. Tsai, M.-H. Chao, T. Kasai, K.-C. Lin, A. Lombardi, F. Palazzetti, and V. Aquilanti, Phys. Chem. Chem. Phys. 16, 2854 (2014).
3 D. Townsend, S.A. Lahankar, S.K. Lee, S.D. Chambreau, A.G. Suits, X. Zhang, J. Rheinecker, L.B. Harding, and J.M. Bowman, Science 306, 1158 (2004).
4 K.-C. Hung, P.-Y. Tsai, H.-K. Li, and K.-C. Lin, J. Chem. Phys. 140, 64313 (2014).
5 P.-Y. Tsai, K.-C. Hung, H.-K. Li, and K.-C. Lin, J. Phys. Chem. Lett. 5, 190 (2014).
6 M.L. Hause, N. Herath, R. Zhu, M.C. Lin, and A.G. Suits, Nat Chem 3, 932 (2011).
7 M. Castillejo, S. Couris, E. Lane, M. Martin, and J. Ruiz, Chem. Phys. 232, 353 (1998).
8 M. Nakamura, P.-Y. Tsai, T. Kasai, K.-C. Lin, F. Palazzetti, A. Lombardi, and V. Aquilanti, Faraday Discuss. 177, 77-98 (2015).
9 A. Lombardi, F. Palazzetti, V. Aquilanti, H.K. Li, P.Y. Tsai, T. Kasai, and K.C. Lin, J. Phys. Chem. A 120, 5155 (2016).
10 J.S. Francisco, J. Am. Chem. Soc. 125, 10475 (2003).
11 S.-H. Lee, J. Chem. Phys. 129, 194304 (2008).
12 T.Y. Kang, S.W. Kang, and H.L. Kim, Chem. Phys. Lett. 434, 6 (2007).

Chapter 4.
1 M. Hashinokuchi, D.-C. Che, D. Watanabe, T. Fukuyama, I. Koyano, Y. Shimizu, A. Woelke, and T. Kasai, Phys. Chem. Chem. Phys. 5, 3911 (2003).
2 T.D. Hain, R.M. Moision, and T.J. Curtiss, J. Chem. Phys. 111, 6797 (1999).
3 T.P. Rakitzis, A.J. van den Brom, and M.H.M. Janssen, Science 303, 1852 (2004).
4 A.J. Van Den Brom, T.P. Rakitzis, and M.H.M. Janssen, J. Chem. Phys. 121, 11645 (2004).
5 H. Ohoyama, T. Ogawa, and T. Kasai, J. Phys. Chem. 99, 13606 (1995).
6 H. Ohoyama, H. Kawaguchi, M. Yamato, T. Kasai, B.G. Brunetti, and F. Vecchiocattivi, Chem. Phys. Lett. 313, 484 (1999).
7 D.C. Che, K. Kanda, F. Palazzetti, V. Aquilanti, and T. Kasai, Chem. Phys. 399, 180 (2012).
8 F. Palazzetti, G.S. Maciel, K. Kanda, M. Nakamura, D.-C. Che, T. Kasai, and V. Aquilanti, Phys. Chem. Chem. Phys. 16, 9866 (2014).
9 M. Nakamura, S.-J. Yang, P.-Y. Tsai, T. Kasai, K.-C. Lin, D.-C. Che, A. Lombardi, F. Palazzetti, and V. Aquilanti, J. Phys. Chem. A 120, 5389 (2016).
10 M. Nakamura, S.-J. Yang, K.-C. Lin, T. Kasai, D.-C. Che, A. Lombardi, F. Palazzetti, and V. Aquilanti, J. Chem. Phys. 147, 13917 (2017).
11 H.J. Loesch and a. Remscheid, J. Chem. Phys. 93, 4779 (1990).
12 J. Bulthuis, J. Möller, and H. Loesch, J. Phys. Chem. … 5639, 7684 (1997).
13 W. Kong and J. Bulthuis, J. Phys. Chem. A 104, 1055 (2000).
14 M.J. Weida and C.S. Parmenter, J. Chem. Phys. 107, 7138 (1997).
15 S. Ohta, M. Nakano, M. Nate, R. Kishi, and H. Takahashi, Chem. Phys. Lett. 448, 99 (2007).
16 M. Nakamura, D.-C. Che, P.-Y. Tsai, K.-C. Lin, and T. Kasai, J. Phys. Chem. A 117, 8157 (2013).
17 K. Oda, M. Hita, S. Minemoto, and H. Sakai, Phys. Rev. Lett. 104, 1 (2010).
18 C. Qin, Y. Tang, Y. Wang, and B. Zhang, Phys. Rev. A - At. Mol. Opt. Phys. 85, 1 (2012).
19 V. Aquilanti, D. Ascenzi, D. Cappelletti, and F. Pirani, Nature 371, 399 (1994).
20 F. Pirani, D. Cappelletti, M. Bartolomei, V. Aquilanti, M. Scotoni, M. Vescovi, D. Ascenzi, and D. Bassi, Phys. Rev. Lett. 86, 5035 (2001).
21 D. Cappelletti, M. Bartolomei, V. Aquilanti, F. Pirani, G. Demarchi, D. Bassi, S. Iannotta, and M. Scotoni, Chem. Phys. Lett. 420, 47 (2006).
22 G.W. Tyndall, M.S. de Vries, C.L. Cobb, and R.M. Martin, Chem. Phys. Lett. 195, 279 (1992).
23 R.S. Mulliken, J. Chem. Phys. 8, 382 (1940).
24 Y. Tang, L. Ji, B. Tang, R. Zhu, S. Zhang, and B. Zhang, Chem. Phys. Lett. 392, 493 (2004).
25 Y. Tang, W. Bin Lee, Z. Hu, B. Zhang, and K.C. Lin, J. Chem. Phys. 126, 64302 (2007).
26 X.-P. Zhang, W.-B. Lee, and K.-C. Lin, J. Phys. Chem. A 113, 35 (2009).
27 B. Tang and B. Zhang, Chem. Phys. Lett. 412, 145 (2005).
28 D. Zhou, R. Mao, L. Zhang, Q. Zhang, and Y. Chen, Chinese J. Chem. Phys. 24, 647 (2011).
29 D. Zhou, R. Mao, L. Zhang, Q. Zhang, and Y. Chen, Chinese J. Chem. Phys. 25, 373 (2012).
30 R. Zhu, B. Tang, X. Zhang, and B. Zhang, J. Phys. Chem. A 114, 6188 (2010).
31 F. Palazzetti, P.-Y. Tsai, A. Lombardi, M. Nakamura, D.-C. Che, T. Kasai, K.-C. Lin, and V. Aquilanti, Rend. Lincei 24, 299 (2013).
32 D. Townsend, M.P. Minitti, and A.G. Suits, Rev. Sci. Instrum. 74, 2530 (2003).
33 T.P. Rakitzis, A.J. van den Brom, and M.H.M. Janssen, Chem. Phys. Lett. 372, 187 (2003).
34 R.W. Anderson, J. Phys. Chem. A 101, 7664 (1997).
35 Y. Ke, X.-B. Deng, and Z.-K. Hu, J. Phys. B At. Mol. Opt. Phys. 49, 25101 (2016).
36 K. Aarset, K. Hagen, and R. Stølevik, J. Mol. Struct. 567–568, 157 (2001).
37 M.L. Lipciuc, A.J. van den Brom, L. Dinu, and M.H.M. Janssen, Rev. Sci. Instrum. 76, 123103 (2005).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top