參考文獻
[1] 胡耀娟,金娟,张卉,吴萍,蔡称心,石墨烯的制备、功能化及在化学中的应用,物理化學學報, 2010,26(8), 2073-2086.
[2] Rao C.E.E., Sood A.E., Subrahmanyam K.E., Govindaraj A Graphene: The New Two-Dimensional Nanomaterial, 2009, Angewandte Chemie International Edition, 48, 7752 – 7777.
[3] Lee C., Wei X., Kysar J.W., Hone J., Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene, Science., 2008, 321, 385-388.
[4] Novoselov K.S., Geim A.K., Morozov S.V., Jiang D., Zhang Y., Dubonos S.V., Grigorieva I.V., Firsov A.A., Electric field effect in atomically thin carbon films, Science., 2004, 306, 666-669.
[5] 王璐,摇臧晓, 王春 , 王志,石墨烯在样品前处理研究领域中的新进展,分析化學,2014,42,136-144.
[6] Berger C., Song Z., Li T., Li X., Ogbazghi A.Y., Feng R., Dai Z., Marchenkov A.N., Conrad E.H., First P.N., Walt A. de Heer., Ultrathin Epitaxial Graphite: 2D Electron Gas Properties and a Route toward Graphene-based Nanoelectronics, The Journal of Physical Chemistry B,2004,108 ,52,19912–19916.
[7] Hummers Jr W.S., Offeman R.E., Preparation of Graphitic Oxide, Journal of the American Chemical Society, 1958, 80, 1339-1339.
[8] Li D., Muller, M.B., Gilje S., Kaner, R.B., Wallace G.G., Processable aqueous dispersions of graphene nanosheets, Nature nanotechnology, 2008, 3, 101-105.
[9] Obraztsov A.N., Chemical vapour desposition : Making graphene on a large scale, Nature nanotechnology, 2009, 4, 212-213.
[10]謝雅萍,Mario Hofmann,目睹原子-利用光來發掘石墨烯,2011,物理雙月刊,33,168-170。
[11] 蔡宜壽,徐平承,本世紀最「夯」的材料「石墨烯」,真空科技,2013,26,55-59.[12] Fujishima A., Electrochemical Photolysis of Water at a Semiconductor Electrode, 1972, Nature, 238, 37 – 38.
[13] Kudo A., Miseki Y., Heterogeneous photocatalyst materials for water splitting, Chemical Society Reviews, 2009, 38, 253–278.
[14] Grätzel M., Photoelectrochemical cells, Nature, 2011, 414 ,338-344.
[15] Dalton J.S., Janes P.A., Jones N.G., Nicholson J.A., Hallam K.R., Allen G.C., Photocatalytic oxidation of NOx gases using TiO2 : a surface spectroscopic approach, Environmental Pollution, 2002, 120, 415–422.
[16] 李中光,劉新校,陳昱峰,吳孟昌,劉佳雯,Fenton氧化法在處理生物難降解有機廢水上之應用,環保簡訊(桃園縣大學校院產業環保技術服務團),2011,第12期。
[17] 林永璋,以臭氧/紫外光程序去除乙二胺四乙酸之研究,國立中山大學環境工程研究所,92年。
[18] Liang Z.H., Zhu Y.J., Synthesis of uniformly sized Cu2O crystals with star-like and flower-like morphologies, Materials Letters, 2005, 59, 2423–2425.
[19] Kuo C.H., Huang M.H., Facile Synthesis of Cu2O Nanocrystals with Systematic Shape Evolution from Cubic to Octahedral Structures, The Journal of Physical Chemistry C., 2008, 112, 18355–18360.
[20] Huang W.C., Lyu L.M., Yang Y.C., Huang M.H., Synthesis of Cu2O Nanocrystals from Cubic to Rhombic Dodecahedral Structures and Their Comparative Photocatalytic Activity, Journal of the American Chemical Society, 2012, 134, 1261–1267.
[21] Chen D.S., Yu W.B., Deng Z., Liu J., Jin J., Li Y., Wu M., Chena L.H., Su B.L., Hollow Cu2O Microspheres with Two Active {111} and {110} Facets for Highly Selective Adsorption and Photodegradation of Anionic Dye, Royal Society of Chemistry Advances, 2015, 5, 55520–55526.
[22] Bessekhouad Y., Robert D., Weber J.V., Photocatalytic activity of Cu2O/TiO2, Bi2O3/TiO2 and ZnMn2O4/TiO2 heterojunctions, Catalysis Today, 2005, 101, 315-321.
[23] Huang L., Peng F., Yu H., Wang H., Preparation of cuprous oxides with different sizes and their behaviors of adsorption, visible-light driven photocatalysis and photocorrosion, Solid State Science., 2009, 11, 129-138.
[24] Gong X.Q., Selloni A., Reactivity of Anatase TiO2 Nanoparticles: The Role of the Minority (001) Surface, The Journal of Physical Chemistry C., 2005, 109, 19560-19562.
[25] Han X., Kuang Q., Jin M., Xie Z., Zheng L., Synthesis of Titania Nanosheets with a High Percentage of Exposed (001) Facets and Related Photocatalytic Properties, Journal of the American Chemical Society, 2009, 131, 3152–3153.
[26] Xu H., Wang W., Zhu W., Shape evolution and size-controllable synthesis of Cu2O octahedra and their morphology-dependent photocatalytic properties,The Journal of Physical Chemistry B., 2006, 110, 13829–13834.
[27] Zhao W., Fu W., Yang H., Tian C., Ge R., Wang C., Liu Z., Zhan Y., Li M., Li Y., Shape-controlled synthesis of Cu2O microcrystals by electrochemical method, Applied Surface Science, 2010, 256, 2269–2275.
[28] Zhong J.H., Li G.R., Wang Z.L., Ou Y.N., Tong Y.X., Facile Electrochemical Synthesis of Hexagonal Cu2O Nanotube Arrays and Their Application, Inorganic Chemistry, 2011, 50, 757–763.
[29] Tang A., Xiao Y., Ouyang J., Nie S., Preparation, photo-catalytic activity of cuprous oxide nano-crystallites with different sizes, Journal of Alloy Compounds, 2008, 457, 447–451.
[30] Wei M., Lu N., Ma X., Wen S., A simple solvothermal reduction route to copper and cuprous oxide, Materials Letters, 2007, 61, 147 – 2150.
[31] Zhang X., Wang G., Wu H., D. Zhang, Zhang X., Li P., Wu H., Synthesis and photocatalytic characterization of porous cuprous oxide octahedral, Materials Letters, 2008, 62,4363–4365.
[32] Kou T., Jin C., Zhang C., Sun J., Zhang Z., Nanoporous core–shell Cu@Cu2O nanocomposites with superior photocatalytic properties towards the degradation of methyl orange, RSC Advances, 2012, 2, 12636–12643.
[33] Zhang X., Song J., Jiao J., Me X., Preparation and photocatalytic activity of cuprous oxides, Solid State Sciences, 2010, 12, 1215-1219.
[34] Qu Y., Li X., Chen G., Zhang H., Chen Y., Synthesis of Cu2O nano-whiskers by a novel wet-chemical route, Materials Letters, 2008, 62, 886–888.
[35] Gao Z., Liu J., Xu F., Wu D., Wu Z., Jiang K., One-pot synthesis of graphene cuprous oxide composite with enhanced photocatalytic activity, Solid State Science., 2012, 14, 276-280.
[36] Gao P., Liu J., Sun D.D., Ng WJ., Graphene oxide–CdS composite with high photocatalytic degradation and disinfection activities under visible light irradiation, Journal of Hazardous Materials, 2013, 250-251, 412-420.
[37] Vicki C., Tang C., The photocatalytic degradation of reactive black 5 using TiO2/UV in an annular photoreactor, Water Research, 2004, 38, 2775–2781.
[38] Matthews R.W., McEvoy S.R., A comparison of 254 nm and 350 nm excitation of TiO2 in simple photocatalytic reactors, Journal of Photochemistry and Photobiology A: Chemistry, 1992, 66, 355-366.
[39] 羅國彰,微波水熱法製備二氧化鈦及其光催化之研究,私立中原大學化學系,96年。
[40] 余忠雄,向垒,钟方龙,李彦文,莫测辉,蔡全英, 黄献培,吴小莲 ,赵海明,pH对低温燃烧法合成钨酸铋光催化降解罗丹明B的影响,无机材料学报,2015,第30卷,第5期,535-541.
[41] Sujaridworakun P., Natrchalayuth K., Influence of pH and HPC concentration on the synthesis of zinc oxide photocatalyst particle from zinc-dust waste by hydrothermal treatment, Advanced Powder Technology, 2014, 25, 1266–1272.
[42] 孔守中,鎳鋅鐵氧磁體奈米粒子生成動力學及其電磁波吸收行為之研究, 私立中原大學化學系,92年。
[43] 曹家瑋,具磁分離奈米觸媒合成、鑑定及應用之 研究,龍華科技大學,99年。
[44] Chen C.W., Magnetism and metallurgy of soft magnetic materials, Courier Dover Publications, 1977, 12, 7–8.
[45] 吳憶伶,磁性觸媒應用於催化濕式氧化程序處理水中溶解性汙染物之研究,國立臺灣大學環境工程學研究所,98年。
[46] Fu Y., Chen Q., He M., Wan Y., Sun X., Xia H., Wang X., Copper Ferrite-Graphene Hybrid: A Multifunctional Heteroarchitecture for Photocatalysis and Energy Storage, Industrial & Engineering Chemistry Research, 2012, 51, 11700−11709.
[47] Lu D., Zhang Y., Lin S., Wang L., Wang C., Synthesis of magnetic ZnFe2O4/graphene composite and its application in photocatalytic degradation of dyes, Journal of Alloys and Compounds, 2013, 579, 336–342.
[48] Peik-See T., Pandikumar A., Ngee L.H., Ming H.N., Hua, C.C., Magnetically separable reduced grapheme oxide/iron oxide nanocomposite materials for environmental remediation, Catalysis Science & Technology, 2014, 4, 4396-4405.
[49] Liu X., Li Z., Zhao W., Zhao C., Wanga Y., Lin Z., A facile route to the synthesis of reduced graphene oxide-wrapped octahedral Cu2O with enhanced photocatalytic and photovoltaic performance, Journal of Materials Chemistry A, 2015, 3, 19148–19154.
[50] Hong C., Jin X., Totleben J., Lohrman J., Harak E., Subramaniam B., Chaudharib R.V., Ren S., Graphene oxide stabilized Cu2O for shape selective nanocatalysis, Journal of Materials Chemistry A, 2014, 2, 7147–7151.
[51] Zhigang N., Reduced graphene oxide-cuprous oxide hybrid nanopowders:Hydrothermal synthesis and enhanced photocatalytic performance under visible light irradiation, Materials Science in Semiconductor Processing, 2014, 23, 78–84.
[52] Sun L., Wu X., Meng M., Zhu X., Chu P. K., Enhanced Photodegradation of Methyl Orange Synergistically by icrocrystal Facet Cutting and Flexible Electrically-Conducting hannels, The Journal of Physical Chemistry C, 2014, 118, 28063–28068.
[53] Zhou X., Zhang J., Wu H., Yang H., Zhang J., Guo S., Reducing Graphene Oxide via Hydroxylamine: A Simple and Efficient Route to Graphene, The Journal of Physical Chemistry C, 2011, 115, 11957–11961
[54] Zou W., Zhang L., Liu L., Wang X., Sun J., Wu S., Yu D., Changjin T., Fei G., Lin D., Engineering the Cu2O–reduced graphene oxide interface to enhance photocatalytic degradation of organic pollutants under visible light, Applied Catalysis B: Environmental, 2016, 181, 495-503.
[55] Li B., Liu T., Hu L., Wang Y., A facile one-pot synthesis of Cu2O/rGO nanocomposite for removal of organic pollutant, Journal of Physics and Chemistry of Solids, 2013, 74, 635-640.
[56] Jiang X., Zhang M., Shi S., He G., Song X., Sun Z., Influence of Applied Potential on the Band Gap of Cu/Cu2O Thin Films, Journal of The Electrochemical Society, 2014, 161, D640-D643.
[57] Chiang L. F., Doong R. A., Enhanced photocatalytic degradation of sulfamethoxazole by visible-light-sensitive TiO2 with low Cu addition, Separation and Purification Technology, 2015, 156, 1003–1010.
[58] Ding H.L., Zhang Y.X., Wang S., Xu J.M., Xu S.C., Li G.H., Fe3O4 @SiO2 Core/Shell Nanoparticles: The Silica Coating Regulations with a Single Core for Different Core Sizes and Shell Thicknesses, Chemistry of Materials, 2012, 24, 4572–4580.
[59] Kalan R. E., Yaparatne S., Amirbahman A., Tripp C.P., P25 titanium dioxide coated magnetic particles: Preparation, characterization and photocatalytic activity, Applied Catalysis B: Environmental, 2016, 187, 249-258.
[60] Yamashita T., Hayes P., Erratum to “Analysis of XPS spectra of Fe2+ and Fe3+ ions in oxide materials”, Applied Surface Science, 2008, 254, 2441–2449.
[61] Kumar P., Maikap S., Prakash A., Tien T.C., Time-dependent pH sensing phenomena using CdSe/ZnS quantum dots in EIS structure, Nanoscale research letters, 2014, 9, 179.
[62] Zhao X., Scott S.A., Huang M., Peng W., Kiefer A.M., Flack F. S., Savage D.E., Lagally MG: Influence of surface properties on the electrical conductivity of silicon nanomembranes. Nanoscale research letters, 2011, 6, 1-7.
[63] Jiang H., Li J., Mu Z., Geng H., Degradation of methyl orange through synergistic effect of Cu/Cu2O nanoporous composite and ultrasonic wave, Desalination and Water Treatment, 2015, 56, 173-180.