跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.136) 您好!臺灣時間:2025/09/20 02:52
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:楊聖偉
研究生(外文):YANG, SHENG-WEI
論文名稱:具磁性之氧化亞銅/石墨烯光觸媒之製備、物化鑑定與應用
論文名稱(外文):Synthesis, Characterization and Photocatalytic Performance of Magnetic Cu2O/Graphene Photocatalysts
指導教授:郭仲文郭仲文引用關係劉守恒劉守恒引用關係
指導教授(外文):Kuo, Chung-WenLiu, Shou-Heng
口試委員:郭仲文劉守恒蔡政賢
口試委員(外文):Kuo, Chung-WenLiu, Shou-HengTsai, Cheng-Hsian
口試日期:2016-07-29
學位類別:碩士
校院名稱:國立高雄應用科技大學
系所名稱:化學工程與材料工程系博碩士班
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:177
中文關鍵詞:石墨烯光觸媒氧化亞銅八面體十二面體中空球體磁性偶氮染料
外文關鍵詞:graphenephotocatalystCu2Ooctahedronhollow spherwdodecahedronmagneticazo dyes
相關次數:
  • 被引用被引用:1
  • 點閱點閱:433
  • 評分評分:
  • 下載下載:5
  • 收藏至我的研究室書目清單書目收藏:0
光催化法可有效處理水中汙染物,並廣泛運用在廢水處理,但有著不易回收的問題,因此,本研究主要製備具有磁性並且在可見光下可以有效去除在水中有機物質(例如: 甲基橙Methyl orange, MO)之光觸媒,使其轉變較無害的CO2以及H2O等無二次汙染的產物,並以磁性來回收再利用光觸媒。本實驗透過溶膠凝膠法及溶劑熱法製備出八面體、中空球體及十二面體氧化亞銅,並將氧化亞銅附載於高電子遷移率的還原氧化石墨烯(Reduce grapheme oxide, rGO)上,利用rGO電子遷移率高的特性,解決氧化亞銅吸收可見光激發的電子容易電子電洞再聚合的問題,結果顯示,以添加1% rGO於氧化亞銅之光觸媒具最好降解活性。此外,在合成不同氧化亞銅晶相的實驗中,由HR-TEM可觀察到,八面體、中空球體以及十二面體氧化亞銅分別具有(111)、(110)&(111)以及(110)結晶面,因(110)結晶面表面具有較多銅原子可與污染物反應使其光催化效果會優於(111)結晶面相之氧化亞銅。進一步添加磁性核殼材料(Fe3O4@SiO2)作為磁性基質用於回收觸媒,形成具有高飽和磁化量(11.79 emu/g)及光催化活性的光觸媒,並以TEM證明磁性粒子有附著於石墨烯上。負載具有磁性十二面體氧化亞銅於還原氧化石墨烯上之觸媒於兩小時內,在可見光照射下降解效率可達將近98%,並經過多次循環後仍保有85.17%。
Photocatalysis can be effectively applied in removing the pollutants in the water, and it has the significant problem that need to be solved. As a result, this research mainly focused on synthesizing magnetic photocatalysts which can effectively remove organic pollutants in the water under visible light. The organic pollutants (Methyl orange, MO) can be transformed into CO2¬ and H2O, etc. The used photocatalysts can be recycled by magnetic process.
The octahedron, hollow sphere, and dodecahedron Cu-2O/graphene were synthesized via sol-gel and solvothermal methods. Then dope Cu2O onto high electron conductivity of graphene oxide (rGO) to reduce recombination electrons and electron holes. As a result, it has the most effective degradation efficiency when combine with 1% graphene oxide. Besides, the results demonstrate that Cu2O dodecahedra with exposed {110} facets with more dagling “Cu” atoms possesses higher activity than those with hollow sphere {110} & {111} facets and Octahedral {111} facets.
We synthesized magnetic core-shell materials (Fe3O4@SiO2), follow by adding Cu2O and graphene oxide that can produce high saturation magnetization and photocatalysis performance of magnetic photocatalysts. Magnetic photocatalysts, dodecahedron Cu¬2O/rGO have removal efficiency of 98% MO in two hours under visible light, after several cycles still retains 85.17%.

目錄
中文摘要 I
ABSTRACT III
誌謝 V
目錄 VII
表目錄 XIII
圖目錄 XVI
第一章 緒論 21
1-1 前言 21
1-2 研究動機 21
1-3 研究目的 22
第二章 相關知識與文獻回顧 23
2-1石墨烯簡介 23
2-1-1石墨烯基本性質 23
2-1-2石墨烯製備與檢測方法 27
2-2 光觸媒簡介 35
2-2-1光觸媒發展歷史 35
2-2-2光觸媒材料 37
2-2-3高級氧化程序 38
2-2-4光觸媒催化機制 41
2-2-5氧化亞銅基本性質: 44
2-3影響光觸媒效率之因素 51
2-3-1觸媒濃度效應 51
2-3-2汙染物濃度效應 54
2-3-3 pH值效應 55
2-3-4 催化劑 56
2-4 磁性分離技術 57
2-4-1鐵氧磁體特性 57
2-4-2磁性觸媒應用 61
第三章 實驗方法與步驟 63
3-1 實驗藥品 63
3-2 實驗器材 65
3-3 分析儀器 66
3-4 實驗流程以及操作變因 74
3-5 製備氧化石墨烯(GRAPHENE OXIDE) 75
3-4 製備超順磁性核殼材料 77
3-4-1 製備四氧化三鐵 77
3-4-2製備具核殼結構四氧化三鐵 (Fe3O4@SiO2) 78
3-5 製備具光催化活性之不同晶型氧化亞銅/還原氧化石墨烯 79
3-5-1 製備八面體氧化亞銅/還原氧化石墨烯 79
3-5-2製備中空球體氧化亞銅/還原氧化石墨烯 81
3-5-3製備十二面體氧化亞銅/還原氧化石墨烯 83
3-6製備具磁性及光催化活性之氧化亞銅/還原氧化石墨烯 85
3-7光觸媒於可見光下降解汙染物 86
第四章 結果與討論 87
4-1 探討不同比例氧化亞銅/還原氧化石墨烯其物性及光催化性質 87
4-1-1 XRD分析 87
4-1-2 TEM 分析 91
4-1-3 SEM分析 92
4-1-4 Uv-Vis吸收光譜分析 94
4-1-5 PL分析 97
4-1-6 XPS 分析 99
4-1-7吸附實驗 104
4-1-8 可見光降解實驗 105
4-1-9 反應速率常數 107
4-2探討不同晶型氧化亞銅物理性質及光催化效率比較 109
4-2-1 XRD分析 110
4-2-2 TEM分析 112
4-2-3 SEM分析 115
4-2-4 Uv-Vis吸收光譜分析 117
4-2-5 XPS 分析 119
4-2-6 吸附實驗 121
4-2-7 可見光降解實驗 122
4-2-8 反應速率常數 124
4-3 磁性光觸媒(CU2O/RGO- FE3O4@SIO2) 126
4-3-1 TEM分析 127
4-3-2 SEM分析 131
4-3-3 SQUID分析 134
4-3-4 XRD分析 137
4-3-5 Uv-Vis吸收光譜分析 139
4-3-5 PL分析 141
4-3-6 XPS分析 142
4-3-7 吸附實驗 147
4-3-8 可見光降解實驗 148
4-3-9 反應速率常數 149
4-4探討各種變因對於可見光降解效果 152
4-4-1 觸媒濃度效應 152
4-4-2 pH值效應 156
4-4-3 觸媒穩定性實驗 160
第五章 結論 162
參考文獻 165
附錄 172
自傳 173


參考文獻
[1] 胡耀娟,金娟,张卉,吴萍,蔡称心,石墨烯的制备、功能化及在化学中的应用,物理化學學報, 2010,26(8), 2073-2086.
[2] Rao C.E.E., Sood A.E., Subrahmanyam K.E., Govindaraj A Graphene: The New Two-Dimensional Nanomaterial, 2009, Angewandte Chemie International Edition, 48, 7752 – 7777.
[3] Lee C., Wei X., Kysar J.W., Hone J., Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene, Science., 2008, 321, 385-388.
[4] Novoselov K.S., Geim A.K., Morozov S.V., Jiang D., Zhang Y., Dubonos S.V., Grigorieva I.V., Firsov A.A., Electric field effect in atomically thin carbon films, Science., 2004, 306, 666-669.
[5] 王璐,摇臧晓, 王春 , 王志,石墨烯在样品前处理研究领域中的新进展,分析化學,2014,42,136-144.
[6] Berger C., Song Z., Li T., Li X., Ogbazghi A.Y., Feng R., Dai Z., Marchenkov A.N., Conrad E.H., First P.N., Walt A. de Heer., Ultrathin Epitaxial Graphite:  2D Electron Gas Properties and a Route toward Graphene-based Nanoelectronics, The Journal of Physical Chemistry B,2004,108 ,52,19912–19916.
[7] Hummers Jr W.S., Offeman R.E., Preparation of Graphitic Oxide, Journal of the American Chemical Society, 1958, 80, 1339-1339.
[8] Li D., Muller, M.B., Gilje S., Kaner, R.B., Wallace G.G., Processable aqueous dispersions of graphene nanosheets, Nature nanotechnology, 2008, 3, 101-105.
[9] Obraztsov A.N., Chemical vapour desposition : Making graphene on a large scale, Nature nanotechnology, 2009, 4, 212-213.


[10]謝雅萍,Mario Hofmann,目睹原子-利用光來發掘石墨烯,2011,物理雙月刊,33,168-170。
[11] 蔡宜壽,徐平承,本世紀最「夯」的材料「石墨烯」,真空科技,2013,26,55-59.

[12] Fujishima A., Electrochemical Photolysis of Water at a Semiconductor Electrode, 1972, Nature, 238, 37 – 38.
[13] Kudo A., Miseki Y., Heterogeneous photocatalyst materials for water splitting, Chemical Society Reviews, 2009, 38, 253–278.
[14] Grätzel M., Photoelectrochemical cells, Nature, 2011, 414 ,338-344.
[15] Dalton J.S., Janes P.A., Jones N.G., Nicholson J.A., Hallam K.R., Allen G.C., Photocatalytic oxidation of NOx gases using TiO2 : a surface spectroscopic approach, Environmental Pollution, 2002, 120, 415–422.
[16] 李中光,劉新校,陳昱峰,吳孟昌,劉佳雯,Fenton氧化法在處理生物難降解有機廢水上之應用,環保簡訊(桃園縣大學校院產業環保技術服務團),2011,第12期。
[17] 林永璋,以臭氧/紫外光程序去除乙二胺四乙酸之研究,國立中山大學環境工程研究所,92年。
[18] Liang Z.H., Zhu Y.J., Synthesis of uniformly sized Cu2O crystals with star-like and flower-like morphologies, Materials Letters, 2005, 59, 2423–2425.
[19] Kuo C.H., Huang M.H., Facile Synthesis of Cu2O Nanocrystals with Systematic Shape Evolution from Cubic to Octahedral Structures, The Journal of Physical Chemistry C., 2008, 112, 18355–18360.
[20] Huang W.C., Lyu L.M., Yang Y.C., Huang M.H., Synthesis of Cu2O Nanocrystals from Cubic to Rhombic Dodecahedral Structures and Their Comparative Photocatalytic Activity, Journal of the American Chemical Society, 2012, 134, 1261–1267.
[21] Chen D.S., Yu W.B., Deng Z., Liu J., Jin J., Li Y., Wu M., Chena L.H., Su B.L., Hollow Cu2O Microspheres with Two Active {111} and {110} Facets for Highly Selective Adsorption and Photodegradation of Anionic Dye, Royal Society of Chemistry Advances, 2015, 5, 55520–55526.
[22] Bessekhouad Y., Robert D., Weber J.V., Photocatalytic activity of Cu2O/TiO2, Bi2O3/TiO2 and ZnMn2O4/TiO2 heterojunctions, Catalysis Today, 2005, 101, 315-321.

[23] Huang L., Peng F., Yu H., Wang H., Preparation of cuprous oxides with different sizes and their behaviors of adsorption, visible-light driven photocatalysis and photocorrosion, Solid State Science., 2009, 11, 129-138.
[24] Gong X.Q., Selloni A., Reactivity of Anatase TiO2 Nanoparticles: The Role of the Minority (001) Surface, The Journal of Physical Chemistry C., 2005, 109, 19560-19562.
[25] Han X., Kuang Q., Jin M., Xie Z., Zheng L., Synthesis of Titania Nanosheets with a High Percentage of Exposed (001) Facets and Related Photocatalytic Properties, Journal of the American Chemical Society, 2009, 131, 3152–3153.
[26] Xu H., Wang W., Zhu W., Shape evolution and size-controllable synthesis of Cu2O octahedra and their morphology-dependent photocatalytic properties,The Journal of Physical Chemistry B., 2006, 110, 13829–13834.
[27] Zhao W., Fu W., Yang H., Tian C., Ge R., Wang C., Liu Z., Zhan Y., Li M., Li Y., Shape-controlled synthesis of Cu2O microcrystals by electrochemical method, Applied Surface Science, 2010, 256, 2269–2275.
[28] Zhong J.H., Li G.R., Wang Z.L., Ou Y.N., Tong Y.X., Facile Electrochemical Synthesis of Hexagonal Cu2O Nanotube Arrays and Their Application, Inorganic Chemistry, 2011, 50, 757–763.
[29] Tang A., Xiao Y., Ouyang J., Nie S., Preparation, photo-catalytic activity of cuprous oxide nano-crystallites with different sizes, Journal of Alloy Compounds, 2008, 457, 447–451.
[30] Wei M., Lu N., Ma X., Wen S., A simple solvothermal reduction route to copper and cuprous oxide, Materials Letters, 2007, 61, 147 – 2150.
[31] Zhang X., Wang G., Wu H., D. Zhang, Zhang X., Li P., Wu H., Synthesis and photocatalytic characterization of porous cuprous oxide octahedral, Materials Letters, 2008, 62,4363–4365.
[32] Kou T., Jin C., Zhang C., Sun J., Zhang Z., Nanoporous core–shell Cu@Cu2O nanocomposites with superior photocatalytic properties towards the degradation of methyl orange, RSC Advances, 2012, 2, 12636–12643.

[33] Zhang X., Song J., Jiao J., Me X., Preparation and photocatalytic activity of cuprous oxides, Solid State Sciences, 2010, 12, 1215-1219.
[34] Qu Y., Li X., Chen G., Zhang H., Chen Y., Synthesis of Cu2O nano-whiskers by a novel wet-chemical route, Materials Letters, 2008, 62, 886–888.
[35] Gao Z., Liu J., Xu F., Wu D., Wu Z., Jiang K., One-pot synthesis of graphene cuprous oxide composite with enhanced photocatalytic activity, Solid State Science., 2012, 14, 276-280.
[36] Gao P., Liu J., Sun D.D., Ng WJ., Graphene oxide–CdS composite with high photocatalytic degradation and disinfection activities under visible light irradiation, Journal of Hazardous Materials, 2013, 250-251, 412-420.
[37] Vicki C., Tang C., The photocatalytic degradation of reactive black 5 using TiO2/UV in an annular photoreactor, Water Research, 2004, 38, 2775–2781.
[38] Matthews R.W., McEvoy S.R., A comparison of 254 nm and 350 nm excitation of TiO2 in simple photocatalytic reactors, Journal of Photochemistry and Photobiology A: Chemistry, 1992, 66, 355-366.
[39] 羅國彰,微波水熱法製備二氧化鈦及其光催化之研究,私立中原大學化學系,96年。
[40] 余忠雄,向垒,钟方龙,李彦文,莫测辉,蔡全英, 黄献培,吴小莲 ,赵海明,pH对低温燃烧法合成钨酸铋光催化降解罗丹明B的影响,无机材料学报,2015,第30卷,第5期,535-541.
[41] Sujaridworakun P., Natrchalayuth K., Influence of pH and HPC concentration on the synthesis of zinc oxide photocatalyst particle from zinc-dust waste by hydrothermal treatment, Advanced Powder Technology, 2014, 25, 1266–1272.
[42] 孔守中,鎳鋅鐵氧磁體奈米粒子生成動力學及其電磁波吸收行為之研究, 私立中原大學化學系,92年。
[43] 曹家瑋,具磁分離奈米觸媒合成、鑑定及應用之 研究,龍華科技大學,99年。
[44] Chen C.W., Magnetism and metallurgy of soft magnetic materials, Courier Dover Publications, 1977, 12, 7–8.
[45] 吳憶伶,磁性觸媒應用於催化濕式氧化程序處理水中溶解性汙染物之研究,國立臺灣大學環境工程學研究所,98年。
[46] Fu Y., Chen Q., He M., Wan Y., Sun X., Xia H., Wang X., Copper Ferrite-Graphene Hybrid: A Multifunctional Heteroarchitecture for Photocatalysis and Energy Storage, Industrial & Engineering Chemistry Research, 2012, 51, 11700−11709.
[47] Lu D., Zhang Y., Lin S., Wang L., Wang C., Synthesis of magnetic ZnFe2O4/graphene composite and its application in photocatalytic degradation of dyes, Journal of Alloys and Compounds, 2013, 579, 336–342.
[48] Peik-See T., Pandikumar A., Ngee L.H., Ming H.N., Hua, C.C., Magnetically separable reduced grapheme oxide/iron oxide nanocomposite materials for environmental remediation, Catalysis Science & Technology, 2014, 4, 4396-4405.
[49] Liu X., Li Z., Zhao W., Zhao C., Wanga Y., Lin Z., A facile route to the synthesis of reduced graphene oxide-wrapped octahedral Cu2O with enhanced photocatalytic and photovoltaic performance, Journal of Materials Chemistry A, 2015, 3, 19148–19154.
[50] Hong C., Jin X., Totleben J., Lohrman J., Harak E., Subramaniam B., Chaudharib R.V., Ren S., Graphene oxide stabilized Cu2O for shape selective nanocatalysis, Journal of Materials Chemistry A, 2014, 2, 7147–7151.
[51] Zhigang N., Reduced graphene oxide-cuprous oxide hybrid nanopowders:Hydrothermal synthesis and enhanced photocatalytic performance under visible light irradiation, Materials Science in Semiconductor Processing, 2014, 23, 78–84.
[52] Sun L., Wu X., Meng M., Zhu X., Chu P. K., Enhanced Photodegradation of Methyl Orange Synergistically by icrocrystal Facet Cutting and Flexible Electrically-Conducting hannels, The Journal of Physical Chemistry C, 2014, 118, 28063–28068.
[53] Zhou X., Zhang J., Wu H., Yang H., Zhang J., Guo S., Reducing Graphene Oxide via Hydroxylamine: A Simple and Efficient Route to Graphene, The Journal of Physical Chemistry C, 2011, 115, 11957–11961
[54] Zou W., Zhang L., Liu L., Wang X., Sun J., Wu S., Yu D., Changjin T., Fei G., Lin D., Engineering the Cu2O–reduced graphene oxide interface to enhance photocatalytic degradation of organic pollutants under visible light, Applied Catalysis B: Environmental, 2016, 181, 495-503.
[55] Li B., Liu T., Hu L., Wang Y., A facile one-pot synthesis of Cu2O/rGO nanocomposite for removal of organic pollutant, Journal of Physics and Chemistry of Solids, 2013, 74, 635-640.
[56] Jiang X., Zhang M., Shi S., He G., Song X., Sun Z., Influence of Applied Potential on the Band Gap of Cu/Cu2O Thin Films, Journal of The Electrochemical Society, 2014, 161, D640-D643.
[57] Chiang L. F., Doong R. A., Enhanced photocatalytic degradation of sulfamethoxazole by visible-light-sensitive TiO2 with low Cu addition, Separation and Purification Technology, 2015, 156, 1003–1010.
[58] Ding H.L., Zhang Y.X., Wang S., Xu J.M., Xu S.C., Li G.H., Fe3O4 @SiO2 Core/Shell Nanoparticles: The Silica Coating Regulations with a Single Core for Different Core Sizes and Shell Thicknesses, Chemistry of Materials, 2012, 24, 4572–4580.
[59] Kalan R. E., Yaparatne S., Amirbahman A., Tripp C.P., P25 titanium dioxide coated magnetic particles: Preparation, characterization and photocatalytic activity, Applied Catalysis B: Environmental, 2016, 187, 249-258.
[60] Yamashita T., Hayes P., Erratum to “Analysis of XPS spectra of Fe2+ and Fe3+ ions in oxide materials”, Applied Surface Science, 2008, 254, 2441–2449.
[61] Kumar P., Maikap S., Prakash A., Tien T.C., Time-dependent pH sensing phenomena using CdSe/ZnS quantum dots in EIS structure, Nanoscale research letters, 2014, 9, 179.
[62] Zhao X., Scott S.A., Huang M., Peng W., Kiefer A.M., Flack F. S., Savage D.E., Lagally MG: Influence of surface properties on the electrical conductivity of silicon nanomembranes. Nanoscale research letters, 2011, 6, 1-7.

[63] Jiang H., Li J., Mu Z., Geng H., Degradation of methyl orange through synergistic effect of Cu/Cu2O nanoporous composite and ultrasonic wave, Desalination and Water Treatment, 2015, 56, 173-180.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top